2085 lines
73 KiB
C++
2085 lines
73 KiB
C++
//===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file This file implements the utility functions used by the GlobalISel
|
|
/// pipeline.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/GlobalISel/Utils.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/CodeGen/CodeGenCommonISel.h"
|
|
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
|
|
#include "llvm/CodeGen/GlobalISel/GISelValueTracking.h"
|
|
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
|
|
#include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
|
|
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
|
|
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/MachineSizeOpts.h"
|
|
#include "llvm/CodeGen/RegisterBankInfo.h"
|
|
#include "llvm/CodeGen/StackProtector.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Transforms/Utils/SizeOpts.h"
|
|
#include <numeric>
|
|
#include <optional>
|
|
|
|
#define DEBUG_TYPE "globalisel-utils"
|
|
|
|
using namespace llvm;
|
|
using namespace MIPatternMatch;
|
|
|
|
Register llvm::constrainRegToClass(MachineRegisterInfo &MRI,
|
|
const TargetInstrInfo &TII,
|
|
const RegisterBankInfo &RBI, Register Reg,
|
|
const TargetRegisterClass &RegClass) {
|
|
if (!RBI.constrainGenericRegister(Reg, RegClass, MRI))
|
|
return MRI.createVirtualRegister(&RegClass);
|
|
|
|
return Reg;
|
|
}
|
|
|
|
Register llvm::constrainOperandRegClass(
|
|
const MachineFunction &MF, const TargetRegisterInfo &TRI,
|
|
MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
|
|
const RegisterBankInfo &RBI, MachineInstr &InsertPt,
|
|
const TargetRegisterClass &RegClass, MachineOperand &RegMO) {
|
|
Register Reg = RegMO.getReg();
|
|
// Assume physical registers are properly constrained.
|
|
assert(Reg.isVirtual() && "PhysReg not implemented");
|
|
|
|
// Save the old register class to check whether
|
|
// the change notifications will be required.
|
|
// TODO: A better approach would be to pass
|
|
// the observers to constrainRegToClass().
|
|
auto *OldRegClass = MRI.getRegClassOrNull(Reg);
|
|
Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass);
|
|
// If we created a new virtual register because the class is not compatible
|
|
// then create a copy between the new and the old register.
|
|
if (ConstrainedReg != Reg) {
|
|
MachineBasicBlock::iterator InsertIt(&InsertPt);
|
|
MachineBasicBlock &MBB = *InsertPt.getParent();
|
|
// FIXME: The copy needs to have the classes constrained for its operands.
|
|
// Use operand's regbank to get the class for old register (Reg).
|
|
if (RegMO.isUse()) {
|
|
BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(),
|
|
TII.get(TargetOpcode::COPY), ConstrainedReg)
|
|
.addReg(Reg);
|
|
} else {
|
|
assert(RegMO.isDef() && "Must be a definition");
|
|
BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(),
|
|
TII.get(TargetOpcode::COPY), Reg)
|
|
.addReg(ConstrainedReg);
|
|
}
|
|
if (GISelChangeObserver *Observer = MF.getObserver()) {
|
|
Observer->changingInstr(*RegMO.getParent());
|
|
}
|
|
RegMO.setReg(ConstrainedReg);
|
|
if (GISelChangeObserver *Observer = MF.getObserver()) {
|
|
Observer->changedInstr(*RegMO.getParent());
|
|
}
|
|
} else if (OldRegClass != MRI.getRegClassOrNull(Reg)) {
|
|
if (GISelChangeObserver *Observer = MF.getObserver()) {
|
|
if (!RegMO.isDef()) {
|
|
MachineInstr *RegDef = MRI.getVRegDef(Reg);
|
|
Observer->changedInstr(*RegDef);
|
|
}
|
|
Observer->changingAllUsesOfReg(MRI, Reg);
|
|
Observer->finishedChangingAllUsesOfReg();
|
|
}
|
|
}
|
|
return ConstrainedReg;
|
|
}
|
|
|
|
Register llvm::constrainOperandRegClass(
|
|
const MachineFunction &MF, const TargetRegisterInfo &TRI,
|
|
MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
|
|
const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II,
|
|
MachineOperand &RegMO, unsigned OpIdx) {
|
|
Register Reg = RegMO.getReg();
|
|
// Assume physical registers are properly constrained.
|
|
assert(Reg.isVirtual() && "PhysReg not implemented");
|
|
|
|
const TargetRegisterClass *OpRC = TII.getRegClass(II, OpIdx, &TRI, MF);
|
|
// Some of the target independent instructions, like COPY, may not impose any
|
|
// register class constraints on some of their operands: If it's a use, we can
|
|
// skip constraining as the instruction defining the register would constrain
|
|
// it.
|
|
|
|
if (OpRC) {
|
|
// Obtain the RC from incoming regbank if it is a proper sub-class. Operands
|
|
// can have multiple regbanks for a superclass that combine different
|
|
// register types (E.g., AMDGPU's VGPR and AGPR). The regbank ambiguity
|
|
// resolved by targets during regbankselect should not be overridden.
|
|
if (const auto *SubRC = TRI.getCommonSubClass(
|
|
OpRC, TRI.getConstrainedRegClassForOperand(RegMO, MRI)))
|
|
OpRC = SubRC;
|
|
|
|
OpRC = TRI.getAllocatableClass(OpRC);
|
|
}
|
|
|
|
if (!OpRC) {
|
|
assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) &&
|
|
"Register class constraint is required unless either the "
|
|
"instruction is target independent or the operand is a use");
|
|
// FIXME: Just bailing out like this here could be not enough, unless we
|
|
// expect the users of this function to do the right thing for PHIs and
|
|
// COPY:
|
|
// v1 = COPY v0
|
|
// v2 = COPY v1
|
|
// v1 here may end up not being constrained at all. Please notice that to
|
|
// reproduce the issue we likely need a destination pattern of a selection
|
|
// rule producing such extra copies, not just an input GMIR with them as
|
|
// every existing target using selectImpl handles copies before calling it
|
|
// and they never reach this function.
|
|
return Reg;
|
|
}
|
|
return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *OpRC,
|
|
RegMO);
|
|
}
|
|
|
|
bool llvm::constrainSelectedInstRegOperands(MachineInstr &I,
|
|
const TargetInstrInfo &TII,
|
|
const TargetRegisterInfo &TRI,
|
|
const RegisterBankInfo &RBI) {
|
|
assert(!isPreISelGenericOpcode(I.getOpcode()) &&
|
|
"A selected instruction is expected");
|
|
MachineBasicBlock &MBB = *I.getParent();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
|
|
for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) {
|
|
MachineOperand &MO = I.getOperand(OpI);
|
|
|
|
// There's nothing to be done on non-register operands.
|
|
if (!MO.isReg())
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n');
|
|
assert(MO.isReg() && "Unsupported non-reg operand");
|
|
|
|
Register Reg = MO.getReg();
|
|
// Physical registers don't need to be constrained.
|
|
if (Reg.isPhysical())
|
|
continue;
|
|
|
|
// Register operands with a value of 0 (e.g. predicate operands) don't need
|
|
// to be constrained.
|
|
if (Reg == 0)
|
|
continue;
|
|
|
|
// If the operand is a vreg, we should constrain its regclass, and only
|
|
// insert COPYs if that's impossible.
|
|
// constrainOperandRegClass does that for us.
|
|
constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), MO, OpI);
|
|
|
|
// Tie uses to defs as indicated in MCInstrDesc if this hasn't already been
|
|
// done.
|
|
if (MO.isUse()) {
|
|
int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO);
|
|
if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx))
|
|
I.tieOperands(DefIdx, OpI);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool llvm::canReplaceReg(Register DstReg, Register SrcReg,
|
|
MachineRegisterInfo &MRI) {
|
|
// Give up if either DstReg or SrcReg is a physical register.
|
|
if (DstReg.isPhysical() || SrcReg.isPhysical())
|
|
return false;
|
|
// Give up if the types don't match.
|
|
if (MRI.getType(DstReg) != MRI.getType(SrcReg))
|
|
return false;
|
|
// Replace if either DstReg has no constraints or the register
|
|
// constraints match.
|
|
const auto &DstRBC = MRI.getRegClassOrRegBank(DstReg);
|
|
if (!DstRBC || DstRBC == MRI.getRegClassOrRegBank(SrcReg))
|
|
return true;
|
|
|
|
// Otherwise match if the Src is already a regclass that is covered by the Dst
|
|
// RegBank.
|
|
return isa<const RegisterBank *>(DstRBC) && MRI.getRegClassOrNull(SrcReg) &&
|
|
cast<const RegisterBank *>(DstRBC)->covers(
|
|
*MRI.getRegClassOrNull(SrcReg));
|
|
}
|
|
|
|
bool llvm::isTriviallyDead(const MachineInstr &MI,
|
|
const MachineRegisterInfo &MRI) {
|
|
// Instructions without side-effects are dead iff they only define dead regs.
|
|
// This function is hot and this loop returns early in the common case,
|
|
// so only perform additional checks before this if absolutely necessary.
|
|
for (const auto &MO : MI.all_defs()) {
|
|
Register Reg = MO.getReg();
|
|
if (Reg.isPhysical() || !MRI.use_nodbg_empty(Reg))
|
|
return false;
|
|
}
|
|
return MI.wouldBeTriviallyDead();
|
|
}
|
|
|
|
static void reportGISelDiagnostic(DiagnosticSeverity Severity,
|
|
MachineFunction &MF,
|
|
const TargetPassConfig &TPC,
|
|
MachineOptimizationRemarkEmitter &MORE,
|
|
MachineOptimizationRemarkMissed &R) {
|
|
bool IsFatal = Severity == DS_Error &&
|
|
TPC.isGlobalISelAbortEnabled();
|
|
// Print the function name explicitly if we don't have a debug location (which
|
|
// makes the diagnostic less useful) or if we're going to emit a raw error.
|
|
if (!R.getLocation().isValid() || IsFatal)
|
|
R << (" (in function: " + MF.getName() + ")").str();
|
|
|
|
if (IsFatal)
|
|
report_fatal_error(Twine(R.getMsg()));
|
|
else
|
|
MORE.emit(R);
|
|
}
|
|
|
|
void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC,
|
|
MachineOptimizationRemarkEmitter &MORE,
|
|
MachineOptimizationRemarkMissed &R) {
|
|
reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R);
|
|
}
|
|
|
|
void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
|
|
MachineOptimizationRemarkEmitter &MORE,
|
|
MachineOptimizationRemarkMissed &R) {
|
|
MF.getProperties().setFailedISel();
|
|
reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R);
|
|
}
|
|
|
|
void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
|
|
MachineOptimizationRemarkEmitter &MORE,
|
|
const char *PassName, StringRef Msg,
|
|
const MachineInstr &MI) {
|
|
MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ",
|
|
MI.getDebugLoc(), MI.getParent());
|
|
R << Msg;
|
|
// Printing MI is expensive; only do it if expensive remarks are enabled.
