
This makes sure the correct flags are used for the clone (i.e. the ones present on the recipe), instead of the ones on the original IR instruction. At the moment, this should not change anything, as flags of replicate recipe should not be dropped before they are cloned at the moment. But that will change in a follow-up patch.
3413 lines
121 KiB
C++
3413 lines
121 KiB
C++
//===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This file contains the declarations of the Vectorization Plan base classes:
|
|
/// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
|
|
/// VPBlockBase, together implementing a Hierarchical CFG;
|
|
/// 2. Pure virtual VPRecipeBase serving as the base class for recipes contained
|
|
/// within VPBasicBlocks;
|
|
/// 3. Pure virtual VPSingleDefRecipe serving as a base class for recipes that
|
|
/// also inherit from VPValue.
|
|
/// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
|
|
/// instruction;
|
|
/// 5. The VPlan class holding a candidate for vectorization;
|
|
/// 6. The VPlanPrinter class providing a way to print a plan in dot format;
|
|
/// These are documented in docs/VectorizationPlan.rst.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
|
|
#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
|
|
|
|
#include "VPlanAnalysis.h"
|
|
#include "VPlanValue.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/ADT/ilist.h"
|
|
#include "llvm/ADT/ilist_node.h"
|
|
#include "llvm/Analysis/IVDescriptors.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/FMF.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <string>
|
|
|
|
namespace llvm {
|
|
|
|
class BasicBlock;
|
|
class DominatorTree;
|
|
class InnerLoopVectorizer;
|
|
class IRBuilderBase;
|
|
class LoopInfo;
|
|
class raw_ostream;
|
|
class RecurrenceDescriptor;
|
|
class SCEV;
|
|
class Type;
|
|
class VPBasicBlock;
|
|
class VPRegionBlock;
|
|
class VPlan;
|
|
class VPReplicateRecipe;
|
|
class VPlanSlp;
|
|
class Value;
|
|
class LoopVersioning;
|
|
|
|
namespace Intrinsic {
|
|
typedef unsigned ID;
|
|
}
|
|
|
|
/// Returns a calculation for the total number of elements for a given \p VF.
|
|
/// For fixed width vectors this value is a constant, whereas for scalable
|
|
/// vectors it is an expression determined at runtime.
|
|
Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF);
|
|
|
|
/// Return a value for Step multiplied by VF.
|
|
Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
|
|
int64_t Step);
|
|
|
|
const SCEV *createTripCountSCEV(Type *IdxTy, PredicatedScalarEvolution &PSE,
|
|
Loop *CurLoop = nullptr);
|
|
|
|
/// A range of powers-of-2 vectorization factors with fixed start and
|
|
/// adjustable end. The range includes start and excludes end, e.g.,:
|
|
/// [1, 16) = {1, 2, 4, 8}
|
|
struct VFRange {
|
|
// A power of 2.
|
|
const ElementCount Start;
|
|
|
|
// A power of 2. If End <= Start range is empty.
|
|
ElementCount End;
|
|
|
|
bool isEmpty() const {
|
|
return End.getKnownMinValue() <= Start.getKnownMinValue();
|
|
}
|
|
|
|
VFRange(const ElementCount &Start, const ElementCount &End)
|
|
: Start(Start), End(End) {
|
|
assert(Start.isScalable() == End.isScalable() &&
|
|
"Both Start and End should have the same scalable flag");
|
|
assert(isPowerOf2_32(Start.getKnownMinValue()) &&
|
|
"Expected Start to be a power of 2");
|
|
assert(isPowerOf2_32(End.getKnownMinValue()) &&
|
|
"Expected End to be a power of 2");
|
|
}
|
|
|
|
/// Iterator to iterate over vectorization factors in a VFRange.
|
|
class iterator
|
|
: public iterator_facade_base<iterator, std::forward_iterator_tag,
|
|
ElementCount> {
|
|
ElementCount VF;
|
|
|
|
public:
|
|
iterator(ElementCount VF) : VF(VF) {}
|
|
|
|
bool operator==(const iterator &Other) const { return VF == Other.VF; }
|
|
|
|
ElementCount operator*() const { return VF; }
|
|
|
|
iterator &operator++() {
|
|
VF *= 2;
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
iterator begin() { return iterator(Start); }
|
|
iterator end() {
|
|
assert(isPowerOf2_32(End.getKnownMinValue()));
|
|
return iterator(End);
|
|
}
|
|
};
|
|
|
|
using VPlanPtr = std::unique_ptr<VPlan>;
|
|
|
|
/// In what follows, the term "input IR" refers to code that is fed into the
|
|
/// vectorizer whereas the term "output IR" refers to code that is generated by
|
|
/// the vectorizer.
