llvm-project/llvm/lib/Analysis/MemoryProfileInfo.cpp
Teresa Johnson 3a423a10ff
[MemProf][PGO] Prevent dropping of profile metadata during optimization (#121359)
This patch fixes a couple of places where memprof-related metadata
(!memprof and !callsite) were being dropped, and one place where PGO
metadata (!prof) was being dropped.

All were due to instances of combineMetadata() being invoked. That
function drops all metadata not in the list provided by the client, and
also drops any not in its switch statement.

Memprof metadata needed a case in the combineMetadata switch statement.
For now we simply keep the metadata of the instruction being kept, which
doesn't retain all the profile information when two calls with
memprof metadata are being combined, but at least retains some.

For the memprof metadata being dropped during call CSE, add memprof and
callsite metadata to the list of known ids in combineMetadataForCSE.

Neither memprof nor regular prof metadata were in the list of known ids
for the callsite in MemCpyOptimizer, which was added to combine AA
metadata after optimization of byval arguments fed by memcpy
instructions, and similar types of optimizations of memcpy uses.

There is one other callsite of combineMetadata, but it is only invoked
on load instructions, which do not carry these types of metadata.
2025-01-02 12:11:59 -08:00

367 lines
14 KiB
C++

//===-- MemoryProfileInfo.cpp - memory profile info ------------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains utilities to analyze memory profile information.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/MemoryProfileInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
using namespace llvm::memprof;
#define DEBUG_TYPE "memory-profile-info"
// Upper bound on lifetime access density (accesses per byte per lifetime sec)
// for marking an allocation cold.
cl::opt<float> MemProfLifetimeAccessDensityColdThreshold(
"memprof-lifetime-access-density-cold-threshold", cl::init(0.05),
cl::Hidden,
cl::desc("The threshold the lifetime access density (accesses per byte per "
"lifetime sec) must be under to consider an allocation cold"));
// Lower bound on lifetime to mark an allocation cold (in addition to accesses
// per byte per sec above). This is to avoid pessimizing short lived objects.
cl::opt<unsigned> MemProfAveLifetimeColdThreshold(
"memprof-ave-lifetime-cold-threshold", cl::init(200), cl::Hidden,
cl::desc("The average lifetime (s) for an allocation to be considered "
"cold"));
// Lower bound on average lifetime accesses density (total life time access
// density / alloc count) for marking an allocation hot.
cl::opt<unsigned> MemProfMinAveLifetimeAccessDensityHotThreshold(
"memprof-min-ave-lifetime-access-density-hot-threshold", cl::init(1000),
cl::Hidden,
cl::desc("The minimum TotalLifetimeAccessDensity / AllocCount for an "
"allocation to be considered hot"));
cl::opt<bool> MemProfReportHintedSizes(
"memprof-report-hinted-sizes", cl::init(false), cl::Hidden,
cl::desc("Report total allocation sizes of hinted allocations"));
AllocationType llvm::memprof::getAllocType(uint64_t TotalLifetimeAccessDensity,
uint64_t AllocCount,
uint64_t TotalLifetime) {
// The access densities are multiplied by 100 to hold 2 decimal places of
// precision, so need to divide by 100.
if (((float)TotalLifetimeAccessDensity) / AllocCount / 100 <
MemProfLifetimeAccessDensityColdThreshold
// Lifetime is expected to be in ms, so convert the threshold to ms.
&& ((float)TotalLifetime) / AllocCount >=
MemProfAveLifetimeColdThreshold * 1000)
return AllocationType::Cold;