|
|
if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName))
|
|
R << ": " << ore::MNV("Inst", MI);
|
|
reportGISelFailure(MF, TPC, MORE, R);
|
|
}
|
|
|
|
unsigned llvm::getInverseGMinMaxOpcode(unsigned MinMaxOpc) {
|
|
switch (MinMaxOpc) {
|
|
case TargetOpcode::G_SMIN:
|
|
return TargetOpcode::G_SMAX;
|
|
case TargetOpcode::G_SMAX:
|
|
return TargetOpcode::G_SMIN;
|
|
case TargetOpcode::G_UMIN:
|
|
return TargetOpcode::G_UMAX;
|
|
case TargetOpcode::G_UMAX:
|
|
return TargetOpcode::G_UMIN;
|
|
default:
|
|
llvm_unreachable("unrecognized opcode");
|
|
}
|
|
}
|
|
|
|
std::optional<APInt> llvm::getIConstantVRegVal(Register VReg,
|
|
const MachineRegisterInfo &MRI) {
|
|
std::optional<ValueAndVReg> ValAndVReg = getIConstantVRegValWithLookThrough(
|
|
VReg, MRI, /*LookThroughInstrs*/ false);
|
|
assert((!ValAndVReg || ValAndVReg->VReg == VReg) &&
|
|
"Value found while looking through instrs");
|
|
if (!ValAndVReg)
|
|
return std::nullopt;
|
|
return ValAndVReg->Value;
|
|
}
|
|
|
|
const APInt &llvm::getIConstantFromReg(Register Reg,
|
|
const MachineRegisterInfo &MRI) {
|
|
MachineInstr *Const = MRI.getVRegDef(Reg);
|
|
assert((Const && Const->getOpcode() == TargetOpcode::G_CONSTANT) &&
|
|
"expected a G_CONSTANT on Reg");
|
|
return Const->getOperand(1).getCImm()->getValue();
|
|
}
|
|
|
|
std::optional<int64_t>
|
|
llvm::getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI) {
|
|
std::optional<APInt> Val = getIConstantVRegVal(VReg, MRI);
|
|
if (Val && Val->getBitWidth() <= 64)
|
|
return Val->getSExtValue();
|
|
return std::nullopt;
|
|
}
|
|
|
|
namespace {
|
|
|
|
// This function is used in many places, and as such, it has some
|
|
// micro-optimizations to try and make it as fast as it can be.
|
|
//
|
|
// - We use template arguments to avoid an indirect call caused by passing a
|
|
// function_ref/std::function
|
|
// - GetAPCstValue does not return std::optional<APInt> as that's expensive.
|
|
// Instead it returns true/false and places the result in a pre-constructed
|
|
// APInt.
|
|
//
|
|
// Please change this function carefully and benchmark your changes.
|
|
template <bool (*IsConstantOpcode)(const MachineInstr *),
|
|
bool (*GetAPCstValue)(const MachineInstr *MI, APInt &)>
|
|
std::optional<ValueAndVReg>
|
|
getConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI,
|
|
bool LookThroughInstrs = true,
|
|
bool LookThroughAnyExt = false) {
|
|
SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes;
|
|
MachineInstr *MI;
|
|
|
|
while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI) &&
|
|
LookThroughInstrs) {
|
|
switch (MI->getOpcode()) {
|
|
case TargetOpcode::G_ANYEXT:
|
|
if (!LookThroughAnyExt)
|
|
return std::nullopt;
|
|
[[fallthrough]];
|
|
case TargetOpcode::G_TRUNC:
|
|
case TargetOpcode::G_SEXT:
|
|
case TargetOpcode::G_ZEXT:
|
|
SeenOpcodes.push_back(std::make_pair(
|
|
MI->getOpcode(),
|
|
MRI.getType(MI->getOperand(0).getReg()).getSizeInBits()));
|
|
VReg = MI->getOperand(1).getReg();
|
|
break;
|
|
case TargetOpcode::COPY:
|
|
VReg = MI->getOperand(1).getReg();
|
|
if (VReg.isPhysical())
|
|
return std::nullopt;
|
|
break;
|
|
case TargetOpcode::G_INTTOPTR:
|
|
VReg = MI->getOperand(1).getReg();
|
|
break;
|
|
default:
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
if (!MI || !IsConstantOpcode(MI))
|
|
return std::nullopt;
|
|
|
|
APInt Val;
|
|
if (!GetAPCstValue(MI, Val))
|
|
return std::nullopt;
|
|
for (auto &Pair : reverse(SeenOpcodes)) {
|
|
switch (Pair.first) {
|
|
case TargetOpcode::G_TRUNC:
|
|
Val = Val.trunc(Pair.second);
|
|
break;
|
|
case TargetOpcode::G_ANYEXT:
|
|
case TargetOpcode::G_SEXT:
|
|
Val = Val.sext(Pair.second);
|
|
break;
|
|
case TargetOpcode::G_ZEXT:
|
|
Val = Val.zext(Pair.second);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ValueAndVReg{std::move(Val), VReg};
|
|
}
|
|
|
|
bool isIConstant(const MachineInstr *MI) {
|
|
if (!MI)
|
|
return false;
|
|
return MI->getOpcode() == TargetOpcode::G_CONSTANT;
|
|
}
|
|
|
|
bool isFConstant(const MachineInstr *MI) {
|
|
if (!MI)
|
|
return false;
|
|
return MI->getOpcode() == TargetOpcode::G_FCONSTANT;
|
|
}
|
|
|
|
bool isAnyConstant(const MachineInstr *MI) {
|
|
if (!MI)
|
|
return false;
|
|
unsigned Opc = MI->getOpcode();
|
|
return Opc == TargetOpcode::G_CONSTANT || Opc == TargetOpcode::G_FCONSTANT;
|
|
}
|
|
|
|
bool getCImmAsAPInt(const MachineInstr *MI, APInt &Result) {
|
|
const MachineOperand &CstVal = MI->getOperand(1);
|
|
if (!CstVal.isCImm())
|
|
return false;
|
|
Result = CstVal.getCImm()->getValue();
|
|
return true;
|
|
}
|
|
|
|
bool getCImmOrFPImmAsAPInt(const MachineInstr *MI, APInt &Result) {
|
|
const MachineOperand &CstVal = MI->getOperand(1);
|
|
if (CstVal.isCImm())
|
|
Result = CstVal.getCImm()->getValue();
|
|
else if (CstVal.isFPImm())
|
|
Result = CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
|
|
else
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
std::optional<ValueAndVReg> llvm::getIConstantVRegValWithLookThrough(
|
|
Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) {
|
|
return getConstantVRegValWithLookThrough<isIConstant, getCImmAsAPInt>(
|
|
VReg, MRI, LookThroughInstrs);
|
|
}
|
|
|
|
std::optional<ValueAndVReg> llvm::getAnyConstantVRegValWithLookThrough(
|
|
Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs,
|
|
bool LookThroughAnyExt) {
|
|
return getConstantVRegValWithLookThrough<isAnyConstant,
|
|
getCImmOrFPImmAsAPInt>(
|
|
VReg, MRI, LookThroughInstrs, LookThroughAnyExt);
|
|
}
|
|
|
|
std::optional<FPValueAndVReg> llvm::getFConstantVRegValWithLookThrough(
|
|
Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) {
|
|
auto Reg =
|
|
getConstantVRegValWithLookThrough<isFConstant, getCImmOrFPImmAsAPInt>(
|
|
VReg, MRI, LookThroughInstrs);
|
|
if (!Reg)
|
|
return std::nullopt;
|
|
return FPValueAndVReg{getConstantFPVRegVal(Reg->VReg, MRI)->getValueAPF(),
|
|
Reg->VReg};
|
|
}
|
|
|
|
const ConstantFP *
|
|
llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) {
|
|
MachineInstr *MI = MRI.getVRegDef(VReg);
|
|
if (TargetOpcode::G_FCONSTANT != MI->getOpcode())
|
|
return nullptr;
|
|
return MI->getOperand(1).getFPImm();
|
|
}
|
|
|
|
std::optional<DefinitionAndSourceRegister>
|
|
llvm::getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) {
|
|
Register DefSrcReg = Reg;
|
|
auto *DefMI = MRI.getVRegDef(Reg);
|
|
auto DstTy = MRI.getType(DefMI->getOperand(0).getReg());
|
|
if (!DstTy.isValid())
|
|
return std::nullopt;
|
|
unsigned Opc = DefMI->getOpcode();
|
|
while (Opc == TargetOpcode::COPY || isPreISelGenericOptimizationHint(Opc)) {
|
|
Register SrcReg = DefMI->getOperand(1).getReg();
|
|
auto SrcTy = MRI.getType(SrcReg);
|
|
if (!SrcTy.isValid())
|
|
break;
|
|
DefMI = MRI.getVRegDef(SrcReg);
|
|
DefSrcReg = SrcReg;
|
|
Opc = DefMI->getOpcode();
|
|
}
|
|
return DefinitionAndSourceRegister{DefMI, DefSrcReg};
|
|
}
|
|
|
|
MachineInstr *llvm::getDefIgnoringCopies(Register Reg,
|
|
const MachineRegisterInfo &MRI) {
|
|
std::optional<DefinitionAndSourceRegister> DefSrcReg =
|
|
getDefSrcRegIgnoringCopies(Reg, MRI);
|
|
return DefSrcReg ? DefSrcReg->MI : nullptr;
|
|
}
|
|
|
|
Register llvm::getSrcRegIgnoringCopies(Register Reg,
|
|
const MachineRegisterInfo &MRI) {
|
|
std::optional<DefinitionAndSourceRegister> DefSrcReg =
|
|
getDefSrcRegIgnoringCopies(Reg, MRI);
|
|
return DefSrcReg ? DefSrcReg->Reg : Register();
|
|
}
|
|
|
|
void llvm::extractParts(Register Reg, LLT Ty, int NumParts,
|
|
SmallVectorImpl<Register> &VRegs,
|
|
MachineIRBuilder &MIRBuilder,
|
|
MachineRegisterInfo &MRI) {
|
|
for (int i = 0; i < NumParts; ++i)
|
|
VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
|
|
MIRBuilder.buildUnmerge(VRegs, Reg);
|
|
}
|
|
|
|
bool llvm::extractParts(Register Reg, LLT RegTy, LLT MainTy, LLT &LeftoverTy,
|
|
SmallVectorImpl<Register> &VRegs,
|
|
SmallVectorImpl<Register> &LeftoverRegs,
|
|
MachineIRBuilder &MIRBuilder,
|
|
MachineRegisterInfo &MRI) {
|
|
assert(!LeftoverTy.isValid() && "this is an out argument");
|
|
|
|
unsigned RegSize = RegTy.getSizeInBits();
|
|
unsigned MainSize = MainTy.getSizeInBits();
|
|
unsigned NumParts = RegSize / MainSize;
|
|
unsigned LeftoverSize = RegSize - NumParts * MainSize;
|
|
|
|
// Use an unmerge when possible.
