martinboehme d6d613aaeb
[clang][dataflow] Make SolverTest a type-parameterized test. (#91455)
This allows the tests to be run against any implementation of `Solver`
instead
of begin specific to `WatchedLiteralsSolver` as they currently are.
2024-05-08 16:12:53 +02:00

384 lines
11 KiB
C++

//===--- SolverTest.h - Type-parameterized test for solvers ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_ANALYSIS_FLOW_SENSITIVE_SOLVER_TEST_H_
#define LLVM_CLANG_ANALYSIS_FLOW_SENSITIVE_SOLVER_TEST_H_
#include "TestingSupport.h"
#include "clang/Analysis/FlowSensitive/Solver.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
namespace clang::dataflow::test {
namespace {
constexpr auto AssignedTrue = Solver::Result::Assignment::AssignedTrue;
constexpr auto AssignedFalse = Solver::Result::Assignment::AssignedFalse;
using testing::_;
using testing::AnyOf;
using testing::Pair;
using testing::UnorderedElementsAre;
} // namespace
/// Type-parameterized test for implementations of the `Solver` interface.
/// To use:
/// 1. Implement a specialization of `createSolverWithLowTimeout()` for the
/// solver you want to test.
/// 2. Instantiate the test suite for the solver you want to test using
/// `INSTANTIATE_TYPED_TEST_SUITE_P()`.
/// See WatchedLiteralsSolverTest.cpp for an example.
template <typename SolverT> class SolverTest : public ::testing::Test {
protected:
// Checks if the conjunction of `Vals` is satisfiable and returns the
// corresponding result.
Solver::Result solve(llvm::ArrayRef<const Formula *> Vals) {
return SolverT().solve(Vals);
}
// Create a specialization for the solver type to test.
SolverT createSolverWithLowTimeout();
};
TYPED_TEST_SUITE_P(SolverTest);
MATCHER(unsat, "") {
return arg.getStatus() == Solver::Result::Status::Unsatisfiable;
}
MATCHER_P(sat, SolutionMatcher,
"is satisfiable, where solution " +
(testing::DescribeMatcher<
llvm::DenseMap<Atom, Solver::Result::Assignment>>(
SolutionMatcher))) {
if (arg.getStatus() != Solver::Result::Status::Satisfiable)
return false;
auto Solution = *arg.getSolution();
return testing::ExplainMatchResult(SolutionMatcher, Solution,
result_listener);
}
TYPED_TEST_P(SolverTest, Var) {
ConstraintContext Ctx;
auto X = Ctx.atom();
// X
EXPECT_THAT(this->solve({X}),
sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedTrue))));
}
TYPED_TEST_P(SolverTest, NegatedVar) {
ConstraintContext Ctx;
auto X = Ctx.atom();
auto NotX = Ctx.neg(X);
// !X
EXPECT_THAT(this->solve({NotX}),
sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedFalse))));
}
TYPED_TEST_P(SolverTest, UnitConflict) {
ConstraintContext Ctx;
auto X = Ctx.atom();
auto NotX = Ctx.neg(X);
// X ^ !X
EXPECT_THAT(this->solve({X, NotX}), unsat());
}
TYPED_TEST_P(SolverTest, DistinctVars) {
ConstraintContext Ctx;
auto X = Ctx.atom();
auto Y = Ctx.atom();
auto NotY = Ctx.neg(Y);
// X ^ !Y
EXPECT_THAT(this->solve({X, NotY}),
sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedTrue),
Pair(Y->getAtom(), AssignedFalse))));
}
TYPED_TEST_P(SolverTest, DoubleNegation) {
ConstraintContext Ctx;
auto X = Ctx.atom();
auto NotX = Ctx.neg(X);
auto NotNotX = Ctx.neg(NotX);
// !!X ^ !X
EXPECT_THAT(this->solve({NotNotX, NotX}), unsat());
}
TYPED_TEST_P(SolverTest, NegatedDisjunction) {
ConstraintContext Ctx;
auto X = Ctx.atom();
auto Y = Ctx.atom();
auto XOrY = Ctx.disj(X, Y);