// The access densities are multiplied by 100 to hold 2 decimal places of
// precision, so need to divide by 100.
if (((float)TotalLifetimeAccessDensity) / AllocCount / 100 >
MemProfMinAveLifetimeAccessDensityHotThreshold)
return AllocationType::Hot;
return AllocationType::NotCold;
}
MDNode *llvm::memprof::buildCallstackMetadata(ArrayRef<uint64_t> CallStack,
LLVMContext &Ctx) {
SmallVector<Metadata *, 8> StackVals;
StackVals.reserve(CallStack.size());
for (auto Id : CallStack) {
auto *StackValMD =
ValueAsMetadata::get(ConstantInt::get(Type::getInt64Ty(Ctx), Id));
StackVals.push_back(StackValMD);
}
return MDNode::get(Ctx, StackVals);
}
MDNode *llvm::memprof::getMIBStackNode(const MDNode *MIB) {
assert(MIB->getNumOperands() >= 2);
// The stack metadata is the first operand of each memprof MIB metadata.
return cast<MDNode>(MIB->getOperand(0));
}
AllocationType llvm::memprof::getMIBAllocType(const MDNode *MIB) {
assert(MIB->getNumOperands() >= 2);
// The allocation type is currently the second operand of each memprof
// MIB metadata. This will need to change as we add additional allocation
// types that can be applied based on the allocation profile data.
auto *MDS = dyn_cast<MDString>(MIB->getOperand(1));
assert(MDS);
if (MDS->getString() == "cold") {
return AllocationType::Cold;
} else if (MDS->getString() == "hot") {
return AllocationType::Hot;
}
return AllocationType::NotCold;
}
std::string llvm::memprof::getAllocTypeAttributeString(AllocationType Type) {
switch (Type) {
case AllocationType::NotCold:
return "notcold";
break;
case AllocationType::Cold:
return "cold";
break;
case AllocationType::Hot:
return "hot";
break;
default:
assert(false && "Unexpected alloc type");
}
llvm_unreachable("invalid alloc type");
}
static void addAllocTypeAttribute(LLVMContext &Ctx, CallBase *CI,
AllocationType AllocType) {
auto AllocTypeString = getAllocTypeAttributeString(AllocType);
auto A = llvm::Attribute::get(Ctx, "memprof", AllocTypeString);
CI->addFnAttr(A);
}
bool llvm::memprof::hasSingleAllocType(uint8_t AllocTypes) {
const unsigned NumAllocTypes = llvm::popcount(AllocTypes);
assert(NumAllocTypes != 0);
return NumAllocTypes == 1;
}
void CallStackTrie::addCallStack(
AllocationType AllocType, ArrayRef<uint64_t> StackIds,
std::vector<ContextTotalSize> ContextSizeInfo) {
bool First = true;
CallStackTrieNode *Curr = nullptr;
for (auto StackId : StackIds) {
// If this is the first stack frame, add or update alloc node.
if (First) {
First = false;
if (Alloc) {
assert(AllocStackId == StackId);
Alloc->AllocTypes |= static_cast<uint8_t>(AllocType);
} else {
AllocStackId = StackId;
Alloc = new CallStackTrieNode(AllocType);
}
Curr = Alloc;
continue;
}
// Update existing caller node if it exists.
auto Next = Curr->Callers.find(StackId);
if (Next != Curr->Callers.end()) {
Curr = Next->second;
Curr->AllocTypes |= static_cast<uint8_t>(AllocType);
continue;
}
// Otherwise add a new caller node.
auto *New = new CallStackTrieNode(AllocType);
Curr->Callers[StackId] = New;
Curr = New;
}
assert(Curr);
Curr->ContextSizeInfo.insert(Curr->ContextSizeInfo.end(),
ContextSizeInfo.begin(), ContextSizeInfo.end());
}
void CallStackTrie::addCallStack(MDNode *MIB) {
MDNode *StackMD = getMIBStackNode(MIB);
assert(StackMD);
std::vector<uint64_t> CallStack;
CallStack.reserve(StackMD->getNumOperands());
for (const auto &MIBStackIter : StackMD->operands()) {
auto *StackId = mdconst::dyn_extract<ConstantInt>(MIBStackIter);
assert(StackId);
CallStack.push_back(StackId->getZExtValue());
}
std::vector<ContextTotalSize> ContextSizeInfo;
// Collect the context size information if it exists.
if (MIB->getNumOperands() > 2) {
