llvm-project/clang/unittests/Analysis/FlowSensitive/DataflowEnvironmentTest.cpp
Matheus Izvekov 91cdd35008
[clang] Improve nested name specifier AST representation (#147835)
This is a major change on how we represent nested name qualifications in
the AST.

* The nested name specifier itself and how it's stored is changed. The
prefixes for types are handled within the type hierarchy, which makes
canonicalization for them super cheap, no memory allocation required.
Also translating a type into nested name specifier form becomes a no-op.
An identifier is stored as a DependentNameType. The nested name
specifier gains a lightweight handle class, to be used instead of
passing around pointers, which is similar to what is implemented for
TemplateName. There is still one free bit available, and this handle can
be used within a PointerUnion and PointerIntPair, which should keep
bit-packing aficionados happy.
* The ElaboratedType node is removed, all type nodes in which it could
previously apply to can now store the elaborated keyword and name
qualifier, tail allocating when present.
* TagTypes can now point to the exact declaration found when producing
these, as opposed to the previous situation of there only existing one
TagType per entity. This increases the amount of type sugar retained,
and can have several applications, for example in tracking module
ownership, and other tools which care about source file origins, such as
IWYU. These TagTypes are lazily allocated, in order to limit the
increase in AST size.

This patch offers a great performance benefit.

It greatly improves compilation time for
[stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for
`test_on2.cpp` in that project, which is the slowest compiling test,
this patch improves `-c` compilation time by about 7.2%, with the
`-fsyntax-only` improvement being at ~12%.

This has great results on compile-time-tracker as well:

![image](https://github.com/user-attachments/assets/700dce98-2cab-4aa8-97d1-b038c0bee831)

This patch also further enables other optimziations in the future, and
will reduce the performance impact of template specialization resugaring
when that lands.

It has some other miscelaneous drive-by fixes.

About the review: Yes the patch is huge, sorry about that. Part of the
reason is that I started by the nested name specifier part, before the
ElaboratedType part, but that had a huge performance downside, as
ElaboratedType is a big performance hog. I didn't have the steam to go
back and change the patch after the fact.

There is also a lot of internal API changes, and it made sense to remove
ElaboratedType in one go, versus removing it from one type at a time, as
that would present much more churn to the users. Also, the nested name
specifier having a different API avoids missing changes related to how
prefixes work now, which could make existing code compile but not work.

How to review: The important changes are all in
`clang/include/clang/AST` and `clang/lib/AST`, with also important
changes in `clang/lib/Sema/TreeTransform.h`.

The rest and bulk of the changes are mostly consequences of the changes
in API.

PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just
for easier to rebasing. I plan to rename it back after this lands.

Fixes #136624
Fixes https://github.com/llvm/llvm-project/issues/43179
Fixes https://github.com/llvm/llvm-project/issues/68670
Fixes https://github.com/llvm/llvm-project/issues/92757
2025-08-09 05:06:53 -03:00