|
|
|
|
/// VPLane provides a way to access lanes in both fixed width and scalable
|
|
/// vectors, where for the latter the lane index sometimes needs calculating
|
|
/// as a runtime expression.
|
|
class VPLane {
|
|
public:
|
|
/// Kind describes how to interpret Lane.
|
|
enum class Kind : uint8_t {
|
|
/// For First, Lane is the index into the first N elements of a
|
|
/// fixed-vector <N x <ElTy>> or a scalable vector <vscale x N x <ElTy>>.
|
|
First,
|
|
/// For ScalableLast, Lane is the offset from the start of the last
|
|
/// N-element subvector in a scalable vector <vscale x N x <ElTy>>. For
|
|
/// example, a Lane of 0 corresponds to lane `(vscale - 1) * N`, a Lane of
|
|
/// 1 corresponds to `((vscale - 1) * N) + 1`, etc.
|
|
ScalableLast
|
|
};
|
|
|
|
private:
|
|
/// in [0..VF)
|
|
unsigned Lane;
|
|
|
|
/// Indicates how the Lane should be interpreted, as described above.
|
|
Kind LaneKind;
|
|
|
|
public:
|
|
VPLane(unsigned Lane, Kind LaneKind) : Lane(Lane), LaneKind(LaneKind) {}
|
|
|
|
static VPLane getFirstLane() { return VPLane(0, VPLane::Kind::First); }
|
|
|
|
static VPLane getLastLaneForVF(const ElementCount &VF) {
|
|
unsigned LaneOffset = VF.getKnownMinValue() - 1;
|
|
Kind LaneKind;
|
|
if (VF.isScalable())
|
|
// In this case 'LaneOffset' refers to the offset from the start of the
|
|
// last subvector with VF.getKnownMinValue() elements.
|
|
LaneKind = VPLane::Kind::ScalableLast;
|
|
else
|
|
LaneKind = VPLane::Kind::First;
|
|
return VPLane(LaneOffset, LaneKind);
|
|
}
|
|
|
|
/// Returns a compile-time known value for the lane index and asserts if the
|
|
/// lane can only be calculated at runtime.
|
|
unsigned getKnownLane() const {
|
|
assert(LaneKind == Kind::First);
|
|
return Lane;
|
|
}
|
|
|
|
/// Returns an expression describing the lane index that can be used at
|
|
/// runtime.
|
|
Value *getAsRuntimeExpr(IRBuilderBase &Builder, const ElementCount &VF) const;
|
|
|
|
/// Returns the Kind of lane offset.
|
|
Kind getKind() const { return LaneKind; }
|
|
|
|
/// Returns true if this is the first lane of the whole vector.
|
|
bool isFirstLane() const { return Lane == 0 && LaneKind == Kind::First; }
|
|
|
|
/// Maps the lane to a cache index based on \p VF.
|
|
unsigned mapToCacheIndex(const ElementCount &VF) const {
|
|
switch (LaneKind) {
|
|
case VPLane::Kind::ScalableLast:
|
|
assert(VF.isScalable() && Lane < VF.getKnownMinValue());
|
|
return VF.getKnownMinValue() + Lane;
|
|
default:
|
|
assert(Lane < VF.getKnownMinValue());
|
|
return Lane;
|
|
}
|
|
}
|
|
|
|
/// Returns the maxmimum number of lanes that we are able to consider
|
|
/// caching for \p VF.
|
|
static unsigned getNumCachedLanes(const ElementCount &VF) {
|
|
return VF.getKnownMinValue() * (VF.isScalable() ? 2 : 1);
|
|
}
|
|
};
|
|
|
|
/// VPIteration represents a single point in the iteration space of the output
|
|
/// (vectorized and/or unrolled) IR loop.