|
|
if (LeftoverSize == 0) {
|
|
for (unsigned I = 0; I < NumParts; ++I)
|
|
VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
|
|
MIRBuilder.buildUnmerge(VRegs, Reg);
|
|
return true;
|
|
}
|
|
|
|
// Try to use unmerge for irregular vector split where possible
|
|
// For example when splitting a <6 x i32> into <4 x i32> with <2 x i32>
|
|
// leftover, it becomes:
|
|
// <2 x i32> %2, <2 x i32>%3, <2 x i32> %4 = G_UNMERGE_VALUE <6 x i32> %1
|
|
// <4 x i32> %5 = G_CONCAT_VECTOR <2 x i32> %2, <2 x i32> %3
|
|
if (RegTy.isVector() && MainTy.isVector()) {
|
|
unsigned RegNumElts = RegTy.getNumElements();
|
|
unsigned MainNumElts = MainTy.getNumElements();
|
|
unsigned LeftoverNumElts = RegNumElts % MainNumElts;
|
|
// If can unmerge to LeftoverTy, do it
|
|
if (MainNumElts % LeftoverNumElts == 0 &&
|
|
RegNumElts % LeftoverNumElts == 0 &&
|
|
RegTy.getScalarSizeInBits() == MainTy.getScalarSizeInBits() &&
|
|
LeftoverNumElts > 1) {
|
|
LeftoverTy = LLT::fixed_vector(LeftoverNumElts, RegTy.getElementType());
|
|
|
|
// Unmerge the SrcReg to LeftoverTy vectors
|
|
SmallVector<Register, 4> UnmergeValues;
|
|
extractParts(Reg, LeftoverTy, RegNumElts / LeftoverNumElts, UnmergeValues,
|
|
MIRBuilder, MRI);
|
|
|
|
// Find how many LeftoverTy makes one MainTy
|
|
unsigned LeftoverPerMain = MainNumElts / LeftoverNumElts;
|
|
unsigned NumOfLeftoverVal =
|
|
((RegNumElts % MainNumElts) / LeftoverNumElts);
|
|
|
|
// Create as many MainTy as possible using unmerged value
|
|
SmallVector<Register, 4> MergeValues;
|
|
for (unsigned I = 0; I < UnmergeValues.size() - NumOfLeftoverVal; I++) {
|
|
MergeValues.push_back(UnmergeValues[I]);
|
|
if (MergeValues.size() == LeftoverPerMain) {
|
|
VRegs.push_back(
|
|
MIRBuilder.buildMergeLikeInstr(MainTy, MergeValues).getReg(0));
|
|
MergeValues.clear();
|
|
}
|
|
}
|
|
// Populate LeftoverRegs with the leftovers
|
|
for (unsigned I = UnmergeValues.size() - NumOfLeftoverVal;
|
|
I < UnmergeValues.size(); I++) {
|
|
LeftoverRegs.push_back(UnmergeValues[I]);
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
// Perform irregular split. Leftover is last element of RegPieces.
|
|
if (MainTy.isVector()) {
|
|
SmallVector<Register, 8> RegPieces;
|
|
extractVectorParts(Reg, MainTy.getNumElements(), RegPieces, MIRBuilder,
|
|
MRI);
|
|
for (unsigned i = 0; i < RegPieces.size() - 1; ++i)
|
|
VRegs.push_back(RegPieces[i]);
|
|
LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]);
|
|
LeftoverTy = MRI.getType(LeftoverRegs[0]);
|
|
return true;
|
|
}
|
|
|
|
LeftoverTy = LLT::scalar(LeftoverSize);
|
|
// For irregular sizes, extract the individual parts.
|
|
for (unsigned I = 0; I != NumParts; ++I) {
|
|
Register NewReg = MRI.createGenericVirtualRegister(MainTy);
|
|
VRegs.push_back(NewReg);
|
|
MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
|
|
}
|
|
|
|
for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
|
|
Offset += LeftoverSize) {
|
|
Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
|
|
LeftoverRegs.push_back(NewReg);
|
|
MIRBuilder.buildExtract(NewReg, Reg, Offset);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void llvm::extractVectorParts(Register Reg, unsigned NumElts,
|
|
SmallVectorImpl<Register> &VRegs,
|
|
MachineIRBuilder &MIRBuilder,
|
|
MachineRegisterInfo &MRI) {
|
|
LLT RegTy = MRI.getType(Reg);
|
|
assert(RegTy.isVector() && "Expected a vector type");
|
|
|
|
LLT EltTy = RegTy.getElementType();
|
|
LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
|
|
unsigned RegNumElts = RegTy.getNumElements();
|
|
unsigned LeftoverNumElts = RegNumElts % NumElts;
|
|
unsigned NumNarrowTyPieces = RegNumElts / NumElts;
|
|
|
|
// Perfect split without leftover
|
|
if (LeftoverNumElts == 0)
|
|
return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs, MIRBuilder,
|
|
MRI);
|
|
|
|
// Irregular split. Provide direct access to all elements for artifact
|
|
// combiner using unmerge to elements. Then build vectors with NumElts
|
|
// elements. Remaining element(s) will be (used to build vector) Leftover.
|
|
SmallVector<Register, 8> Elts;
|
|
extractParts(Reg, EltTy, RegNumElts, Elts, MIRBuilder, MRI);
|
|
|
|
unsigned Offset = 0;
|
|
// Requested sub-vectors of NarrowTy.
|
|
for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) {
|
|
ArrayRef<Register> Pieces(&Elts[Offset], NumElts);
|
|
VRegs.push_back(MIRBuilder.buildMergeLikeInstr(NarrowTy, Pieces).getReg(0));
|
|
}
|
|
|
|
// Leftover element(s).
|
|
if (LeftoverNumElts == 1) {
|
|
VRegs.push_back(Elts[Offset]);
|
|
} else {
|
|
LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy);
|
|
ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts);
|
|
VRegs.push_back(
|
|
MIRBuilder.buildMergeLikeInstr(LeftoverTy, Pieces).getReg(0));
|
|
}
|
|
}
|
|
|
|
MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg,
|
|
const MachineRegisterInfo &MRI) {
|
|
MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI);
|
|
return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr;
|
|
}
|
|
|
|
APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) {
|
|
if (Size == 32)
|
|
return APFloat(float(Val));
|
|
if (Size == 64)
|
|
return APFloat(Val);
|
|
if (Size != 16)
|
|
llvm_unreachable("Unsupported FPConstant size");
|
|
bool Ignored;
|
|
APFloat APF(Val);
|
|
APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
|
|
return APF;
|
|
}
|
|
|
|
std::optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode,
|
|
const Register Op1,
|
|
const Register Op2,
|
|
const MachineRegisterInfo &MRI) {
|
|
auto MaybeOp2Cst = getAnyConstantVRegValWithLookThrough(Op2, MRI, false);
|
|
if (!MaybeOp2Cst)
|
|
return std::nullopt;
|
|
|
|
auto MaybeOp1Cst = getAnyConstantVRegValWithLookThrough(Op1, MRI, false);
|
|
if (!MaybeOp1Cst)
|
|
return std::nullopt;
|
|
|
|
const APInt &C1 = MaybeOp1Cst->Value;
|
|
const APInt &C2 = MaybeOp2Cst->Value;
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case TargetOpcode::G_ADD:
|
|
return C1 + C2;
|
|
case TargetOpcode::G_PTR_ADD:
|
|
// Types can be of different width here.
|
|
// Result needs to be the same width as C1, so trunc or sext C2.
|
|
return C1 + C2.sextOrTrunc(C1.getBitWidth());
|
|
case TargetOpcode::G_AND:
|
|
return C1 & C2;
|
|
case TargetOpcode::G_ASHR:
|
|
return C1.ashr(C2);
|
|
case TargetOpcode::G_LSHR:
|
|
return C1.lshr(C2);
|
|
case TargetOpcode::G_MUL:
|
|
return C1 * C2;
|
|
case TargetOpcode::G_OR:
|
|
return C1 | C2;
|
|
case TargetOpcode::G_SHL:
|
|
return C1 << C2;
|
|
case TargetOpcode::G_SUB:
|
|
return C1 - C2;
|
|
case TargetOpcode::G_XOR:
|
|
return C1 ^ C2;
|
|
case TargetOpcode::G_UDIV:
|
|
if (!C2.getBoolValue())
|
|
break;
|
|
return C1.udiv(C2);
|
|
case TargetOpcode::G_SDIV:
|
|
if (!C2.getBoolValue())
|
|
break;
|
|
return C1.sdiv(C2);
|
|
case TargetOpcode::G_UREM:
|
|
if (!C2.getBoolValue())
|
|
break;
|
|
return C1.urem(C2);
|
|
case TargetOpcode::G_SREM:
|
|
if (!C2.getBoolValue())
|
|
break;
|
|
return C1.srem(C2);
|
|
case TargetOpcode::G_SMIN:
|
|
return APIntOps::smin(C1, C2);
|
|
case TargetOpcode::G_SMAX:
|
|
return APIntOps::smax(C1, C2);
|
|
case TargetOpcode::G_UMIN:
|
|
return APIntOps::umin(C1, C2);
|
|
case TargetOpcode::G_UMAX:
|
|
return APIntOps::umax(C1, C2);
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<APFloat>
|
|
llvm::ConstantFoldFPBinOp(unsigned Opcode, const Register Op1,
|
|
const Register Op2, const MachineRegisterInfo &MRI) {
|
|
const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI);
|
|
if (!Op2Cst)
|
|
return std::nullopt;
|
|
|
|
const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI);
|
|
if (!Op1Cst)
|
|
return std::nullopt;
|
|
|
|
APFloat C1 = Op1Cst->getValueAPF();
|
|
const APFloat &C2 = Op2Cst->getValueAPF();
|
|
switch (Opcode) {
|
|
case TargetOpcode::G_FADD:
|
|
C1.add(C2, APFloat::rmNearestTiesToEven);
|
|
return C1;
|
|
case TargetOpcode::G_FSUB:
|
|
C1.subtract(C2, APFloat::rmNearestTiesToEven);
|
|
return C1;
|
|
case TargetOpcode::G_FMUL:
|
|
C1.multiply(C2, APFloat::rmNearestTiesToEven);
|
|
return C1;
|
|
case TargetOpcode::G_FDIV:
|
|
C1.divide(C2, APFloat::rmNearestTiesToEven);
|
|
return C1;
|
|
case TargetOpcode::G_FREM:
|
|
C1.mod(C2);
|
|
return C1;
|
|
case TargetOpcode::G_FCOPYSIGN:
|
|
C1.copySign(C2);
|
|
return C1;
|
|
case TargetOpcode::G_FMINNUM:
|
|
return minnum(C1, C2);
|
|
case TargetOpcode::G_FMAXNUM:
|
|
return maxnum(C1, C2);
|
|
case TargetOpcode::G_FMINIMUM:
|
|
return minimum(C1, C2);
|
|
case TargetOpcode::G_FMAXIMUM:
|
|
return maximum(C1, C2);
|
|
case TargetOpcode::G_FMINNUM_IEEE:
|
|
case TargetOpcode::G_FMAXNUM_IEEE:
|
|
// FIXME: These operations were unfortunately named. fminnum/fmaxnum do not
|
|
// follow the IEEE behavior for signaling nans and follow libm's fmin/fmax,
|
|
// and currently there isn't a nice wrapper in APFloat for the version with
|
|
// correct snan handling.