for (unsigned I = 2; I < MIB->getNumOperands(); I++) {
MDNode *ContextSizePair = dyn_cast<MDNode>(MIB->getOperand(I));
assert(ContextSizePair->getNumOperands() == 2);
uint64_t FullStackId =
mdconst::dyn_extract<ConstantInt>(ContextSizePair->getOperand(0))
->getZExtValue();
uint64_t TotalSize =
mdconst::dyn_extract<ConstantInt>(ContextSizePair->getOperand(1))
->getZExtValue();
ContextSizeInfo.push_back({FullStackId, TotalSize});
}
}
addCallStack(getMIBAllocType(MIB), CallStack, std::move(ContextSizeInfo));
}
static MDNode *createMIBNode(LLVMContext &Ctx, ArrayRef<uint64_t> MIBCallStack,
AllocationType AllocType,
ArrayRef<ContextTotalSize> ContextSizeInfo) {
SmallVector<Metadata *> MIBPayload(
{buildCallstackMetadata(MIBCallStack, Ctx)});
MIBPayload.push_back(
MDString::get(Ctx, getAllocTypeAttributeString(AllocType)));
if (!ContextSizeInfo.empty()) {
for (const auto &[FullStackId, TotalSize] : ContextSizeInfo) {
auto *FullStackIdMD = ValueAsMetadata::get(
ConstantInt::get(Type::getInt64Ty(Ctx), FullStackId));
auto *TotalSizeMD = ValueAsMetadata::get(
ConstantInt::get(Type::getInt64Ty(Ctx), TotalSize));
auto *ContextSizeMD = MDNode::get(Ctx, {FullStackIdMD, TotalSizeMD});
MIBPayload.push_back(ContextSizeMD);
}
}
return MDNode::get(Ctx, MIBPayload);
}
void CallStackTrie::collectContextSizeInfo(
CallStackTrieNode *Node, std::vector<ContextTotalSize> &ContextSizeInfo) {
ContextSizeInfo.insert(ContextSizeInfo.end(), Node->ContextSizeInfo.begin(),
Node->ContextSizeInfo.end());
for (auto &Caller : Node->Callers)
collectContextSizeInfo(Caller.second, ContextSizeInfo);
}
// Recursive helper to trim contexts and create metadata nodes.
// Caller should have pushed Node's loc to MIBCallStack. Doing this in the
// caller makes it simpler to handle the many early returns in this method.
bool CallStackTrie::buildMIBNodes(CallStackTrieNode *Node, LLVMContext &Ctx,
std::vector<uint64_t> &MIBCallStack,
std::vector<Metadata *> &MIBNodes,
bool CalleeHasAmbiguousCallerContext) {
// Trim context below the first node in a prefix with a single alloc type.
// Add an MIB record for the current call stack prefix.
if (hasSingleAllocType(Node->AllocTypes)) {
std::vector<ContextTotalSize> ContextSizeInfo;
collectContextSizeInfo(Node, ContextSizeInfo);
MIBNodes.push_back(createMIBNode(
Ctx, MIBCallStack, (AllocationType)Node->AllocTypes, ContextSizeInfo));
return true;
}
// We don't have a single allocation for all the contexts sharing this prefix,
// so recursively descend into callers in trie.
if (!Node->Callers.empty()) {
bool NodeHasAmbiguousCallerContext = Node->Callers.size() > 1;
bool AddedMIBNodesForAllCallerContexts = true;
for (auto &Caller : Node->Callers) {
MIBCallStack.push_back(Caller.first);
AddedMIBNodesForAllCallerContexts &=
buildMIBNodes(Caller.second, Ctx, MIBCallStack, MIBNodes,
NodeHasAmbiguousCallerContext);
// Remove Caller.
MIBCallStack.pop_back();
}
if (AddedMIBNodesForAllCallerContexts)
return true;
// We expect that the callers should be forced to add MIBs to disambiguate
// the context in this case (see below).
assert(!NodeHasAmbiguousCallerContext);
}
// If we reached here, then this node does not have a single allocation type,
// and we didn't add metadata for a longer call stack prefix including any of
// Node's callers. That means we never hit a single allocation type along all
// call stacks with this prefix. This can happen due to recursion collapsing
// or the stack being deeper than tracked by the profiler runtime, leading to
// contexts with different allocation types being merged. In that case, we