|
|
struct VPIteration {
|
|
/// in [0..UF)
|
|
unsigned Part;
|
|
|
|
VPLane Lane;
|
|
|
|
VPIteration(unsigned Part, unsigned Lane,
|
|
VPLane::Kind Kind = VPLane::Kind::First)
|
|
: Part(Part), Lane(Lane, Kind) {}
|
|
|
|
VPIteration(unsigned Part, const VPLane &Lane) : Part(Part), Lane(Lane) {}
|
|
|
|
bool isFirstIteration() const { return Part == 0 && Lane.isFirstLane(); }
|
|
};
|
|
|
|
/// VPTransformState holds information passed down when "executing" a VPlan,
|
|
/// needed for generating the output IR.
|
|
struct VPTransformState {
|
|
VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI,
|
|
DominatorTree *DT, IRBuilderBase &Builder,
|
|
InnerLoopVectorizer *ILV, VPlan *Plan, LLVMContext &Ctx)
|
|
: VF(VF), UF(UF), LI(LI), DT(DT), Builder(Builder), ILV(ILV), Plan(Plan),
|
|
LVer(nullptr), TypeAnalysis(Ctx) {}
|
|
|
|
/// The chosen Vectorization and Unroll Factors of the loop being vectorized.
|
|
ElementCount VF;
|
|
unsigned UF;
|
|
|
|
/// Hold the indices to generate specific scalar instructions. Null indicates
|
|
/// that all instances are to be generated, using either scalar or vector
|
|
/// instructions.
|
|
std::optional<VPIteration> Instance;
|
|
|
|
struct DataState {
|
|
/// A type for vectorized values in the new loop. Each value from the
|
|
/// original loop, when vectorized, is represented by UF vector values in
|
|
/// the new unrolled loop, where UF is the unroll factor.
|
|
typedef SmallVector<Value *, 2> PerPartValuesTy;
|
|
|
|
DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;
|
|
|
|
using ScalarsPerPartValuesTy = SmallVector<SmallVector<Value *, 4>, 2>;
|
|
DenseMap<VPValue *, ScalarsPerPartValuesTy> PerPartScalars;
|
|
} Data;
|
|
|
|
/// Get the generated Value for a given VPValue and a given Part. Note that
|
|
/// as some Defs are still created by ILV and managed in its ValueMap, this
|
|
/// method will delegate the call to ILV in such cases in order to provide
|
|
/// callers a consistent API.
|
|
/// \see set.
|
|
Value *get(VPValue *Def, unsigned Part);
|
|
|
|
/// Get the generated Value for a given VPValue and given Part and Lane.
|
|
Value *get(VPValue *Def, const VPIteration &Instance);
|
|
|
|
bool hasVectorValue(VPValue *Def, unsigned Part) {
|
|
auto I = Data.PerPartOutput.find(Def);
|
|
return I != Data.PerPartOutput.end() && Part < I->second.size() &&
|
|
I->second[Part];
|
|
}
|
|
|
|
bool hasScalarValue(VPValue *Def, VPIteration Instance) {
|
|
auto I = Data.PerPartScalars.find(Def);
|
|
if (I == Data.PerPartScalars.end())
|
|
return false;
|
|
unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF);
|
|
return Instance.Part < I->second.size() &&
|
|
CacheIdx < I->second[Instance.Part].size() &&
|
|
I->second[Instance.Part][CacheIdx];
|
|
}
|
|
|
|
/// Set the generated Value for a given VPValue and a given Part.
|
|
void set(VPValue *Def, Value *V, unsigned Part) {
|
|
if (!Data.PerPartOutput.count(Def)) {
|
|
DataState::PerPartValuesTy Entry(UF);
|
|
Data.PerPartOutput[Def] = Entry;
|
|
}
|
|
Data.PerPartOutput[Def][Part] = V;
|
|
}
|
|
/// Reset an existing vector value for \p Def and a given \p Part.
|
|
void reset(VPValue *Def, Value *V, unsigned Part) {
|
|
auto Iter = Data.PerPartOutput.find(Def);
|
|
assert(Iter != Data.PerPartOutput.end() &&
|
|
"need to overwrite existing value");
|
|
Iter->second[Part] = V;
|
|
}
|
|
|
|
/// Set the generated scalar \p V for \p Def and the given \p Instance.