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
SmallVector<APInt>
|
|
llvm::ConstantFoldVectorBinop(unsigned Opcode, const Register Op1,
|
|
const Register Op2,
|
|
const MachineRegisterInfo &MRI) {
|
|
auto *SrcVec2 = getOpcodeDef<GBuildVector>(Op2, MRI);
|
|
if (!SrcVec2)
|
|
return SmallVector<APInt>();
|
|
|
|
auto *SrcVec1 = getOpcodeDef<GBuildVector>(Op1, MRI);
|
|
if (!SrcVec1)
|
|
return SmallVector<APInt>();
|
|
|
|
SmallVector<APInt> FoldedElements;
|
|
for (unsigned Idx = 0, E = SrcVec1->getNumSources(); Idx < E; ++Idx) {
|
|
auto MaybeCst = ConstantFoldBinOp(Opcode, SrcVec1->getSourceReg(Idx),
|
|
SrcVec2->getSourceReg(Idx), MRI);
|
|
if (!MaybeCst)
|
|
return SmallVector<APInt>();
|
|
FoldedElements.push_back(*MaybeCst);
|
|
}
|
|
return FoldedElements;
|
|
}
|
|
|
|
bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI,
|
|
bool SNaN) {
|
|
const MachineInstr *DefMI = MRI.getVRegDef(Val);
|
|
if (!DefMI)
|
|
return false;
|
|
|
|
const TargetMachine& TM = DefMI->getMF()->getTarget();
|
|
if (DefMI->getFlag(MachineInstr::FmNoNans) || TM.Options.NoNaNsFPMath)
|
|
return true;
|
|
|
|
// If the value is a constant, we can obviously see if it is a NaN or not.
|
|
if (const ConstantFP *FPVal = getConstantFPVRegVal(Val, MRI)) {
|
|
return !FPVal->getValueAPF().isNaN() ||
|
|
(SNaN && !FPVal->getValueAPF().isSignaling());
|
|
}
|
|
|
|
if (DefMI->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
|
|
for (const auto &Op : DefMI->uses())
|
|
if (!isKnownNeverNaN(Op.getReg(), MRI, SNaN))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
switch (DefMI->getOpcode()) {
|
|
default:
|
|
break;
|
|
case TargetOpcode::G_FADD:
|
|
case TargetOpcode::G_FSUB:
|
|
case TargetOpcode::G_FMUL:
|
|
case TargetOpcode::G_FDIV:
|
|
case TargetOpcode::G_FREM:
|
|
case TargetOpcode::G_FSIN:
|
|
case TargetOpcode::G_FCOS:
|
|
case TargetOpcode::G_FTAN:
|
|
case TargetOpcode::G_FACOS:
|
|
case TargetOpcode::G_FASIN:
|
|
case TargetOpcode::G_FATAN:
|
|
case TargetOpcode::G_FATAN2:
|
|
case TargetOpcode::G_FCOSH:
|
|
case TargetOpcode::G_FSINH:
|
|
case TargetOpcode::G_FTANH:
|
|
case TargetOpcode::G_FMA:
|
|
case TargetOpcode::G_FMAD:
|
|
if (SNaN)
|
|
return true;
|
|
|
|
// TODO: Need isKnownNeverInfinity
|
|
return false;
|
|
case TargetOpcode::G_FMINNUM_IEEE:
|
|
case TargetOpcode::G_FMAXNUM_IEEE: {
|
|
if (SNaN)
|
|
return true;
|
|
// This can return a NaN if either operand is an sNaN, or if both operands
|
|
// are NaN.
|
|
return (isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI) &&
|
|
isKnownNeverSNaN(DefMI->getOperand(2).getReg(), MRI)) ||
|
|
(isKnownNeverSNaN(DefMI->getOperand(1).getReg(), MRI) &&
|
|
isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI));
|
|
}
|
|
case TargetOpcode::G_FMINNUM:
|
|
case TargetOpcode::G_FMAXNUM: {
|
|
// Only one needs to be known not-nan, since it will be returned if the
|
|
// other ends up being one.
|
|
return isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI, SNaN) ||
|
|
isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI, SNaN);
|
|
}
|
|
}
|
|
|
|
if (SNaN) {
|
|
// FP operations quiet. For now, just handle the ones inserted during
|
|
// legalization.
|
|
switch (DefMI->getOpcode()) {
|
|
case TargetOpcode::G_FPEXT:
|
|
case TargetOpcode::G_FPTRUNC:
|
|
case TargetOpcode::G_FCANONICALIZE:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Align llvm::inferAlignFromPtrInfo(MachineFunction &MF,
|
|
const MachinePointerInfo &MPO) {
|
|
auto PSV = dyn_cast_if_present<const PseudoSourceValue *>(MPO.V);
|
|
if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) {
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()),
|
|
MPO.Offset);
|
|
}
|
|
|
|
if (const Value *V = dyn_cast_if_present<const Value *>(MPO.V)) {
|
|
const Module *M = MF.getFunction().getParent();
|
|
return V->getPointerAlignment(M->getDataLayout());
|
|
}
|
|
|
|
return Align(1);
|
|
}
|
|
|
|
Register llvm::getFunctionLiveInPhysReg(MachineFunction &MF,
|
|
const TargetInstrInfo &TII,
|
|
MCRegister PhysReg,
|
|
const TargetRegisterClass &RC,
|
|
const DebugLoc &DL, LLT RegTy) {
|
|
MachineBasicBlock &EntryMBB = MF.front();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
Register LiveIn = MRI.getLiveInVirtReg(PhysReg);
|
|
if (LiveIn) {
|
|
MachineInstr *Def = MRI.getVRegDef(LiveIn);
|
|
if (Def) {
|
|
// FIXME: Should the verifier check this is in the entry block?
|
|
assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block");
|
|
return LiveIn;
|
|
}
|
|
|
|
// It's possible the incoming argument register and copy was added during
|
|
// lowering, but later deleted due to being/becoming dead. If this happens,
|
|
// re-insert the copy.
|
|
} else {
|
|
// The live in register was not present, so add it.
|
|
LiveIn = MF.addLiveIn(PhysReg, &RC);
|
|
if (RegTy.isValid())
|
|
MRI.setType(LiveIn, RegTy);
|
|
}
|
|
|
|
BuildMI(EntryMBB, EntryMBB.begin(), DL, TII.get(TargetOpcode::COPY), LiveIn)
|
|
.addReg(PhysReg);
|
|
if (!EntryMBB.isLiveIn(PhysReg))
|
|
EntryMBB.addLiveIn(PhysReg);
|
|
return LiveIn;
|
|
}
|
|
|
|
std::optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode,
|
|
const Register Op1, uint64_t Imm,
|
|
const MachineRegisterInfo &MRI) {
|
|
auto MaybeOp1Cst = getIConstantVRegVal(Op1, MRI);
|
|
if (MaybeOp1Cst) {
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case TargetOpcode::G_SEXT_INREG: {
|
|
LLT Ty = MRI.getType(Op1);
|
|
return MaybeOp1Cst->trunc(Imm).sext(Ty.getScalarSizeInBits());
|
|
}
|
|
}
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<APInt> llvm::ConstantFoldCastOp(unsigned Opcode, LLT DstTy,
|
|
const Register Op0,
|
|
const MachineRegisterInfo &MRI) {
|
|
std::optional<APInt> Val = getIConstantVRegVal(Op0, MRI);
|
|
if (!Val)
|
|
return Val;
|
|
|
|
const unsigned DstSize = DstTy.getScalarSizeInBits();
|
|
|
|
switch (Opcode) {
|
|
case TargetOpcode::G_SEXT:
|
|
return Val->sext(DstSize);
|
|
case TargetOpcode::G_ZEXT:
|
|
case TargetOpcode::G_ANYEXT:
|
|
// TODO: DAG considers target preference when constant folding any_extend.
|
|
return Val->zext(DstSize);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
llvm_unreachable("unexpected cast opcode to constant fold");
|
|
}
|
|
|
|
std::optional<APFloat>
|
|
llvm::ConstantFoldIntToFloat(unsigned Opcode, LLT DstTy, Register Src,
|
|
const MachineRegisterInfo &MRI) {
|
|
assert(Opcode == TargetOpcode::G_SITOFP || Opcode == TargetOpcode::G_UITOFP);
|
|
if (auto MaybeSrcVal = getIConstantVRegVal(Src, MRI)) {
|
|
APFloat DstVal(getFltSemanticForLLT(DstTy));
|
|
DstVal.convertFromAPInt(*MaybeSrcVal, Opcode == TargetOpcode::G_SITOFP,
|
|
APFloat::rmNearestTiesToEven);
|
|
return DstVal;
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<SmallVector<unsigned>>
|
|
llvm::ConstantFoldCountZeros(Register Src, const MachineRegisterInfo &MRI,
|
|
std::function<unsigned(APInt)> CB) {
|
|
LLT Ty = MRI.getType(Src);
|
|
SmallVector<unsigned> FoldedCTLZs;
|
|
auto tryFoldScalar = [&](Register R) -> std::optional<unsigned> {
|
|
auto MaybeCst = getIConstantVRegVal(R, MRI);
|
|
if (!MaybeCst)
|
|
return std::nullopt;
|
|
return CB(*MaybeCst);
|
|
};
|
|
if (Ty.isVector()) {
|
|
// Try to constant fold each element.
|
|
auto *BV = getOpcodeDef<GBuildVector>(Src, MRI);
|
|
if (!BV)
|
|
return std::nullopt;
|
|
for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) {
|
|
if (auto MaybeFold = tryFoldScalar(BV->getSourceReg(SrcIdx))) {
|
|
FoldedCTLZs.emplace_back(*MaybeFold);
|
|
continue;
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
return FoldedCTLZs;
|
|
}
|
|
if (auto MaybeCst = tryFoldScalar(Src)) {
|
|
FoldedCTLZs.emplace_back(*MaybeCst);
|
|
return FoldedCTLZs;
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<SmallVector<APInt>>
|
|
llvm::ConstantFoldICmp(unsigned Pred, const Register Op1, const Register Op2,
|
|
unsigned DstScalarSizeInBits, unsigned ExtOp,
|
|
const MachineRegisterInfo &MRI) {
|
|
assert(ExtOp == TargetOpcode::G_SEXT || ExtOp == TargetOpcode::G_ZEXT ||
|
|
ExtOp == TargetOpcode::G_ANYEXT);
|
|
|
|
const LLT Ty = MRI.getType(Op1);
|
|
|
|
auto GetICmpResultCst = [&](bool IsTrue) {
|
|
if (IsTrue)
|
|
return ExtOp == TargetOpcode::G_SEXT
|
|
? APInt::getAllOnes(DstScalarSizeInBits)
|
|
: APInt::getOneBitSet(DstScalarSizeInBits, 0);
|
|
return APInt::getZero(DstScalarSizeInBits);
|
|
};
|
|
|
|
auto TryFoldScalar = [&](Register LHS, Register RHS) -> std::optional<APInt> {
|
|
auto RHSCst = getIConstantVRegVal(RHS, MRI);
|
|
if (!RHSCst)
|
|
return std::nullopt;
|
|
auto LHSCst = getIConstantVRegVal(LHS, MRI);
|
|
if (!LHSCst)
|
|
return std::nullopt;
|
|
|
|
switch (Pred) {
|
|
case CmpInst::Predicate::ICMP_EQ:
|
|
return GetICmpResultCst(LHSCst->eq(*RHSCst));
|
|
case CmpInst::Predicate::ICMP_NE:
|
|
return GetICmpResultCst(LHSCst->ne(*RHSCst));
|
|
case CmpInst::Predicate::ICMP_UGT:
|
|
return GetICmpResultCst(LHSCst->ugt(*RHSCst));
|
|
case CmpInst::Predicate::ICMP_UGE:
|
|
return GetICmpResultCst(LHSCst->uge(*RHSCst));
|
|
case CmpInst::Predicate::ICMP_ULT:
|
|
return GetICmpResultCst(LHSCst->ult(*RHSCst));
|
|
case CmpInst::Predicate::ICMP_ULE:
|
|
return GetICmpResultCst(LHSCst->ule(*RHSCst));
|
|
case CmpInst::Predicate::ICMP_SGT:
|
|
return GetICmpResultCst(LHSCst->sgt(*RHSCst));
|
|
case CmpInst::Predicate::ICMP_SGE:
|
|
return GetICmpResultCst(LHSCst->sge(*RHSCst));
|
|
case CmpInst::Predicate::ICMP_SLT:
|
|
return GetICmpResultCst(LHSCst->slt(*RHSCst));
|
|
case CmpInst::Predicate::ICMP_SLE:
|
|
return GetICmpResultCst(LHSCst->sle(*RHSCst));
|
|
default:
|
|
return std::nullopt;
|
|
}
|
|
};
|
|
|
|
SmallVector<APInt> FoldedICmps;
|
|
|
|
if (Ty.isVector()) {
|
|
// Try to constant fold each element.