554 lines
18 KiB
C++

//===- unittests/Analysis/FlowSensitive/DataflowEnvironmentTest.cpp -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
#include "TestingSupport.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/Stmt.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/ASTMatchers/ASTMatchers.h"
#include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h"
#include "clang/Analysis/FlowSensitive/StorageLocation.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "clang/Analysis/FlowSensitive/WatchedLiteralsSolver.h"
#include "clang/Tooling/Tooling.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <memory>
#include <string>
namespace {
using namespace clang;
using namespace dataflow;
using ::clang::dataflow::test::findValueDecl;
using ::clang::dataflow::test::getFieldValue;
using ::testing::Contains;
using ::testing::IsNull;
using ::testing::NotNull;
class EnvironmentTest : public ::testing::Test {
protected:
EnvironmentTest() : DAContext(std::make_unique<WatchedLiteralsSolver>()) {}
DataflowAnalysisContext DAContext;
};
TEST_F(EnvironmentTest, FlowCondition) {
Environment Env(DAContext);
auto &A = Env.arena();
EXPECT_TRUE(Env.proves(A.makeLiteral(true)));
EXPECT_TRUE(Env.allows(A.makeLiteral(true)));
EXPECT_FALSE(Env.proves(A.makeLiteral(false)));
EXPECT_FALSE(Env.allows(A.makeLiteral(false)));
auto &X = A.makeAtomRef(A.makeAtom());
EXPECT_FALSE(Env.proves(X));
EXPECT_TRUE(Env.allows(X));
Env.assume(X);
EXPECT_TRUE(Env.proves(X));
EXPECT_TRUE(Env.allows(X));
auto &NotX = A.makeNot(X);
EXPECT_FALSE(Env.proves(NotX));
EXPECT_FALSE(Env.allows(NotX));
}
TEST_F(EnvironmentTest, SetAndGetValueOnCfgOmittedNodes) {
// Check that we can set a value on an expression that is omitted from the CFG
// (see `ignoreCFGOmittedNodes()`), then retrieve that same value from the
// expression. This is a regression test; `setValue()` and `getValue()`
// previously did not use `ignoreCFGOmittedNodes()` consistently.
using namespace ast_matchers;
std::string Code = R"cc(
struct S {
int f();
};
void target() {
// Method call on a temporary produces an `ExprWithCleanups`.
S().f();
(1);
}
)cc";
auto Unit =
tooling::buildASTFromCodeWithArgs(Code, {"-fsyntax-only", "-std=c++17"});
auto &Context = Unit->getASTContext();
ASSERT_EQ(Context.getDiagnostics().getClient()->getNumErrors(), 0U);
const ExprWithCleanups *WithCleanups = selectFirst<ExprWithCleanups>(
"cleanups",
match(exprWithCleanups(hasType(isInteger())).bind("cleanups"), Context));
ASSERT_NE(WithCleanups, nullptr);
const ParenExpr *Paren = selectFirst<ParenExpr>(
"paren", match(parenExpr(hasType(isInteger())).bind("paren"), Context));
ASSERT_NE(Paren, nullptr);
Environment Env(DAContext);
IntegerValue *Val1 =
cast<IntegerValue>(Env.createValue(Unit->getASTContext().IntTy));
Env.setValue(*WithCleanups, *Val1);
EXPECT_EQ(Env.getValue(*WithCleanups), Val1);
IntegerValue *Val2 =
cast<IntegerValue>(Env.createValue(Unit->getASTContext().IntTy));
Env.setValue(*Paren, *Val2);
EXPECT_EQ(Env.getValue(*Paren), Val2);
}
TEST_F(EnvironmentTest, CreateValueRecursiveType) {
using namespace ast_matchers;
std::string Code = R"cc(
struct Recursive {
bool X;
Recursive *R;
};
// Use both fields to force them to be created with `createValue`.
void Usage(Recursive R) { (void)R.X; (void)R.R; }
)cc";
auto Unit =
tooling::buildASTFromCodeWithArgs(Code, {"-fsyntax-only", "-std=c++11"});
auto &Context = Unit->getASTContext();
ASSERT_EQ(Context.getDiagnostics().getClient()->getNumErrors(), 0U);
auto Results =
match(qualType(hasDeclaration(recordDecl(
hasName("Recursive"),
has(fieldDecl(hasName("R")).bind("field-r")))))
.bind("target"),
Context);
const QualType *TyPtr = selectFirst<QualType>("target", Results);
ASSERT_THAT(TyPtr, NotNull());
QualType Ty = *TyPtr;
ASSERT_FALSE(Ty.isNull());
const FieldDecl *R = selectFirst<FieldDecl>("field-r", Results);
ASSERT_THAT(R, NotNull());
Results = match(functionDecl(hasName("Usage")).bind("fun"), Context);
const auto *Fun = selectFirst<FunctionDecl>("fun", Results);
ASSERT_THAT(Fun, NotNull());