// trim the context just below the deepest context split, which is this
// node if the callee has an ambiguous caller context (multiple callers),
// since the recursive calls above returned false. Conservatively give it
// non-cold allocation type.
if (!CalleeHasAmbiguousCallerContext)
return false;
std::vector<ContextTotalSize> ContextSizeInfo;
collectContextSizeInfo(Node, ContextSizeInfo);
MIBNodes.push_back(createMIBNode(Ctx, MIBCallStack, AllocationType::NotCold,
ContextSizeInfo));
return true;
}
void CallStackTrie::addSingleAllocTypeAttribute(CallBase *CI, AllocationType AT,
StringRef Descriptor) {
addAllocTypeAttribute(CI->getContext(), CI, AT);
if (MemProfReportHintedSizes) {
std::vector<ContextTotalSize> ContextSizeInfo;
collectContextSizeInfo(Alloc, ContextSizeInfo);
for (const auto &[FullStackId, TotalSize] : ContextSizeInfo) {
errs() << "MemProf hinting: Total size for full allocation context hash "
<< FullStackId << " and " << Descriptor << " alloc type "
<< getAllocTypeAttributeString(AT) << ": " << TotalSize << "\n";
}
}
}
// Build and attach the minimal necessary MIB metadata. If the alloc has a
// single allocation type, add a function attribute instead. Returns true if
// memprof metadata attached, false if not (attribute added).
bool CallStackTrie::buildAndAttachMIBMetadata(CallBase *CI) {
if (hasSingleAllocType(Alloc->AllocTypes)) {
addSingleAllocTypeAttribute(CI, (AllocationType)Alloc->AllocTypes,
"single");
return false;
}
auto &Ctx = CI->getContext();
std::vector<uint64_t> MIBCallStack;
MIBCallStack.push_back(AllocStackId);
std::vector<Metadata *> MIBNodes;
assert(!Alloc->Callers.empty() && "addCallStack has not been called yet");
// The last parameter is meant to say whether the callee of the given node
// has more than one caller. Here the node being passed in is the alloc
// and it has no callees. So it's false.
if (buildMIBNodes(Alloc, Ctx, MIBCallStack, MIBNodes, false)) {
assert(MIBCallStack.size() == 1 &&
"Should only be left with Alloc's location in stack");
CI->setMetadata(LLVMContext::MD_memprof, MDNode::get(Ctx, MIBNodes));
return true;
}
// If there exists corner case that CallStackTrie has one chain to leaf
// and all node in the chain have multi alloc type, conservatively give
// it non-cold allocation type.
// FIXME: Avoid this case before memory profile created. Alternatively, select
// hint based on fraction cold.
addSingleAllocTypeAttribute(CI, AllocationType::NotCold, "indistinguishable");
return false;
}
template <>
CallStack<MDNode, MDNode::op_iterator>::CallStackIterator::CallStackIterator(
const MDNode *N, bool End)
: N(N) {
if (!N)
return;
Iter = End ? N->op_end() : N->op_begin();
}
template <>
uint64_t
CallStack<MDNode, MDNode::op_iterator>::CallStackIterator::operator*() {
assert(Iter != N->op_end());
ConstantInt *StackIdCInt = mdconst::dyn_extract<ConstantInt>(*Iter);
assert(StackIdCInt);
return StackIdCInt->getZExtValue();
}
template <> uint64_t CallStack<MDNode, MDNode::op_iterator>::back() const {
assert(N);
return mdconst::dyn_extract<ConstantInt>(N->operands().back())
->getZExtValue();
}
MDNode *MDNode::getMergedMemProfMetadata(MDNode *A, MDNode *B) {
// TODO: Support more sophisticated merging, such as selecting the one with
// more bytes allocated, or implement support for carrying multiple allocation
// leaf contexts. For now, keep the first one.
if (A)
return A;
return B;
}
MDNode *MDNode::getMergedCallsiteMetadata(MDNode *A, MDNode *B) {
// TODO: Support more sophisticated merging, which will require support for
// carrying multiple contexts. For now, keep the first one.
if (A)
return A;
return B;
}