|
|
void set(VPValue *Def, Value *V, const VPIteration &Instance) {
|
|
auto Iter = Data.PerPartScalars.insert({Def, {}});
|
|
auto &PerPartVec = Iter.first->second;
|
|
while (PerPartVec.size() <= Instance.Part)
|
|
PerPartVec.emplace_back();
|
|
auto &Scalars = PerPartVec[Instance.Part];
|
|
unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF);
|
|
while (Scalars.size() <= CacheIdx)
|
|
Scalars.push_back(nullptr);
|
|
assert(!Scalars[CacheIdx] && "should overwrite existing value");
|
|
Scalars[CacheIdx] = V;
|
|
}
|
|
|
|
/// Reset an existing scalar value for \p Def and a given \p Instance.
|
|
void reset(VPValue *Def, Value *V, const VPIteration &Instance) {
|
|
auto Iter = Data.PerPartScalars.find(Def);
|
|
assert(Iter != Data.PerPartScalars.end() &&
|
|
"need to overwrite existing value");
|
|
assert(Instance.Part < Iter->second.size() &&
|
|
"need to overwrite existing value");
|
|
unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF);
|
|
assert(CacheIdx < Iter->second[Instance.Part].size() &&
|
|
"need to overwrite existing value");
|
|
Iter->second[Instance.Part][CacheIdx] = V;
|
|
}
|
|
|
|
/// Add additional metadata to \p To that was not present on \p Orig.
|
|
///
|
|
/// Currently this is used to add the noalias annotations based on the
|
|
/// inserted memchecks. Use this for instructions that are *cloned* into the
|
|
/// vector loop.
|
|
void addNewMetadata(Instruction *To, const Instruction *Orig);
|
|
|
|
/// Add metadata from one instruction to another.
|
|
///
|
|
/// This includes both the original MDs from \p From and additional ones (\see
|
|
/// addNewMetadata). Use this for *newly created* instructions in the vector
|
|
/// loop.
|
|
void addMetadata(Instruction *To, Instruction *From);
|
|
|
|
/// Similar to the previous function but it adds the metadata to a
|
|
/// vector of instructions.
|
|
void addMetadata(ArrayRef<Value *> To, Instruction *From);
|
|
|
|
/// Set the debug location in the builder using the debug location \p DL.
|
|
void setDebugLocFrom(DebugLoc DL);
|
|
|
|
/// Construct the vector value of a scalarized value \p V one lane at a time.
|
|
void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance);
|
|
|
|
/// Hold state information used when constructing the CFG of the output IR,
|
|
/// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
|
|
struct CFGState {
|
|
/// The previous VPBasicBlock visited. Initially set to null.
|
|
VPBasicBlock *PrevVPBB = nullptr;
|
|
|
|
/// The previous IR BasicBlock created or used. Initially set to the new
|
|
/// header BasicBlock.
|
|
BasicBlock *PrevBB = nullptr;
|
|
|
|
/// The last IR BasicBlock in the output IR. Set to the exit block of the
|
|
/// vector loop.
|
|
BasicBlock *ExitBB = nullptr;
|
|
|
|
/// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
|
|
/// of replication, maps the BasicBlock of the last replica created.
|
|
SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
|
|
|
|
CFGState() = default;
|
|
|
|
/// Returns the BasicBlock* mapped to the pre-header of the loop region
|
|
/// containing \p R.
|
|
BasicBlock *getPreheaderBBFor(VPRecipeBase *R);
|
|
} CFG;
|
|
|
|
/// Hold a pointer to LoopInfo to register new basic blocks in the loop.
|
|
LoopInfo *LI;
|
|
|
|
/// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
|
|
DominatorTree *DT;
|
|
|
|
/// Hold a reference to the IRBuilder used to generate output IR code.
|
|
IRBuilderBase &Builder;
|
|
|
|
VPValue2ValueTy VPValue2Value;
|
|
|
|
/// Hold the canonical scalar IV of the vector loop (start=0, step=VF*UF).
|
|
Value *CanonicalIV = nullptr;
|
|
|
|
/// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
|
|
InnerLoopVectorizer *ILV;
|
|
|
|
/// Pointer to the VPlan code is generated for.
|
|
VPlan *Plan;
|
|
|
|
/// The loop object for the current parent region, or nullptr.
|
|
Loop *CurrentVectorLoop = nullptr;
|
|
|
|
/// LoopVersioning. It's only set up (non-null) if memchecks were
|
|
/// used.
|
|
///
|
|
/// This is currently only used to add no-alias metadata based on the
|
|
/// memchecks. The actually versioning is performed manually.