auto NotXOrY = Ctx.neg(XOrY);
// !(X v Y) ^ (X v Y)
EXPECT_THAT(this->solve({NotXOrY, XOrY}), unsat());
}
TYPED_TEST_P(SolverTest, NegatedConjunction) {
ConstraintContext Ctx;
auto X = Ctx.atom();
auto Y = Ctx.atom();
auto XAndY = Ctx.conj(X, Y);
auto NotXAndY = Ctx.neg(XAndY);
// !(X ^ Y) ^ (X ^ Y)
EXPECT_THAT(this->solve({NotXAndY, XAndY}), unsat());
}
TYPED_TEST_P(SolverTest, DisjunctionSameVarWithNegation) {
ConstraintContext Ctx;
auto X = Ctx.atom();
auto NotX = Ctx.neg(X);
auto XOrNotX = Ctx.disj(X, NotX);
// X v !X
EXPECT_THAT(this->solve({XOrNotX}), sat(_));
}
TYPED_TEST_P(SolverTest, DisjunctionSameVar) {
ConstraintContext Ctx;
auto X = Ctx.atom();
auto XOrX = Ctx.disj(X, X);
// X v X
EXPECT_THAT(this->solve({XOrX}), sat(_));
}
TYPED_TEST_P(SolverTest, ConjunctionSameVarsConflict) {
ConstraintContext Ctx;
auto X = Ctx.atom();
auto NotX = Ctx.neg(X);
auto XAndNotX = Ctx.conj(X, NotX);
// X ^ !X
EXPECT_THAT(this->solve({XAndNotX}), unsat());
}
TYPED_TEST_P(SolverTest, ConjunctionSameVar) {
ConstraintContext Ctx;
auto X = Ctx.atom();
auto XAndX = Ctx.conj(X, X);
// X ^ X
EXPECT_THAT(this->solve({XAndX}), sat(_));
}
TYPED_TEST_P(SolverTest, PureVar) {
ConstraintContext Ctx;
auto X = Ctx.atom();
auto Y = Ctx.atom();
auto NotX = Ctx.neg(X);
auto NotXOrY = Ctx.disj(NotX, Y);
auto NotY = Ctx.neg(Y);
auto NotXOrNotY = Ctx.disj(NotX, NotY);
// (!X v Y) ^ (!X v !Y)
EXPECT_THAT(this->solve({NotXOrY, NotXOrNotY}),
sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedFalse),
Pair(Y->getAtom(), _))));
}
TYPED_TEST_P(SolverTest, MustAssumeVarIsFalse) {
ConstraintContext Ctx;
auto X = Ctx.atom();
auto Y = Ctx.atom();
auto XOrY = Ctx.disj(X, Y);
auto NotX = Ctx.neg(X);
auto NotXOrY = Ctx.disj(NotX, Y);
auto NotY = Ctx.neg(Y);
auto NotXOrNotY = Ctx.disj(NotX, NotY);
// (X v Y) ^ (!X v Y) ^ (!X v !Y)
EXPECT_THAT(this->solve({XOrY, NotXOrY, NotXOrNotY}),
sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedFalse),
Pair(Y->getAtom(), AssignedTrue))));
}
TYPED_TEST_P(SolverTest, DeepConflict) {
ConstraintContext Ctx;
auto X = Ctx.atom();
auto Y = Ctx.atom();
auto XOrY = Ctx.disj(X, Y);
auto NotX = Ctx.neg(X);
auto NotXOrY = Ctx.disj(NotX, Y);
auto NotY = Ctx.neg(Y);
auto NotXOrNotY = Ctx.disj(NotX, NotY);
auto XOrNotY = Ctx.disj(X, NotY);
// (X v Y) ^ (!X v Y) ^ (!X v !Y) ^ (X v !Y)
EXPECT_THAT(this->solve({XOrY, NotXOrY, NotXOrNotY, XOrNotY}), unsat());
}
TYPED_TEST_P(SolverTest, IffIsEquivalentToDNF) {
ConstraintContext Ctx;
auto X = Ctx.atom();
auto Y = Ctx.atom();
auto NotX = Ctx.neg(X);
auto NotY = Ctx.neg(Y);
auto XIffY = Ctx.iff(X, Y);
auto XIffYDNF = Ctx.disj(Ctx.conj(X, Y), Ctx.conj(NotX, NotY));
auto NotEquivalent = Ctx.neg(Ctx.iff(XIffY, XIffYDNF));
// !((X <=> Y) <=> ((X ^ Y) v (!X ^ !Y)))
EXPECT_THAT(this->solve({NotEquivalent}), unsat());
}
TYPED_TEST_P(SolverTest, IffSameVars) {
ConstraintContext Ctx;
auto X = Ctx.atom();
auto XEqX = Ctx.iff(X, X);
// X <=> X
EXPECT_THAT(this->solve({XEqX}), sat(_));
}
TYPED_TEST_P(SolverTest, IffDistinctVars) {
ConstraintContext Ctx;
auto X = Ctx.atom();
auto Y = Ctx.atom();
auto XEqY = Ctx.iff(X, Y);
// X <=> Y
EXPECT_THAT(
this->solve({XEqY}),
sat(AnyOf(UnorderedElementsAre(Pair(X->getAtom(), AssignedTrue),
Pair(Y->getAtom(), AssignedTrue)),
UnorderedElementsAre(Pair(X->getAtom(), AssignedFalse),
Pair(Y->getAtom(), AssignedFalse)))));