|
|
auto *BV1 = getOpcodeDef<GBuildVector>(Op1, MRI);
|
|
auto *BV2 = getOpcodeDef<GBuildVector>(Op2, MRI);
|
|
if (!BV1 || !BV2)
|
|
return std::nullopt;
|
|
assert(BV1->getNumSources() == BV2->getNumSources() && "Invalid vectors");
|
|
for (unsigned I = 0; I < BV1->getNumSources(); ++I) {
|
|
if (auto MaybeFold =
|
|
TryFoldScalar(BV1->getSourceReg(I), BV2->getSourceReg(I))) {
|
|
FoldedICmps.emplace_back(*MaybeFold);
|
|
continue;
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
return FoldedICmps;
|
|
}
|
|
|
|
if (auto MaybeCst = TryFoldScalar(Op1, Op2)) {
|
|
FoldedICmps.emplace_back(*MaybeCst);
|
|
return FoldedICmps;
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
bool llvm::isKnownToBeAPowerOfTwo(Register Reg, const MachineRegisterInfo &MRI,
|
|
GISelValueTracking *VT) {
|
|
std::optional<DefinitionAndSourceRegister> DefSrcReg =
|
|
getDefSrcRegIgnoringCopies(Reg, MRI);
|
|
if (!DefSrcReg)
|
|
return false;
|
|
|
|
const MachineInstr &MI = *DefSrcReg->MI;
|
|
const LLT Ty = MRI.getType(Reg);
|
|
|
|
switch (MI.getOpcode()) {
|
|
case TargetOpcode::G_CONSTANT: {
|
|
unsigned BitWidth = Ty.getScalarSizeInBits();
|
|
const ConstantInt *CI = MI.getOperand(1).getCImm();
|
|
return CI->getValue().zextOrTrunc(BitWidth).isPowerOf2();
|
|
}
|
|
case TargetOpcode::G_SHL: {
|
|
// A left-shift of a constant one will have exactly one bit set because
|
|
// shifting the bit off the end is undefined.
|
|
|
|
// TODO: Constant splat
|
|
if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) {
|
|
if (*ConstLHS == 1)
|
|
return true;
|
|
}
|
|
|
|
break;
|
|
}
|
|
case TargetOpcode::G_LSHR: {
|
|
if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) {
|
|
if (ConstLHS->isSignMask())
|
|
return true;
|
|
}
|
|
|
|
break;
|
|
}
|
|
case TargetOpcode::G_BUILD_VECTOR: {
|
|
// TODO: Probably should have a recursion depth guard since you could have
|
|
// bitcasted vector elements.
|
|
for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
|
|
if (!isKnownToBeAPowerOfTwo(MO.getReg(), MRI, VT))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
|
|
// Only handle constants since we would need to know if number of leading
|
|
// zeros is greater than the truncation amount.
|
|
const unsigned BitWidth = Ty.getScalarSizeInBits();
|
|
for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
|
|
auto Const = getIConstantVRegVal(MO.getReg(), MRI);
|
|
if (!Const || !Const->zextOrTrunc(BitWidth).isPowerOf2())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (!VT)
|
|
return false;
|
|
|
|
// More could be done here, though the above checks are enough
|
|
// to handle some common cases.
|
|
|
|
// Fall back to computeKnownBits to catch other known cases.
|
|
KnownBits Known = VT->getKnownBits(Reg);
|
|
return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
|
|
}
|
|
|
|
void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) {
|
|
AU.addPreserved<StackProtector>();
|
|
}
|
|
|
|
LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) {
|
|
if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits())
|
|
return OrigTy;
|
|
|
|
if (OrigTy.isVector() && TargetTy.isVector()) {
|
|
LLT OrigElt = OrigTy.getElementType();
|
|
LLT TargetElt = TargetTy.getElementType();
|
|
|
|
// TODO: The docstring for this function says the intention is to use this
|
|
// function to build MERGE/UNMERGE instructions. It won't be the case that
|
|
// we generate a MERGE/UNMERGE between fixed and scalable vector types. We
|
|
// could implement getLCMType between the two in the future if there was a
|
|
// need, but it is not worth it now as this function should not be used in
|
|
// that way.
|
|
assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) ||
|
|
(OrigTy.isFixedVector() && !TargetTy.isScalableVector())) &&
|
|
"getLCMType not implemented between fixed and scalable vectors.");
|
|
|
|
if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) {
|
|
int GCDMinElts = std::gcd(OrigTy.getElementCount().getKnownMinValue(),
|
|
TargetTy.getElementCount().getKnownMinValue());
|
|
// Prefer the original element type.
|
|
ElementCount Mul = OrigTy.getElementCount().multiplyCoefficientBy(
|
|
TargetTy.getElementCount().getKnownMinValue());
|
|
return LLT::vector(Mul.divideCoefficientBy(GCDMinElts),
|
|
OrigTy.getElementType());
|
|
}
|
|
unsigned LCM = std::lcm(OrigTy.getSizeInBits().getKnownMinValue(),
|
|
TargetTy.getSizeInBits().getKnownMinValue());
|
|
return LLT::vector(
|
|
ElementCount::get(LCM / OrigElt.getSizeInBits(), OrigTy.isScalable()),
|
|
OrigElt);
|
|
}
|
|
|
|
// One type is scalar, one type is vector
|
|
if (OrigTy.isVector() || TargetTy.isVector()) {
|
|
LLT VecTy = OrigTy.isVector() ? OrigTy : TargetTy;
|
|
LLT ScalarTy = OrigTy.isVector() ? TargetTy : OrigTy;
|
|
LLT EltTy = VecTy.getElementType();
|
|
LLT OrigEltTy = OrigTy.isVector() ? OrigTy.getElementType() : OrigTy;
|
|
|
|
// Prefer scalar type from OrigTy.
|
|
if (EltTy.getSizeInBits() == ScalarTy.getSizeInBits())
|
|
return LLT::vector(VecTy.getElementCount(), OrigEltTy);
|
|
|
|
// Different size scalars. Create vector with the same total size.
|
|
// LCM will take fixed/scalable from VecTy.
|
|
unsigned LCM = std::lcm(EltTy.getSizeInBits().getFixedValue() *
|
|
VecTy.getElementCount().getKnownMinValue(),
|
|
ScalarTy.getSizeInBits().getFixedValue());
|
|
// Prefer type from OrigTy
|
|
return LLT::vector(ElementCount::get(LCM / OrigEltTy.getSizeInBits(),
|
|
VecTy.getElementCount().isScalable()),
|
|
OrigEltTy);
|
|
}
|
|
|
|
// At this point, both types are scalars of different size
|
|
unsigned LCM = std::lcm(OrigTy.getSizeInBits().getFixedValue(),
|
|
TargetTy.getSizeInBits().getFixedValue());
|
|
// Preserve pointer types.
|
|
if (LCM == OrigTy.getSizeInBits())
|
|
return OrigTy;
|
|
if (LCM == TargetTy.getSizeInBits())
|
|
return TargetTy;
|
|
return LLT::scalar(LCM);
|
|
}
|
|
|
|
LLT llvm::getCoverTy(LLT OrigTy, LLT TargetTy) {
|
|
|
|
if ((OrigTy.isScalableVector() && TargetTy.isFixedVector()) ||
|
|
(OrigTy.isFixedVector() && TargetTy.isScalableVector()))
|
|
llvm_unreachable(
|
|
"getCoverTy not implemented between fixed and scalable vectors.");
|
|
|
|
if (!OrigTy.isVector() || !TargetTy.isVector() || OrigTy == TargetTy ||
|
|
(OrigTy.getScalarSizeInBits() != TargetTy.getScalarSizeInBits()))
|
|
return getLCMType(OrigTy, TargetTy);
|
|
|
|
unsigned OrigTyNumElts = OrigTy.getElementCount().getKnownMinValue();
|
|
unsigned TargetTyNumElts = TargetTy.getElementCount().getKnownMinValue();
|
|
if (OrigTyNumElts % TargetTyNumElts == 0)
|
|
return OrigTy;
|
|
|
|
unsigned NumElts = alignTo(OrigTyNumElts, TargetTyNumElts);
|
|
return LLT::scalarOrVector(ElementCount::getFixed(NumElts),
|
|
OrigTy.getElementType());
|
|
}
|
|
|
|
LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) {
|
|
if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits())
|
|
return OrigTy;
|
|
|
|
if (OrigTy.isVector() && TargetTy.isVector()) {
|
|
LLT OrigElt = OrigTy.getElementType();
|
|
|
|
// TODO: The docstring for this function says the intention is to use this
|
|
// function to build MERGE/UNMERGE instructions. It won't be the case that
|
|
// we generate a MERGE/UNMERGE between fixed and scalable vector types. We
|
|
// could implement getGCDType between the two in the future if there was a
|
|
// need, but it is not worth it now as this function should not be used in
|
|
// that way.
|
|
assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) ||
|
|
(OrigTy.isFixedVector() && !TargetTy.isScalableVector())) &&
|
|
"getGCDType not implemented between fixed and scalable vectors.");
|
|
|
|
unsigned GCD = std::gcd(OrigTy.getSizeInBits().getKnownMinValue(),
|
|
TargetTy.getSizeInBits().getKnownMinValue());
|
|
if (GCD == OrigElt.getSizeInBits())
|
|
return LLT::scalarOrVector(ElementCount::get(1, OrigTy.isScalable()),
|
|
OrigElt);
|
|
|
|
// Cannot produce original element type, but both have vscale in common.
|
|
if (GCD < OrigElt.getSizeInBits())
|
|
return LLT::scalarOrVector(ElementCount::get(1, OrigTy.isScalable()),
|
|
GCD);
|
|
|
|
return LLT::vector(
|
|
ElementCount::get(GCD / OrigElt.getSizeInBits().getFixedValue(),
|
|
OrigTy.isScalable()),
|
|
OrigElt);
|
|
}
|
|
|
|
// If one type is vector and the element size matches the scalar size, then
|
|
// the gcd is the scalar type.
|
|
if (OrigTy.isVector() &&
|
|
OrigTy.getElementType().getSizeInBits() == TargetTy.getSizeInBits())
|
|
return OrigTy.getElementType();
|
|
if (TargetTy.isVector() &&
|
|
TargetTy.getElementType().getSizeInBits() == OrigTy.getSizeInBits())
|
|
return OrigTy;
|
|
|
|
// At this point, both types are either scalars of different type or one is a
|
|
// vector and one is a scalar. If both types are scalars, the GCD type is the
|
|
// GCD between the two scalar sizes. If one is vector and one is scalar, then
|
|
// the GCD type is the GCD between the scalar and the vector element size.
|
|
LLT OrigScalar = OrigTy.getScalarType();
|
|
LLT TargetScalar = TargetTy.getScalarType();
|
|
unsigned GCD = std::gcd(OrigScalar.getSizeInBits().getFixedValue(),
|
|
TargetScalar.getSizeInBits().getFixedValue());
|
|
return LLT::scalar(GCD);
|
|
}
|
|
|
|
std::optional<int> llvm::getSplatIndex(MachineInstr &MI) {
|
|
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
|
|
"Only G_SHUFFLE_VECTOR can have a splat index!");
|
|
ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
|
|
auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; });
|
|
|
|
// If all elements are undefined, this shuffle can be considered a splat.