|
|
LoopVersioning *LVer = nullptr;
|
|
|
|
/// Map SCEVs to their expanded values. Populated when executing
|
|
/// VPExpandSCEVRecipes.
|
|
DenseMap<const SCEV *, Value *> ExpandedSCEVs;
|
|
|
|
/// VPlan-based type analysis.
|
|
VPTypeAnalysis TypeAnalysis;
|
|
};
|
|
|
|
/// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
|
|
/// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
|
|
class VPBlockBase {
|
|
friend class VPBlockUtils;
|
|
|
|
const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
|
|
|
|
/// An optional name for the block.
|
|
std::string Name;
|
|
|
|
/// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
|
|
/// it is a topmost VPBlockBase.
|
|
VPRegionBlock *Parent = nullptr;
|
|
|
|
/// List of predecessor blocks.
|
|
SmallVector<VPBlockBase *, 1> Predecessors;
|
|
|
|
/// List of successor blocks.
|
|
SmallVector<VPBlockBase *, 1> Successors;
|
|
|
|
/// VPlan containing the block. Can only be set on the entry block of the
|
|
/// plan.
|
|
VPlan *Plan = nullptr;
|
|
|
|
/// Add \p Successor as the last successor to this block.
|
|
void appendSuccessor(VPBlockBase *Successor) {
|
|
assert(Successor && "Cannot add nullptr successor!");
|
|
Successors.push_back(Successor);
|
|
}
|
|
|
|
/// Add \p Predecessor as the last predecessor to this block.
|
|
void appendPredecessor(VPBlockBase *Predecessor) {
|
|
assert(Predecessor && "Cannot add nullptr predecessor!");
|
|
Predecessors.push_back(Predecessor);
|
|
}
|
|
|
|
/// Remove \p Predecessor from the predecessors of this block.
|
|
void removePredecessor(VPBlockBase *Predecessor) {
|
|
auto Pos = find(Predecessors, Predecessor);
|
|
assert(Pos && "Predecessor does not exist");
|
|
Predecessors.erase(Pos);
|
|
}
|
|
|
|
/// Remove \p Successor from the successors of this block.
|
|
void removeSuccessor(VPBlockBase *Successor) {
|
|
auto Pos = find(Successors, Successor);
|
|
assert(Pos && "Successor does not exist");
|
|
Successors.erase(Pos);
|
|
}
|
|
|
|
protected:
|
|
VPBlockBase(const unsigned char SC, const std::string &N)
|
|
: SubclassID(SC), Name(N) {}
|
|
|
|
public:
|
|
/// An enumeration for keeping track of the concrete subclass of VPBlockBase
|
|
/// that are actually instantiated. Values of this enumeration are kept in the
|
|
/// SubclassID field of the VPBlockBase objects. They are used for concrete
|
|
/// type identification.
|
|
using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };
|
|
|
|
using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;
|
|
|
|
virtual ~VPBlockBase() = default;
|
|
|
|
const std::string &getName() const { return Name; }
|
|
|
|
void setName(const Twine &newName) { Name = newName.str(); }
|
|
|
|
/// \return an ID for the concrete type of this object.
|
|
/// This is used to implement the classof checks. This should not be used
|
|
/// for any other purpose, as the values may change as LLVM evolves.
|
|
unsigned getVPBlockID() const { return SubclassID; }
|
|
|
|
VPRegionBlock *getParent() { return Parent; }
|
|
const VPRegionBlock *getParent() const { return Parent; }
|
|
|
|
/// \return A pointer to the plan containing the current block.
|
|
VPlan *getPlan();
|
|
const VPlan *getPlan() const;
|
|
|
|
/// Sets the pointer of the plan containing the block. The block must be the
|
|
/// entry block into the VPlan.
|
|
void setPlan(VPlan *ParentPlan);
|
|
|
|
void setParent(VPRegionBlock *P) { Parent = P; }
|
|
|
|
/// \return the VPBasicBlock that is the entry of this VPBlockBase,
|
|
/// recursively, if the latter is a VPRegionBlock. Otherwise, if this
|
|
/// VPBlockBase is a VPBasicBlock, it is returned.
|
|
const VPBasicBlock *getEntryBasicBlock() const;
|
|
VPBasicBlock *getEntryBasicBlock();
|
|
|
|
/// \return the VPBasicBlock that is the exiting this VPBlockBase,
|
|
/// recursively, if the latter is a VPRegionBlock. Otherwise, if this
|
|
/// VPBlockBase is a VPBasicBlock, it is returned.
