llvm-project/polly/lib/CodeGen/CodeGeneration.cpp
Johannes Doerfert 1dd6e37af4 Verify IR after we bail out
The bail out in r252412 left the code generation without verifying the (so
  far) generated IR. This will change now and ensure we always run the
  verifier.

Suggested-by: Tobias Grosser <tobias@grosser.es>
llvm-svn: 252419
2015-11-08 16:34:17 +00:00

222 lines
7.8 KiB
C++

//===------ CodeGeneration.cpp - Code generate the Scops using ISL. ----======//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The CodeGeneration pass takes a Scop created by ScopInfo and translates it
// back to LLVM-IR using the ISL code generator.
//
// The Scop describes the high level memory behaviour of a control flow region.
// Transformation passes can update the schedule (execution order) of statements
// in the Scop. ISL is used to generate an abstract syntax tree that reflects
// the updated execution order. This clast is used to create new LLVM-IR that is
// computationally equivalent to the original control flow region, but executes
// its code in the new execution order defined by the changed schedule.
//
//===----------------------------------------------------------------------===//
#include "polly/CodeGen/IslNodeBuilder.h"
#include "polly/CodeGen/IslAst.h"
#include "polly/CodeGen/Utils.h"
#include "polly/DependenceInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/ScopInfo.h"
#include "polly/Support/ScopHelper.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/Debug.h"
using namespace polly;
using namespace llvm;
#define DEBUG_TYPE "polly-codegen"
namespace {
class CodeGeneration : public ScopPass {
public:
static char ID;
CodeGeneration() : ScopPass(ID) {}
/// @brief The datalayout used
const DataLayout *DL;
/// @name The analysis passes we need to generate code.
///
///{
LoopInfo *LI;
IslAstInfo *AI;
DominatorTree *DT;
ScalarEvolution *SE;
RegionInfo *RI;
///}
/// @brief Build the runtime condition.
///
/// Build the condition that evaluates at run-time to true iff all
/// assumptions taken for the SCoP hold, and to false otherwise.
///
/// @return A value evaluating to true/false if execution is save/unsafe.
Value *buildRTC(PollyIRBuilder &Builder, IslExprBuilder &ExprBuilder) {
Builder.SetInsertPoint(Builder.GetInsertBlock()->getTerminator());
Value *RTC = ExprBuilder.create(AI->getRunCondition());
if (!RTC->getType()->isIntegerTy(1))
RTC = Builder.CreateIsNotNull(RTC);
return RTC;
}
bool verifyGeneratedFunction(Scop &S, Function &F) {
if (!verifyFunction(F))
return false;
DEBUG({
errs() << "== ISL Codegen created an invalid function ==\n\n== The "
"SCoP ==\n";
S.print(errs());
errs() << "\n== The isl AST ==\n";
AI->printScop(errs(), S);
errs() << "\n== The invalid function ==\n";
F.print(errs());
errs() << "\n== The errors ==\n";
verifyFunction(F, &errs());
});
return true;
}
// CodeGeneration adds a lot of BBs without updating the RegionInfo
// We make all created BBs belong to the scop's parent region without any
// nested structure to keep the RegionInfo verifier happy.
void fixRegionInfo(Function *F, Region *ParentRegion) {
for (BasicBlock &BB : *F) {
if (RI->getRegionFor(&BB))
continue;
RI->setRegionFor(&BB, ParentRegion);
}
}
/// @brief Generate LLVM-IR for the SCoP @p S.
bool runOnScop(Scop &S) override {
AI = &getAnalysis<IslAstInfo>();
// Check if we created an isl_ast root node, otherwise exit.
isl_ast_node *AstRoot = AI->getAst();
if (!AstRoot)
return false;
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
DL = &S.getRegion().getEntry()->getParent()->getParent()->getDataLayout();
RI = &getAnalysis<RegionInfoPass>().getRegionInfo();
Region *R = &S.getRegion();
assert(!R->isTopLevelRegion() && "Top level regions are not supported");
ScopAnnotator Annotator;
Annotator.buildAliasScopes(S);
simplifyRegion(R, DT, LI, RI);
assert(R->isSimple());
BasicBlock *EnteringBB = S.getRegion().getEnteringBlock();
assert(EnteringBB);
PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator);
IslNodeBuilder NodeBuilder(Builder, Annotator, this, *DL, *LI, *SE, *DT, S);
// Only build the run-time condition and parameters _after_ having
// introduced the conditional branch. This is important as the conditional
// branch will guard the original scop from new induction variables that
// the SCEVExpander may introduce while code generating the parameters and
// which may introduce scalar dependences that prevent us from correctly
// code generating this scop.
BasicBlock *StartBlock =
executeScopConditionally(S, this, Builder.getTrue());
auto SplitBlock = StartBlock->getSinglePredecessor();
// First generate code for the hoisted invariant loads and transitively the
// parameters they reference. Afterwards, for the remaining parameters that
// might reference the hoisted loads. Finally, build the runtime check
// that might reference both hoisted loads as well as parameters.
// If the hoisting fails we have to bail and execute the original code.
Builder.SetInsertPoint(SplitBlock->getTerminator());
if (!NodeBuilder.preloadInvariantLoads()) {
auto *FalseI1 = Builder.getFalse();
Builder.GetInsertBlock()->getTerminator()->setOperand(0, FalseI1);
isl_ast_node_free(AstRoot);
} else {
NodeBuilder.addParameters(S.getContext());
Value *RTC = buildRTC(Builder, NodeBuilder.getExprBuilder());
Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC);
Builder.SetInsertPoint(&StartBlock->front());
NodeBuilder.create(AstRoot);
NodeBuilder.finalizeSCoP(S);
fixRegionInfo(EnteringBB->getParent(), R->getParent());
}
assert(!verifyGeneratedFunction(S, *EnteringBB->getParent()) &&
"Verification of generated function failed");
return true;
}
/// @brief Register all analyses and transformation required.
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<IslAstInfo>();
AU.addRequired<RegionInfoPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<ScopDetection>();
AU.addRequired<ScopInfo>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreserved<DependenceInfo>();
AU.addPreserved<AAResultsWrapperPass>();
AU.addPreserved<BasicAAWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.addPreserved<PostDominatorTree>();
AU.addPreserved<IslAstInfo>();
AU.addPreserved<ScopDetection>();
AU.addPreserved<ScalarEvolutionWrapperPass>();
AU.addPreserved<SCEVAAWrapperPass>();
// FIXME: We do not yet add regions for the newly generated code to the
// region tree.
AU.addPreserved<RegionInfoPass>();
AU.addPreserved<ScopInfo>();
}
};
}
char CodeGeneration::ID = 1;
Pass *polly::createCodeGenerationPass() { return new CodeGeneration(); }
INITIALIZE_PASS_BEGIN(CodeGeneration, "polly-codegen",
"Polly - Create LLVM-IR from SCoPs", false, false);
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
INITIALIZE_PASS_DEPENDENCY(ScopDetection);
INITIALIZE_PASS_END(CodeGeneration, "polly-codegen",
"Polly - Create LLVM-IR from SCoPs", false, false)