|
|
// Return 0 for better potential for callers to simplify.
|
|
if (FirstDefinedIdx == Mask.end())
|
|
return 0;
|
|
|
|
// Make sure all remaining elements are either undef or the same
|
|
// as the first non-undef value.
|
|
int SplatValue = *FirstDefinedIdx;
|
|
if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()),
|
|
[&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; }))
|
|
return std::nullopt;
|
|
|
|
return SplatValue;
|
|
}
|
|
|
|
static bool isBuildVectorOp(unsigned Opcode) {
|
|
return Opcode == TargetOpcode::G_BUILD_VECTOR ||
|
|
Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC;
|
|
}
|
|
|
|
namespace {
|
|
|
|
std::optional<ValueAndVReg> getAnyConstantSplat(Register VReg,
|
|
const MachineRegisterInfo &MRI,
|
|
bool AllowUndef) {
|
|
MachineInstr *MI = getDefIgnoringCopies(VReg, MRI);
|
|
if (!MI)
|
|
return std::nullopt;
|
|
|
|
bool isConcatVectorsOp = MI->getOpcode() == TargetOpcode::G_CONCAT_VECTORS;
|
|
if (!isBuildVectorOp(MI->getOpcode()) && !isConcatVectorsOp)
|
|
return std::nullopt;
|
|
|
|
std::optional<ValueAndVReg> SplatValAndReg;
|
|
for (MachineOperand &Op : MI->uses()) {
|
|
Register Element = Op.getReg();
|
|
// If we have a G_CONCAT_VECTOR, we recursively look into the
|
|
// vectors that we're concatenating to see if they're splats.
|
|
auto ElementValAndReg =
|
|
isConcatVectorsOp
|
|
? getAnyConstantSplat(Element, MRI, AllowUndef)
|
|
: getAnyConstantVRegValWithLookThrough(Element, MRI, true, true);
|
|
|
|
// If AllowUndef, treat undef as value that will result in a constant splat.
|
|
if (!ElementValAndReg) {
|
|
if (AllowUndef && isa<GImplicitDef>(MRI.getVRegDef(Element)))
|
|
continue;
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Record splat value
|
|
if (!SplatValAndReg)
|
|
SplatValAndReg = ElementValAndReg;
|
|
|
|
// Different constant than the one already recorded, not a constant splat.
|
|
if (SplatValAndReg->Value != ElementValAndReg->Value)
|
|
return std::nullopt;
|
|
}
|
|
|
|
return SplatValAndReg;
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
bool llvm::isBuildVectorConstantSplat(const Register Reg,
|
|
const MachineRegisterInfo &MRI,
|
|
int64_t SplatValue, bool AllowUndef) {
|
|
if (auto SplatValAndReg = getAnyConstantSplat(Reg, MRI, AllowUndef))
|
|
return SplatValAndReg->Value.getSExtValue() == SplatValue;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool llvm::isBuildVectorConstantSplat(const MachineInstr &MI,
|
|
const MachineRegisterInfo &MRI,
|
|
int64_t SplatValue, bool AllowUndef) {
|
|
return isBuildVectorConstantSplat(MI.getOperand(0).getReg(), MRI, SplatValue,
|
|
AllowUndef);
|
|
}
|
|
|
|
std::optional<APInt>
|
|
llvm::getIConstantSplatVal(const Register Reg, const MachineRegisterInfo &MRI) {
|
|
if (auto SplatValAndReg =
|
|
getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) {
|
|
if (std::optional<ValueAndVReg> ValAndVReg =
|
|
getIConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI))
|
|
return ValAndVReg->Value;
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<APInt>
|
|
llvm::getIConstantSplatVal(const MachineInstr &MI,
|
|
const MachineRegisterInfo &MRI) {
|
|
return getIConstantSplatVal(MI.getOperand(0).getReg(), MRI);
|
|
}
|
|
|
|
std::optional<int64_t>
|
|
llvm::getIConstantSplatSExtVal(const Register Reg,
|
|
const MachineRegisterInfo &MRI) {
|
|
if (auto SplatValAndReg =
|
|
getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false))
|
|
return getIConstantVRegSExtVal(SplatValAndReg->VReg, MRI);
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<int64_t>
|
|
llvm::getIConstantSplatSExtVal(const MachineInstr &MI,
|
|
const MachineRegisterInfo &MRI) {
|
|
return getIConstantSplatSExtVal(MI.getOperand(0).getReg(), MRI);
|
|
}
|
|
|
|
std::optional<FPValueAndVReg>
|
|
llvm::getFConstantSplat(Register VReg, const MachineRegisterInfo &MRI,
|
|
bool AllowUndef) {
|
|
if (auto SplatValAndReg = getAnyConstantSplat(VReg, MRI, AllowUndef))
|
|
return getFConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI);
|
|
return std::nullopt;
|
|
}
|
|
|
|
bool llvm::isBuildVectorAllZeros(const MachineInstr &MI,
|
|
const MachineRegisterInfo &MRI,
|
|
bool AllowUndef) {
|
|
return isBuildVectorConstantSplat(MI, MRI, 0, AllowUndef);
|
|
}
|
|
|
|
bool llvm::isBuildVectorAllOnes(const MachineInstr &MI,
|
|
const MachineRegisterInfo &MRI,
|
|
bool AllowUndef) {
|
|
return isBuildVectorConstantSplat(MI, MRI, -1, AllowUndef);
|
|
}
|
|
|
|
std::optional<RegOrConstant>
|
|
llvm::getVectorSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI) {
|
|
unsigned Opc = MI.getOpcode();
|
|
if (!isBuildVectorOp(Opc))
|
|
return std::nullopt;
|
|
if (auto Splat = getIConstantSplatSExtVal(MI, MRI))
|
|
return RegOrConstant(*Splat);
|
|
auto Reg = MI.getOperand(1).getReg();
|
|
if (any_of(drop_begin(MI.operands(), 2),
|
|
[&Reg](const MachineOperand &Op) { return Op.getReg() != Reg; }))
|
|
return std::nullopt;
|
|
return RegOrConstant(Reg);
|
|
}
|
|
|
|
static bool isConstantScalar(const MachineInstr &MI,
|
|
const MachineRegisterInfo &MRI,
|
|
bool AllowFP = true,
|
|
bool AllowOpaqueConstants = true) {
|
|
switch (MI.getOpcode()) {
|
|
case TargetOpcode::G_CONSTANT:
|
|
case TargetOpcode::G_IMPLICIT_DEF:
|
|
return true;
|
|
case TargetOpcode::G_FCONSTANT:
|
|
return AllowFP;
|
|
case TargetOpcode::G_GLOBAL_VALUE:
|
|
case TargetOpcode::G_FRAME_INDEX:
|
|
case TargetOpcode::G_BLOCK_ADDR:
|
|
case TargetOpcode::G_JUMP_TABLE:
|
|
return AllowOpaqueConstants;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool llvm::isConstantOrConstantVector(MachineInstr &MI,
|
|
const MachineRegisterInfo &MRI) {
|
|
Register Def = MI.getOperand(0).getReg();
|
|
if (auto C = getIConstantVRegValWithLookThrough(Def, MRI))
|
|
return true;
|
|
GBuildVector *BV = dyn_cast<GBuildVector>(&MI);
|
|
if (!BV)
|
|
return false;
|
|
for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) {
|
|
if (getIConstantVRegValWithLookThrough(BV->getSourceReg(SrcIdx), MRI) ||
|
|
getOpcodeDef<GImplicitDef>(BV->getSourceReg(SrcIdx), MRI))
|
|
continue;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool llvm::isConstantOrConstantVector(const MachineInstr &MI,
|
|
const MachineRegisterInfo &MRI,
|
|
bool AllowFP, bool AllowOpaqueConstants) {
|
|
if (isConstantScalar(MI, MRI, AllowFP, AllowOpaqueConstants))
|
|
return true;
|
|
|
|
if (!isBuildVectorOp(MI.getOpcode()))
|
|
return false;
|
|
|
|
const unsigned NumOps = MI.getNumOperands();
|
|
for (unsigned I = 1; I != NumOps; ++I) {
|
|
const MachineInstr *ElementDef = MRI.getVRegDef(MI.getOperand(I).getReg());
|
|
if (!isConstantScalar(*ElementDef, MRI, AllowFP, AllowOpaqueConstants))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
std::optional<APInt>
|
|
llvm::isConstantOrConstantSplatVector(MachineInstr &MI,
|
|
const MachineRegisterInfo &MRI) {
|
|
Register Def = MI.getOperand(0).getReg();
|
|
if (auto C = getIConstantVRegValWithLookThrough(Def, MRI))
|
|
return C->Value;
|
|
auto MaybeCst = getIConstantSplatSExtVal(MI, MRI);
|
|
if (!MaybeCst)
|
|
return std::nullopt;
|
|
const unsigned ScalarSize = MRI.getType(Def).getScalarSizeInBits();
|
|
return APInt(ScalarSize, *MaybeCst, true);
|
|
}
|
|
|
|
std::optional<APFloat>
|
|
llvm::isConstantOrConstantSplatVectorFP(MachineInstr &MI,
|
|
const MachineRegisterInfo &MRI) {
|
|
Register Def = MI.getOperand(0).getReg();
|
|
if (auto FpConst = getFConstantVRegValWithLookThrough(Def, MRI))
|
|
return FpConst->Value;
|
|
auto MaybeCstFP = getFConstantSplat(Def, MRI, /*allowUndef=*/false);
|
|
if (!MaybeCstFP)
|
|
return std::nullopt;
|
|
return MaybeCstFP->Value;
|
|
}
|
|
|
|
bool llvm::isNullOrNullSplat(const MachineInstr &MI,
|
|
const MachineRegisterInfo &MRI, bool AllowUndefs) {
|
|
switch (MI.getOpcode()) {
|
|
case TargetOpcode::G_IMPLICIT_DEF:
|
|
return AllowUndefs;
|
|
case TargetOpcode::G_CONSTANT:
|
|
return MI.getOperand(1).getCImm()->isNullValue();
|
|
case TargetOpcode::G_FCONSTANT: {
|
|
const ConstantFP *FPImm = MI.getOperand(1).getFPImm();
|
|
return FPImm->isZero() && !FPImm->isNegative();
|
|
}
|
|
default:
|
|
if (!AllowUndefs) // TODO: isBuildVectorAllZeros assumes undef is OK already
|
|
return false;
|
|
return isBuildVectorAllZeros(MI, MRI);
|
|
}
|
|
}
|
|
|
|
bool llvm::isAllOnesOrAllOnesSplat(const MachineInstr &MI,
|
|
const MachineRegisterInfo &MRI,
|
|