|
|
const VPBasicBlock *getExitingBasicBlock() const;
|
|
VPBasicBlock *getExitingBasicBlock();
|
|
|
|
const VPBlocksTy &getSuccessors() const { return Successors; }
|
|
VPBlocksTy &getSuccessors() { return Successors; }
|
|
|
|
iterator_range<VPBlockBase **> successors() { return Successors; }
|
|
|
|
const VPBlocksTy &getPredecessors() const { return Predecessors; }
|
|
VPBlocksTy &getPredecessors() { return Predecessors; }
|
|
|
|
/// \return the successor of this VPBlockBase if it has a single successor.
|
|
/// Otherwise return a null pointer.
|
|
VPBlockBase *getSingleSuccessor() const {
|
|
return (Successors.size() == 1 ? *Successors.begin() : nullptr);
|
|
}
|
|
|
|
/// \return the predecessor of this VPBlockBase if it has a single
|
|
/// predecessor. Otherwise return a null pointer.
|
|
VPBlockBase *getSinglePredecessor() const {
|
|
return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
|
|
}
|
|
|
|
size_t getNumSuccessors() const { return Successors.size(); }
|
|
size_t getNumPredecessors() const { return Predecessors.size(); }
|
|
|
|
/// An Enclosing Block of a block B is any block containing B, including B
|
|
/// itself. \return the closest enclosing block starting from "this", which
|
|
/// has successors. \return the root enclosing block if all enclosing blocks
|
|
/// have no successors.
|
|
VPBlockBase *getEnclosingBlockWithSuccessors();
|
|
|
|
/// \return the closest enclosing block starting from "this", which has
|
|
/// predecessors. \return the root enclosing block if all enclosing blocks
|
|
/// have no predecessors.
|
|
VPBlockBase *getEnclosingBlockWithPredecessors();
|
|
|
|
/// \return the successors either attached directly to this VPBlockBase or, if
|
|
/// this VPBlockBase is the exit block of a VPRegionBlock and has no
|
|
/// successors of its own, search recursively for the first enclosing
|
|
/// VPRegionBlock that has successors and return them. If no such
|
|
/// VPRegionBlock exists, return the (empty) successors of the topmost
|
|
/// VPBlockBase reached.
|
|
const VPBlocksTy &getHierarchicalSuccessors() {
|
|
return getEnclosingBlockWithSuccessors()->getSuccessors();
|
|
}
|
|
|
|
/// \return the hierarchical successor of this VPBlockBase if it has a single
|
|
/// hierarchical successor. Otherwise return a null pointer.
|
|
VPBlockBase *getSingleHierarchicalSuccessor() {
|
|
return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
|
|
}
|
|
|
|
/// \return the predecessors either attached directly to this VPBlockBase or,
|
|
/// if this VPBlockBase is the entry block of a VPRegionBlock and has no
|
|
/// predecessors of its own, search recursively for the first enclosing
|
|
/// VPRegionBlock that has predecessors and return them. If no such
|
|
/// VPRegionBlock exists, return the (empty) predecessors of the topmost
|
|
/// VPBlockBase reached.
|
|
const VPBlocksTy &getHierarchicalPredecessors() {
|
|
return getEnclosingBlockWithPredecessors()->getPredecessors();
|
|
}
|
|
|
|
/// \return the hierarchical predecessor of this VPBlockBase if it has a
|
|
/// single hierarchical predecessor. Otherwise return a null pointer.
|
|
VPBlockBase *getSingleHierarchicalPredecessor() {
|
|
return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
|
|
}
|
|
|
|
/// Set a given VPBlockBase \p Successor as the single successor of this
|
|
/// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
|
|
/// This VPBlockBase must have no successors.
|
|
void setOneSuccessor(VPBlockBase *Successor) {
|
|
assert(Successors.empty() && "Setting one successor when others exist.");
|
|
assert(Successor->getParent() == getParent() &&
|
|
"connected blocks must have the same parent");
|
|
appendSuccessor(Successor);
|
|
}
|
|
|
|
/// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
|
|
/// successors of this VPBlockBase. This VPBlockBase is not added as
|
|
/// predecessor of \p IfTrue or \p IfFalse. This VPBlockBase must have no
|
|
/// successors.