}
TYPED_TEST_P(SolverTest, IffWithUnits) {
ConstraintContext Ctx;
auto X = Ctx.atom();
auto Y = Ctx.atom();
auto XEqY = Ctx.iff(X, Y);
// (X <=> Y) ^ X ^ Y
EXPECT_THAT(this->solve({XEqY, X, Y}),
sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedTrue),
Pair(Y->getAtom(), AssignedTrue))));
}
TYPED_TEST_P(SolverTest, IffWithUnitsConflict) {
Arena A;
auto Constraints = parseFormulas(A, R"(
(V0 = V1)
V0
!V1
)");
EXPECT_THAT(this->solve(Constraints), unsat());
}
TYPED_TEST_P(SolverTest, IffTransitiveConflict) {
Arena A;
auto Constraints = parseFormulas(A, R"(
(V0 = V1)
(V1 = V2)
V2
!V0
)");
EXPECT_THAT(this->solve(Constraints), unsat());
}
TYPED_TEST_P(SolverTest, DeMorgan) {
Arena A;
auto Constraints = parseFormulas(A, R"(
(!(V0 | V1) = (!V0 & !V1))
(!(V2 & V3) = (!V2 | !V3))
)");
EXPECT_THAT(this->solve(Constraints), sat(_));
}
TYPED_TEST_P(SolverTest, RespectsAdditionalConstraints) {
Arena A;
auto Constraints = parseFormulas(A, R"(
(V0 = V1)
V0
!V1
)");
EXPECT_THAT(this->solve(Constraints), unsat());
}
TYPED_TEST_P(SolverTest, ImplicationIsEquivalentToDNF) {
Arena A;
auto Constraints = parseFormulas(A, R"(
!((V0 => V1) = (!V0 | V1))
)");
EXPECT_THAT(this->solve(Constraints), unsat());
}
TYPED_TEST_P(SolverTest, ImplicationConflict) {
Arena A;
auto Constraints = parseFormulas(A, R"(
(V0 => V1)
(V0 & !V1)
)");
EXPECT_THAT(this->solve(Constraints), unsat());
}
TYPED_TEST_P(SolverTest, ReachedLimitsReflectsTimeouts) {
Arena A;
auto Constraints = parseFormulas(A, R"(
(!(V0 | V1) = (!V0 & !V1))
(!(V2 & V3) = (!V2 & !V3))
)");
TypeParam solver = this->createSolverWithLowTimeout();
ASSERT_EQ(solver.solve(Constraints).getStatus(),
Solver::Result::Status::TimedOut);
EXPECT_TRUE(solver.reachedLimit());
}
TYPED_TEST_P(SolverTest, SimpleButLargeContradiction) {
// This test ensures that the solver takes a short-cut on known
// contradictory inputs, without using max_iterations. At the time
// this test is added, formulas that are easily recognized to be
// contradictory at CNF construction time would lead to timeout.
TypeParam solver = this->createSolverWithLowTimeout();
ConstraintContext Ctx;
auto first = Ctx.atom();
auto last = first;
for (int i = 1; i < 10000; ++i) {
last = Ctx.conj(last, Ctx.atom());
}
last = Ctx.conj(Ctx.neg(first), last);
ASSERT_EQ(solver.solve({last}).getStatus(),
Solver::Result::Status::Unsatisfiable);
EXPECT_FALSE(solver.reachedLimit());
first = Ctx.atom();
last = Ctx.neg(first);
for (int i = 1; i < 10000; ++i) {
last = Ctx.conj(last, Ctx.neg(Ctx.atom()));
}
last = Ctx.conj(first, last);
ASSERT_EQ(solver.solve({last}).getStatus(),
Solver::Result::Status::Unsatisfiable);
EXPECT_FALSE(solver.reachedLimit());
}
REGISTER_TYPED_TEST_SUITE_P(
SolverTest, Var, NegatedVar, UnitConflict, DistinctVars, DoubleNegation,
NegatedDisjunction, NegatedConjunction, DisjunctionSameVarWithNegation,
DisjunctionSameVar, ConjunctionSameVarsConflict, ConjunctionSameVar,
PureVar, MustAssumeVarIsFalse, DeepConflict, IffIsEquivalentToDNF,
IffSameVars, IffDistinctVars, IffWithUnits, IffWithUnitsConflict,
IffTransitiveConflict, DeMorgan, RespectsAdditionalConstraints,
ImplicationIsEquivalentToDNF, ImplicationConflict,
ReachedLimitsReflectsTimeouts, SimpleButLargeContradiction);
} // namespace clang::dataflow::test
#endif // LLVM_CLANG_ANALYSIS_FLOW_SENSITIVE_TESTING_SUPPORT_H_