bool AllowUndefs) {
|
|
switch (MI.getOpcode()) {
|
|
case TargetOpcode::G_IMPLICIT_DEF:
|
|
return AllowUndefs;
|
|
case TargetOpcode::G_CONSTANT:
|
|
return MI.getOperand(1).getCImm()->isAllOnesValue();
|
|
default:
|
|
if (!AllowUndefs) // TODO: isBuildVectorAllOnes assumes undef is OK already
|
|
return false;
|
|
return isBuildVectorAllOnes(MI, MRI);
|
|
}
|
|
}
|
|
|
|
bool llvm::matchUnaryPredicate(
|
|
const MachineRegisterInfo &MRI, Register Reg,
|
|
std::function<bool(const Constant *ConstVal)> Match, bool AllowUndefs) {
|
|
|
|
const MachineInstr *Def = getDefIgnoringCopies(Reg, MRI);
|
|
if (AllowUndefs && Def->getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
|
|
return Match(nullptr);
|
|
|
|
// TODO: Also handle fconstant
|
|
if (Def->getOpcode() == TargetOpcode::G_CONSTANT)
|
|
return Match(Def->getOperand(1).getCImm());
|
|
|
|
if (Def->getOpcode() != TargetOpcode::G_BUILD_VECTOR)
|
|
return false;
|
|
|
|
for (unsigned I = 1, E = Def->getNumOperands(); I != E; ++I) {
|
|
Register SrcElt = Def->getOperand(I).getReg();
|
|
const MachineInstr *SrcDef = getDefIgnoringCopies(SrcElt, MRI);
|
|
if (AllowUndefs && SrcDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) {
|
|
if (!Match(nullptr))
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
if (SrcDef->getOpcode() != TargetOpcode::G_CONSTANT ||
|
|
!Match(SrcDef->getOperand(1).getCImm()))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector,
|
|
bool IsFP) {
|
|
switch (TLI.getBooleanContents(IsVector, IsFP)) {
|
|
case TargetLowering::UndefinedBooleanContent:
|
|
return Val & 0x1;
|
|
case TargetLowering::ZeroOrOneBooleanContent:
|
|
return Val == 1;
|
|
case TargetLowering::ZeroOrNegativeOneBooleanContent:
|
|
return Val == -1;
|
|
}
|
|
llvm_unreachable("Invalid boolean contents");
|
|
}
|
|
|
|
bool llvm::isConstFalseVal(const TargetLowering &TLI, int64_t Val,
|
|
bool IsVector, bool IsFP) {
|
|
switch (TLI.getBooleanContents(IsVector, IsFP)) {
|
|
case TargetLowering::UndefinedBooleanContent:
|
|
return ~Val & 0x1;
|
|
case TargetLowering::ZeroOrOneBooleanContent:
|
|
case TargetLowering::ZeroOrNegativeOneBooleanContent:
|
|
return Val == 0;
|
|
}
|
|
llvm_unreachable("Invalid boolean contents");
|
|
}
|
|
|
|
int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector,
|
|
bool IsFP) {
|
|
switch (TLI.getBooleanContents(IsVector, IsFP)) {
|
|
case TargetLowering::UndefinedBooleanContent:
|
|
case TargetLowering::ZeroOrOneBooleanContent:
|
|
return 1;
|
|
case TargetLowering::ZeroOrNegativeOneBooleanContent:
|
|
return -1;
|
|
}
|
|
llvm_unreachable("Invalid boolean contents");
|
|
}
|
|
|
|
void llvm::saveUsesAndErase(MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
LostDebugLocObserver *LocObserver,
|
|
SmallInstListTy &DeadInstChain) {
|
|
for (MachineOperand &Op : MI.uses()) {
|
|
if (Op.isReg() && Op.getReg().isVirtual())
|
|
DeadInstChain.insert(MRI.getVRegDef(Op.getReg()));
|
|
}
|
|
LLVM_DEBUG(dbgs() << MI << "Is dead; erasing.\n");
|
|
DeadInstChain.remove(&MI);
|
|
MI.eraseFromParent();
|
|
if (LocObserver)
|
|
LocObserver->checkpoint(false);
|
|
}
|
|
|
|
void llvm::eraseInstrs(ArrayRef<MachineInstr *> DeadInstrs,
|
|
MachineRegisterInfo &MRI,
|
|
LostDebugLocObserver *LocObserver) {
|
|
SmallInstListTy DeadInstChain;
|
|
for (MachineInstr *MI : DeadInstrs)
|
|
saveUsesAndErase(*MI, MRI, LocObserver, DeadInstChain);
|
|
|
|
while (!DeadInstChain.empty()) {
|
|
MachineInstr *Inst = DeadInstChain.pop_back_val();
|
|
if (!isTriviallyDead(*Inst, MRI))
|
|
continue;
|
|
saveUsesAndErase(*Inst, MRI, LocObserver, DeadInstChain);
|
|
}
|
|
}
|
|
|
|
void llvm::eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
LostDebugLocObserver *LocObserver) {
|
|
return eraseInstrs({&MI}, MRI, LocObserver);
|
|
}
|
|
|
|
void llvm::salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI) {
|
|
for (auto &Def : MI.defs()) {
|
|
assert(Def.isReg() && "Must be a reg");
|
|
|
|
SmallVector<MachineOperand *, 16> DbgUsers;
|
|
for (auto &MOUse : MRI.use_operands(Def.getReg())) {
|
|
MachineInstr *DbgValue = MOUse.getParent();
|
|
// Ignore partially formed DBG_VALUEs.
|
|
if (DbgValue->isNonListDebugValue() && DbgValue->getNumOperands() == 4) {
|
|
DbgUsers.push_back(&MOUse);
|
|
}
|
|
}
|
|
|
|
if (!DbgUsers.empty()) {
|
|
salvageDebugInfoForDbgValue(MRI, MI, DbgUsers);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool llvm::isPreISelGenericFloatingPointOpcode(unsigned Opc) {
|
|
switch (Opc) {
|
|
case TargetOpcode::G_FABS:
|
|
case TargetOpcode::G_FADD:
|
|
case TargetOpcode::G_FCANONICALIZE:
|
|
case TargetOpcode::G_FCEIL:
|
|
case TargetOpcode::G_FCONSTANT:
|
|
case TargetOpcode::G_FCOPYSIGN:
|
|
case TargetOpcode::G_FCOS:
|
|
case TargetOpcode::G_FDIV:
|
|
case TargetOpcode::G_FEXP2:
|
|
case TargetOpcode::G_FEXP:
|
|
case TargetOpcode::G_FFLOOR:
|
|
case TargetOpcode::G_FLOG10:
|
|
case TargetOpcode::G_FLOG2:
|
|
case TargetOpcode::G_FLOG:
|
|
case TargetOpcode::G_FMA:
|
|
case TargetOpcode::G_FMAD:
|
|
case TargetOpcode::G_FMAXIMUM:
|
|
case TargetOpcode::G_FMAXNUM:
|
|
case TargetOpcode::G_FMAXNUM_IEEE:
|
|
case TargetOpcode::G_FMINIMUM:
|
|
case TargetOpcode::G_FMINNUM:
|
|
case TargetOpcode::G_FMINNUM_IEEE:
|
|
case TargetOpcode::G_FMUL:
|
|
case TargetOpcode::G_FNEARBYINT:
|
|
case TargetOpcode::G_FNEG:
|
|
case TargetOpcode::G_FPEXT:
|
|
case TargetOpcode::G_FPOW:
|
|
case TargetOpcode::G_FPTRUNC:
|
|
case TargetOpcode::G_FREM:
|
|
case TargetOpcode::G_FRINT:
|
|
case TargetOpcode::G_FSIN:
|
|
case TargetOpcode::G_FTAN:
|
|
case TargetOpcode::G_FACOS:
|
|
case TargetOpcode::G_FASIN:
|
|
case TargetOpcode::G_FATAN:
|
|
case TargetOpcode::G_FATAN2:
|
|
case TargetOpcode::G_FCOSH:
|
|
case TargetOpcode::G_FSINH:
|
|
case TargetOpcode::G_FTANH:
|
|
case TargetOpcode::G_FSQRT:
|
|
case TargetOpcode::G_FSUB:
|
|
case TargetOpcode::G_INTRINSIC_ROUND:
|
|
case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
|
|
case TargetOpcode::G_INTRINSIC_TRUNC:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Shifts return poison if shiftwidth is larger than the bitwidth.
|
|
static bool shiftAmountKnownInRange(Register ShiftAmount,
|
|
const MachineRegisterInfo &MRI) {
|
|
LLT Ty = MRI.getType(ShiftAmount);
|
|
|
|
if (Ty.isScalableVector())
|
|
return false; // Can't tell, just return false to be safe
|
|
|
|
if (Ty.isScalar()) {
|
|
std::optional<ValueAndVReg> Val =
|
|
getIConstantVRegValWithLookThrough(ShiftAmount, MRI);
|
|
if (!Val)
|
|
return false;
|
|
return Val->Value.ult(Ty.getScalarSizeInBits());
|
|
}
|
|
|
|
GBuildVector *BV = getOpcodeDef<GBuildVector>(ShiftAmount, MRI);
|
|
if (!BV)
|
|
return false;
|
|
|
|
unsigned Sources = BV->getNumSources();
|
|
for (unsigned I = 0; I < Sources; ++I) {
|
|
std::optional<ValueAndVReg> Val =
|
|
getIConstantVRegValWithLookThrough(BV->getSourceReg(I), MRI);
|
|
if (!Val)
|
|
return false;
|
|
if (!Val->Value.ult(Ty.getScalarSizeInBits()))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
enum class UndefPoisonKind {
|
|
PoisonOnly = (1 << 0),
|
|
UndefOnly = (1 << 1),
|
|
UndefOrPoison = PoisonOnly | UndefOnly,
|
|
};
|
|
}
|
|
|
|
static bool includesPoison(UndefPoisonKind Kind) {
|
|
return (unsigned(Kind) & unsigned(UndefPoisonKind::PoisonOnly)) != 0;
|
|
}
|
|
|
|
static bool includesUndef(UndefPoisonKind Kind) {
|
|
return (unsigned(Kind) & unsigned(UndefPoisonKind::UndefOnly)) != 0;
|
|
}
|
|
|
|
static bool canCreateUndefOrPoison(Register Reg, const MachineRegisterInfo &MRI,
|
|
bool ConsiderFlagsAndMetadata,
|
|
UndefPoisonKind Kind) {
|
|
MachineInstr *RegDef = MRI.getVRegDef(Reg);
|
|
|
|
if (ConsiderFlagsAndMetadata && includesPoison(Kind))
|
|
if (auto *GMI = dyn_cast<GenericMachineInstr>(RegDef))
|
|
if (GMI->hasPoisonGeneratingFlags())
|
|
return true;
|
|
|
|
// Check whether opcode is a poison/undef-generating operation.
|
|
switch (RegDef->getOpcode()) {
|
|
case TargetOpcode::G_BUILD_VECTOR:
|
|
case TargetOpcode::G_CONSTANT_FOLD_BARRIER:
|
|
return false;
|
|
case TargetOpcode::G_SHL:
|
|
case TargetOpcode::G_ASHR:
|
|
case TargetOpcode::G_LSHR:
|
|
return includesPoison(Kind) &&
|
|
!shiftAmountKnownInRange(RegDef->getOperand(2).getReg(), MRI);
|
|
case TargetOpcode::G_FPTOSI:
|
|
case TargetOpcode::G_FPTOUI:
|
|
// fptosi/ui yields poison if the resulting value does not fit in the
|
|
// destination type.