// Verify that the struct and the field (`R`) with first appearance of the
// type is created successfully.
Environment Env(DAContext, *Fun);
Env.initialize();
auto &SLoc = cast<RecordStorageLocation>(Env.createObject(Ty));
PointerValue *PV = cast_or_null<PointerValue>(getFieldValue(&SLoc, *R, Env));
EXPECT_THAT(PV, NotNull());
}
TEST_F(EnvironmentTest, DifferentReferenceLocInJoin) {
// This tests the case where the storage location for a reference-type
// variable is different for two states being joined. We used to believe this
// could not happen and therefore had an assertion disallowing this; this test
// exists to demonstrate that we can handle this condition without a failing
// assertion. See also the discussion here:
// https://discourse.llvm.org/t/70086/6
using namespace ast_matchers;
std::string Code = R"cc(
void f(int &ref) {}
)cc";
auto Unit =
tooling::buildASTFromCodeWithArgs(Code, {"-fsyntax-only", "-std=c++11"});
auto &Context = Unit->getASTContext();
ASSERT_EQ(Context.getDiagnostics().getClient()->getNumErrors(), 0U);
const ValueDecl *Ref = findValueDecl(Context, "ref");
Environment Env1(DAContext);
StorageLocation &Loc1 = Env1.createStorageLocation(Context.IntTy);
Env1.setStorageLocation(*Ref, Loc1);
Environment Env2(DAContext);
StorageLocation &Loc2 = Env2.createStorageLocation(Context.IntTy);
Env2.setStorageLocation(*Ref, Loc2);
EXPECT_NE(&Loc1, &Loc2);
Environment::ValueModel Model;
Environment EnvJoined =
Environment::join(Env1, Env2, Model, Environment::DiscardExprState);
// Joining environments with different storage locations for the same
// declaration results in the declaration being removed from the joined
// environment.
EXPECT_EQ(EnvJoined.getStorageLocation(*Ref), nullptr);
}
TEST_F(EnvironmentTest, InitGlobalVarsFun) {
using namespace ast_matchers;
std::string Code = R"cc(
int Global = 0;
int Target () { return Global; }
)cc";
auto Unit =
tooling::buildASTFromCodeWithArgs(Code, {"-fsyntax-only", "-std=c++11"});
auto &Context = Unit->getASTContext();
ASSERT_EQ(Context.getDiagnostics().getClient()->getNumErrors(), 0U);
auto Results =
match(decl(anyOf(varDecl(hasName("Global")).bind("global"),
functionDecl(hasName("Target")).bind("target"))),
Context);
const auto *Fun = selectFirst<FunctionDecl>("target", Results);
const auto *Var = selectFirst<VarDecl>("global", Results);
ASSERT_THAT(Fun, NotNull());
ASSERT_THAT(Var, NotNull());
// Verify the global variable is populated when we analyze `Target`.
Environment Env(DAContext, *Fun);
Env.initialize();
EXPECT_THAT(Env.getValue(*Var), NotNull());
}
// Tests that fields mentioned only in default member initializers are included
// in the set of tracked fields.
TEST_F(EnvironmentTest, IncludeFieldsFromDefaultInitializers) {
using namespace ast_matchers;
std::string Code = R"cc(
struct S {
S() {}
int X = 3;
int Y = X;
};
S foo();
)cc";
auto Unit =
tooling::buildASTFromCodeWithArgs(Code, {"-fsyntax-only", "-std=c++11"});
auto &Context = Unit->getASTContext();
ASSERT_EQ(Context.getDiagnostics().getClient()->getNumErrors(), 0U);
auto Results = match(
qualType(hasDeclaration(
cxxRecordDecl(hasName("S"),
hasMethod(cxxConstructorDecl().bind("target")))
.bind("struct")))
.bind("ty"),
Context);
const auto *Constructor = selectFirst<FunctionDecl>("target", Results);
const auto *Rec = selectFirst<RecordDecl>("struct", Results);
const auto QTy = *selectFirst<QualType>("ty", Results);
ASSERT_THAT(Constructor, NotNull());
ASSERT_THAT(Rec, NotNull());
ASSERT_FALSE(QTy.isNull());
auto Fields = Rec->fields();
FieldDecl *XDecl = nullptr;
for (FieldDecl *Field : Fields) {
if (Field->getNameAsString() == "X") {
XDecl = Field;
break;
}
}
ASSERT_THAT(XDecl, NotNull());
// Verify that the `X` field of `S` is populated when analyzing the
// constructor, even though it is not referenced directly in the constructor.
Environment Env(DAContext, *Constructor);
Env.initialize();
auto &Loc = cast<RecordStorageLocation>(Env.createObject(QTy));
EXPECT_THAT(getFieldValue(&Loc, *XDecl, Env), NotNull());
}
TEST_F(EnvironmentTest, InitGlobalVarsFieldFun) {
using namespace ast_matchers;
std::string Code = R"cc(
struct S { int Bar; };
S Global = {0};
int Target () { return Global.Bar; }
)cc";
auto Unit =
tooling::buildASTFromCodeWithArgs(Code, {"-fsyntax-only", "-std=c++11"});
auto &Context = Unit->getASTContext();
ASSERT_EQ(Context.getDiagnostics().getClient()->getNumErrors(), 0U);
auto Results =
match(decl(anyOf(varDecl(hasName("Global")).bind("global"),
functionDecl(hasName("Target")).bind("target"))),
Context);
const auto *Fun = selectFirst<FunctionDecl>("target", Results);
const auto *GlobalDecl = selectFirst<VarDecl>("global", Results);
ASSERT_THAT(Fun, NotNull());
ASSERT_THAT(GlobalDecl, NotNull());
ASSERT_TRUE(GlobalDecl->getType()->isStructureType());
auto GlobalFields = GlobalDecl->getType()->getAsRecordDecl()->fields();
FieldDecl *BarDecl = nullptr;
for (FieldDecl *Field : GlobalFields) {
if (Field->getNameAsString() == "Bar") {
BarDecl = Field;
break;
}
FAIL() << "Unexpected field: " << Field->getNameAsString();
}
ASSERT_THAT(BarDecl, NotNull());
// Verify the global variable is populated when we analyze `Target`.
Environment Env(DAContext, *Fun);
Env.initialize();
const auto *GlobalLoc =
cast<RecordStorageLocation>(Env.getStorageLocation(*GlobalDecl));
auto *BarVal = getFieldValue(GlobalLoc, *BarDecl, Env);
EXPECT_TRUE(isa<IntegerValue>(BarVal));
}
TEST_F(EnvironmentTest, InitGlobalVarsConstructor) {
using namespace ast_matchers;
std::string Code = R"cc(
int Global = 0;
struct Target {
Target() : Field(Global) {}
int Field;
};
)cc";
auto Unit =
tooling::buildASTFromCodeWithArgs(Code, {"-fsyntax-only", "-std=c++11"});
auto &Context = Unit->getASTContext();
ASSERT_EQ(Context.getDiagnostics().getClient()->getNumErrors(), 0U);
auto Results =
match(decl(anyOf(
varDecl(hasName("Global")).bind("global"),
cxxConstructorDecl(ofClass(hasName("Target"))).bind("target"))),
Context);
const auto *Ctor = selectFirst<CXXConstructorDecl>("target", Results);
const auto *Var = selectFirst<VarDecl>("global", Results);
ASSERT_TRUE(Ctor != nullptr);
ASSERT_THAT(Var, NotNull());
// Verify the global variable is populated when we analyze `Target`.
Environment Env(DAContext, *Ctor);
Env.initialize();
EXPECT_THAT(Env.getValue(*Var), NotNull());
}
// Pointers to Members are a tricky case of accessor calls, complicated further
// when using templates where the pointer to the member is a template argument.
// This is a repro of a failure case seen in the wild.
TEST_F(EnvironmentTest,
ModelMemberForAccessorUsingMethodPointerThroughTemplate) {
using namespace ast_matchers;
std::string Code = R"cc(
struct S {
int accessor() {return member;}
int member = 0;
};
template <auto method>
int Target(S* S) {
return (S->*method)();
}
// We want to analyze the instantiation of Target for the accessor.
int Instantiator () {S S; return Target<&S::accessor>(&S); }
)cc";
auto Unit =
// C++17 for the simplifying use of auto in the template declaration.
tooling::buildASTFromCodeWithArgs(Code, {"-fsyntax-only", "-std=c++17"});
auto &Context = Unit->getASTContext();
ASSERT_EQ(Context.getDiagnostics().getClient()->getNumErrors(), 0U);
auto Results = match(
decl(anyOf(functionDecl(hasName("Target"), isTemplateInstantiation())
.bind("target"),
fieldDecl(hasName("member")).bind("member"),
recordDecl(hasName("S")).bind("struct"))),
Context);
const auto *Fun = selectFirst<FunctionDecl>("target", Results);
const auto *Struct = selectFirst<RecordDecl>("struct", Results);
const auto *Member = selectFirst<FieldDecl>("member", Results);
ASSERT_THAT(Fun, NotNull());
ASSERT_THAT(Struct, NotNull());
ASSERT_THAT(Member, NotNull());
// Verify that `member` is modeled for `S` when we analyze
// `Target<&S::accessor>`.
Environment Env(DAContext, *Fun);
Env.initialize();
EXPECT_THAT(DAContext.getModeledFields(Context.getCanonicalTagType(Struct)),
Contains(Member));
}
// This is a repro of a failure case seen in the wild.
TEST_F(EnvironmentTest, CXXDefaultInitExprResultObjIsWrappedExprResultObj) {
using namespace ast_matchers;
std::string Code = R"cc(
struct Inner {};
struct S {
S() {}
Inner i = {};
};
)cc";
auto Unit =