|
|
return true;
|
|
case TargetOpcode::G_CTLZ:
|
|
case TargetOpcode::G_CTTZ:
|
|
case TargetOpcode::G_ABS:
|
|
case TargetOpcode::G_CTPOP:
|
|
case TargetOpcode::G_BSWAP:
|
|
case TargetOpcode::G_BITREVERSE:
|
|
case TargetOpcode::G_FSHL:
|
|
case TargetOpcode::G_FSHR:
|
|
case TargetOpcode::G_SMAX:
|
|
case TargetOpcode::G_SMIN:
|
|
case TargetOpcode::G_UMAX:
|
|
case TargetOpcode::G_UMIN:
|
|
case TargetOpcode::G_PTRMASK:
|
|
case TargetOpcode::G_SADDO:
|
|
case TargetOpcode::G_SSUBO:
|
|
case TargetOpcode::G_UADDO:
|
|
case TargetOpcode::G_USUBO:
|
|
case TargetOpcode::G_SMULO:
|
|
case TargetOpcode::G_UMULO:
|
|
case TargetOpcode::G_SADDSAT:
|
|
case TargetOpcode::G_UADDSAT:
|
|
case TargetOpcode::G_SSUBSAT:
|
|
case TargetOpcode::G_USUBSAT:
|
|
return false;
|
|
case TargetOpcode::G_SSHLSAT:
|
|
case TargetOpcode::G_USHLSAT:
|
|
return includesPoison(Kind) &&
|
|
!shiftAmountKnownInRange(RegDef->getOperand(2).getReg(), MRI);
|
|
case TargetOpcode::G_INSERT_VECTOR_ELT: {
|
|
GInsertVectorElement *Insert = cast<GInsertVectorElement>(RegDef);
|
|
if (includesPoison(Kind)) {
|
|
std::optional<ValueAndVReg> Index =
|
|
getIConstantVRegValWithLookThrough(Insert->getIndexReg(), MRI);
|
|
if (!Index)
|
|
return true;
|
|
LLT VecTy = MRI.getType(Insert->getVectorReg());
|
|
return Index->Value.uge(VecTy.getElementCount().getKnownMinValue());
|
|
}
|
|
return false;
|
|
}
|
|
case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
|
|
GExtractVectorElement *Extract = cast<GExtractVectorElement>(RegDef);
|
|
if (includesPoison(Kind)) {
|
|
std::optional<ValueAndVReg> Index =
|
|
getIConstantVRegValWithLookThrough(Extract->getIndexReg(), MRI);
|
|
if (!Index)
|
|
return true;
|
|
LLT VecTy = MRI.getType(Extract->getVectorReg());
|
|
return Index->Value.uge(VecTy.getElementCount().getKnownMinValue());
|
|
}
|
|
return false;
|
|
}
|
|
case TargetOpcode::G_SHUFFLE_VECTOR: {
|
|
GShuffleVector *Shuffle = cast<GShuffleVector>(RegDef);
|
|
ArrayRef<int> Mask = Shuffle->getMask();
|
|
return includesPoison(Kind) && is_contained(Mask, -1);
|
|
}
|
|
case TargetOpcode::G_FNEG:
|
|
case TargetOpcode::G_PHI:
|
|
case TargetOpcode::G_SELECT:
|
|
case TargetOpcode::G_UREM:
|
|
case TargetOpcode::G_SREM:
|
|
case TargetOpcode::G_FREEZE:
|
|
case TargetOpcode::G_ICMP:
|
|
case TargetOpcode::G_FCMP:
|
|
case TargetOpcode::G_FADD:
|
|
case TargetOpcode::G_FSUB:
|
|
case TargetOpcode::G_FMUL:
|
|
case TargetOpcode::G_FDIV:
|
|
case TargetOpcode::G_FREM:
|
|
case TargetOpcode::G_PTR_ADD:
|
|
return false;
|
|
default:
|
|
return !isa<GCastOp>(RegDef) && !isa<GBinOp>(RegDef);
|
|
}
|
|
}
|
|
|
|
static bool isGuaranteedNotToBeUndefOrPoison(Register Reg,
|
|
const MachineRegisterInfo &MRI,
|
|
unsigned Depth,
|
|
UndefPoisonKind Kind) {
|
|
if (Depth >= MaxAnalysisRecursionDepth)
|
|
return false;
|
|
|
|
MachineInstr *RegDef = MRI.getVRegDef(Reg);
|
|
|
|
switch (RegDef->getOpcode()) {
|
|
case TargetOpcode::G_FREEZE:
|
|
return true;
|
|
case TargetOpcode::G_IMPLICIT_DEF:
|
|
return !includesUndef(Kind);
|
|
case TargetOpcode::G_CONSTANT:
|
|
case TargetOpcode::G_FCONSTANT:
|
|
return true;
|
|
case TargetOpcode::G_BUILD_VECTOR: {
|
|
GBuildVector *BV = cast<GBuildVector>(RegDef);
|
|
unsigned NumSources = BV->getNumSources();
|
|
for (unsigned I = 0; I < NumSources; ++I)
|
|
if (!::isGuaranteedNotToBeUndefOrPoison(BV->getSourceReg(I), MRI,
|
|
Depth + 1, Kind))
|
|
return false;
|
|
return true;
|
|
}
|
|
case TargetOpcode::G_PHI: {
|
|
GPhi *Phi = cast<GPhi>(RegDef);
|
|
unsigned NumIncoming = Phi->getNumIncomingValues();
|
|
for (unsigned I = 0; I < NumIncoming; ++I)
|
|
if (!::isGuaranteedNotToBeUndefOrPoison(Phi->getIncomingValue(I), MRI,
|
|
Depth + 1, Kind))
|
|
return false;
|
|
return true;
|
|
}
|
|
default: {
|
|
auto MOCheck = [&](const MachineOperand &MO) {
|
|
if (!MO.isReg())
|
|
return true;
|
|
return ::isGuaranteedNotToBeUndefOrPoison(MO.getReg(), MRI, Depth + 1,
|
|
Kind);
|
|
};
|
|
return !::canCreateUndefOrPoison(Reg, MRI,
|
|
/*ConsiderFlagsAndMetadata=*/true, Kind) &&
|
|
all_of(RegDef->uses(), MOCheck);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool llvm::canCreateUndefOrPoison(Register Reg, const MachineRegisterInfo &MRI,
|
|
bool ConsiderFlagsAndMetadata) {
|
|
return ::canCreateUndefOrPoison(Reg, MRI, ConsiderFlagsAndMetadata,
|
|
UndefPoisonKind::UndefOrPoison);
|
|
}
|
|
|
|
bool canCreatePoison(Register Reg, const MachineRegisterInfo &MRI,
|
|
bool ConsiderFlagsAndMetadata = true) {
|
|
return ::canCreateUndefOrPoison(Reg, MRI, ConsiderFlagsAndMetadata,
|
|
UndefPoisonKind::PoisonOnly);
|
|
}
|
|
|
|
bool llvm::isGuaranteedNotToBeUndefOrPoison(Register Reg,
|
|
const MachineRegisterInfo &MRI,
|
|
unsigned Depth) {
|
|
return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth,
|
|
UndefPoisonKind::UndefOrPoison);
|
|
}
|
|
|
|
bool llvm::isGuaranteedNotToBePoison(Register Reg,
|
|
const MachineRegisterInfo &MRI,
|
|
unsigned Depth) {
|
|
return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth,
|
|
UndefPoisonKind::PoisonOnly);
|
|
}
|
|
|
|
bool llvm::isGuaranteedNotToBeUndef(Register Reg,
|
|
const MachineRegisterInfo &MRI,
|
|
unsigned Depth) {
|
|
return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth,
|
|
UndefPoisonKind::UndefOnly);
|
|
}
|
|
|
|
Type *llvm::getTypeForLLT(LLT Ty, LLVMContext &C) {
|
|
if (Ty.isVector())
|
|
return VectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
|
|
Ty.getElementCount());
|
|
return IntegerType::get(C, Ty.getSizeInBits());
|
|
}
|
|
|
|
APInt llvm::GIConstant::getScalarValue() const {
|
|
assert(Kind == GIConstantKind::Scalar && "Expected scalar constant");
|
|
|
|
return Value;
|
|
}
|
|
|
|
std::optional<GIConstant>
|
|
llvm::GIConstant::getConstant(Register Const, const MachineRegisterInfo &MRI) {
|
|
MachineInstr *Constant = getDefIgnoringCopies(Const, MRI);
|
|
|
|
if (GSplatVector *Splat = dyn_cast<GSplatVector>(Constant)) {
|
|
std::optional<ValueAndVReg> MayBeConstant =
|
|
getIConstantVRegValWithLookThrough(Splat->getScalarReg(), MRI);
|
|
if (!MayBeConstant)
|
|
return std::nullopt;
|
|
return GIConstant(MayBeConstant->Value, GIConstantKind::ScalableVector);
|
|
}
|
|
|
|
if (GBuildVector *Build = dyn_cast<GBuildVector>(Constant)) {
|
|
SmallVector<APInt> Values;
|
|
unsigned NumSources = Build->getNumSources();
|
|
for (unsigned I = 0; I < NumSources; ++I) {
|
|
Register SrcReg = Build->getSourceReg(I);
|
|
std::optional<ValueAndVReg> MayBeConstant =
|
|
getIConstantVRegValWithLookThrough(SrcReg, MRI);
|
|
if (!MayBeConstant)
|
|
return std::nullopt;
|
|
Values.push_back(MayBeConstant->Value);
|
|
}
|
|
return GIConstant(Values);
|
|
}
|
|
|
|
std::optional<ValueAndVReg> MayBeConstant =
|
|
getIConstantVRegValWithLookThrough(Const, MRI);
|
|
if (!MayBeConstant)
|
|
return std::nullopt;
|
|
|
|
return GIConstant(MayBeConstant->Value, GIConstantKind::Scalar);
|
|
}
|
|
|
|
APFloat llvm::GFConstant::getScalarValue() const {
|
|
assert(Kind == GFConstantKind::Scalar && "Expected scalar constant");
|
|
|
|
return Values[0];
|
|
}
|
|
|
|
std::optional<GFConstant>
|
|
llvm::GFConstant::getConstant(Register Const, const MachineRegisterInfo &MRI) {
|
|
MachineInstr *Constant = getDefIgnoringCopies(Const, MRI);
|
|
|
|
if (GSplatVector *Splat = dyn_cast<GSplatVector>(Constant)) {
|
|
std::optional<FPValueAndVReg> MayBeConstant =
|
|
getFConstantVRegValWithLookThrough(Splat->getScalarReg(), MRI);
|
|
if (!MayBeConstant)
|
|
return std::nullopt;
|
|
return GFConstant(MayBeConstant->Value, GFConstantKind::ScalableVector);
|
|
}
|
|
|
|
if (GBuildVector *Build = dyn_cast<GBuildVector>(Constant)) {
|
|
SmallVector<APFloat> Values;
|
|
unsigned NumSources = Build->getNumSources();
|
|
for (unsigned I = 0; I < NumSources; ++I) {
|
|
Register SrcReg = Build->getSourceReg(I);
|
|
std::optional<FPValueAndVReg> MayBeConstant =
|
|
getFConstantVRegValWithLookThrough(SrcReg, MRI);
|
|
if (!MayBeConstant)
|
|
return std::nullopt;
|
|
Values.push_back(MayBeConstant->Value);
|
|
}
|
|
return GFConstant(Values);
|
|
}
|
|
|
|
std::optional<FPValueAndVReg> MayBeConstant =
|
|
getFConstantVRegValWithLookThrough(Const, MRI);
|
|
if (!MayBeConstant)
|
|
return std::nullopt;
|
|
|
|
return GFConstant(MayBeConstant->Value, GFConstantKind::Scalar);
|
|
}
|