tooling::buildASTFromCodeWithArgs(Code, {"-fsyntax-only", "-std=c++11"});
auto &Context = Unit->getASTContext();
ASSERT_EQ(Context.getDiagnostics().getClient()->getNumErrors(), 0U);
auto Results =
match(cxxConstructorDecl(
hasAnyConstructorInitializer(cxxCtorInitializer(
withInitializer(expr().bind("default_init_expr")))))
.bind("ctor"),
Context);
const auto *Constructor = selectFirst<CXXConstructorDecl>("ctor", Results);
const auto *DefaultInit =
selectFirst<CXXDefaultInitExpr>("default_init_expr", Results);
Environment Env(DAContext, *Constructor);
Env.initialize();
EXPECT_EQ(&Env.getResultObjectLocation(*DefaultInit),
&Env.getResultObjectLocation(*DefaultInit->getExpr()));
}
// This test verifies the behavior of `getResultObjectLocation()` in
// scenarios involving inherited constructors.
// Since the specific AST node of interest `CXXConstructorDecl` is implicitly
// generated, we cannot annotate any statements inside of it as we do in tests
// within TransferTest. Thus, the only way to get the right `Environment` is by
// explicitly initializing it as we do in tests within EnvironmentTest.
// This is why this test is not inside TransferTest, where most of the tests for
// `getResultObjectLocation()` are located.
TEST_F(EnvironmentTest, ResultObjectLocationForInheritedCtorInitExpr) {
using namespace ast_matchers;
std::string Code = R"(
struct Base {
Base(int b) {}
};
struct Derived : Base {
using Base::Base;
};
Derived d = Derived(0);
)";
auto Unit =
tooling::buildASTFromCodeWithArgs(Code, {"-fsyntax-only", "-std=c++20"});
auto &Context = Unit->getASTContext();
ASSERT_EQ(Context.getDiagnostics().getClient()->getNumErrors(), 0U);
auto Results =
match(cxxConstructorDecl(
hasAnyConstructorInitializer(cxxCtorInitializer(
withInitializer(expr().bind("inherited_ctor_init_expr")))))
.bind("ctor"),
Context);
const auto *Constructor = selectFirst<CXXConstructorDecl>("ctor", Results);
const auto *InheritedCtorInit = selectFirst<CXXInheritedCtorInitExpr>(
"inherited_ctor_init_expr", Results);
EXPECT_EQ(InheritedCtorInit->child_begin(), InheritedCtorInit->child_end());
Environment Env(DAContext, *Constructor);
Env.initialize();
RecordStorageLocation &Loc = Env.getResultObjectLocation(*InheritedCtorInit);
EXPECT_NE(&Loc, nullptr);
EXPECT_EQ(&Loc, Env.getThisPointeeStorageLocation());
}
TEST_F(EnvironmentTest, Stmt) {
using namespace ast_matchers;
std::string Code = R"cc(
struct S { int i; };
void foo() {
S AnS = S{1};
}
)cc";
auto Unit =
tooling::buildASTFromCodeWithArgs(Code, {"-fsyntax-only", "-std=c++11"});
auto &Context = Unit->getASTContext();
ASSERT_EQ(Context.getDiagnostics().getClient()->getNumErrors(), 0U);
auto *DeclStatement = const_cast<DeclStmt *>(selectFirst<DeclStmt>(
"d", match(declStmt(hasSingleDecl(varDecl(hasName("AnS")))).bind("d"),
Context)));
ASSERT_THAT(DeclStatement, NotNull());
auto *Init = (cast<VarDecl>(*DeclStatement->decl_begin()))->getInit();
ASSERT_THAT(Init, NotNull());
// Verify that we can retrieve the result object location for the initializer
// expression when we analyze the DeclStmt for `AnS`.
Environment Env(DAContext, *DeclStatement);
// Don't crash when initializing.
Env.initialize();
// And don't crash when retrieving the result object location.
Env.getResultObjectLocation(*Init);
}
// This is a crash repro.
TEST_F(EnvironmentTest, LambdaCapturingThisInFieldInitializer) {
using namespace ast_matchers;
std::string Code = R"cc(
struct S {
int f{[this]() { return 1; }()};
};
)cc";
auto Unit =
tooling::buildASTFromCodeWithArgs(Code, {"-fsyntax-only", "-std=c++11"});
auto &Context = Unit->getASTContext();
ASSERT_EQ(Context.getDiagnostics().getClient()->getNumErrors(), 0U);
auto *LambdaCallOperator = selectFirst<CXXMethodDecl>(
"method", match(cxxMethodDecl(hasName("operator()"),
ofClass(cxxRecordDecl(isLambda())))
.bind("method"),
Context));
Environment Env(DAContext, *LambdaCallOperator);
// Don't crash when initializing.
Env.initialize();
// And initialize the captured `this` pointee.
ASSERT_NE(nullptr, Env.getThisPointeeStorageLocation());
}
} // namespace