|
|
void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse) {
|
|
assert(Successors.empty() && "Setting two successors when others exist.");
|
|
appendSuccessor(IfTrue);
|
|
appendSuccessor(IfFalse);
|
|
}
|
|
|
|
/// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
|
|
/// This VPBlockBase must have no predecessors. This VPBlockBase is not added
|
|
/// as successor of any VPBasicBlock in \p NewPreds.
|
|
void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
|
|
assert(Predecessors.empty() && "Block predecessors already set.");
|
|
for (auto *Pred : NewPreds)
|
|
appendPredecessor(Pred);
|
|
}
|
|
|
|
/// Remove all the predecessor of this block.
|
|
void clearPredecessors() { Predecessors.clear(); }
|
|
|
|
/// Remove all the successors of this block.
|
|
void clearSuccessors() { Successors.clear(); }
|
|
|
|
/// The method which generates the output IR that correspond to this
|
|
/// VPBlockBase, thereby "executing" the VPlan.
|
|
virtual void execute(VPTransformState *State) = 0;
|
|
|
|
/// Delete all blocks reachable from a given VPBlockBase, inclusive.
|
|
static void deleteCFG(VPBlockBase *Entry);
|
|
|
|
/// Return true if it is legal to hoist instructions into this block.
|
|
bool isLegalToHoistInto() {
|
|
// There are currently no constraints that prevent an instruction to be
|
|
// hoisted into a VPBlockBase.
|
|
return true;
|
|
}
|
|
|
|
/// Replace all operands of VPUsers in the block with \p NewValue and also
|
|
/// replaces all uses of VPValues defined in the block with NewValue.
|
|
virtual void dropAllReferences(VPValue *NewValue) = 0;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void printAsOperand(raw_ostream &OS, bool PrintType) const {
|
|
OS << getName();
|
|
}
|
|
|
|
/// Print plain-text dump of this VPBlockBase to \p O, prefixing all lines
|
|
/// with \p Indent. \p SlotTracker is used to print unnamed VPValue's using
|
|
/// consequtive numbers.
|
|
///
|
|
/// Note that the numbering is applied to the whole VPlan, so printing
|
|
/// individual blocks is consistent with the whole VPlan printing.
|
|
virtual void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const = 0;
|
|
|
|
/// Print plain-text dump of this VPlan to \p O.
|
|
void print(raw_ostream &O) const {
|
|
VPSlotTracker SlotTracker(getPlan());
|
|
print(O, "", SlotTracker);
|
|
}
|
|
|
|
/// Print the successors of this block to \p O, prefixing all lines with \p
|
|
/// Indent.
|
|
void printSuccessors(raw_ostream &O, const Twine &Indent) const;
|
|
|
|
/// Dump this VPBlockBase to dbgs().
|
|
LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
|
|
#endif
|
|
|
|
/// Clone the current block and it's recipes without updating the operands of
|
|
/// the cloned recipes, including all blocks in the single-entry single-exit
|
|
/// region for VPRegionBlocks.
|
|
virtual VPBlockBase *clone() = 0;
|
|
};
|
|
|
|
/// A value that is used outside the VPlan. The operand of the user needs to be
|
|
/// added to the associated LCSSA phi node.
|
|
class VPLiveOut : public VPUser {
|
|
PHINode *Phi;
|
|
|
|
public:
|
|
VPLiveOut(PHINode *Phi, VPValue *Op)
|
|
: VPUser({Op}, VPUser::VPUserID::LiveOut), Phi(Phi) {}
|
|
|
|
static inline bool classof(const VPUser *U) {
|
|
return U->getVPUserID() == VPUser::VPUserID::LiveOut;
|
|
}
|
|
|
|
/// Fixup the wrapped LCSSA phi node in the unique exit block. This simply
|
|
/// means we need to add the appropriate incoming value from the middle
|
|
/// block as exiting edges from the scalar epilogue loop (if present) are
|
|
/// already in place, and we exit the vector loop exclusively to the middle
|
|
/// block.
|
|
void fixPhi(VPlan &Plan, VPTransformState &State);
|
|
|
|
/// Returns true if the VPLiveOut uses scalars of operand \p Op.
|
|
bool usesScalars(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return true;
|
|
}
|
|
|
|
PHINode *getPhi() const { return Phi; }
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the VPLiveOut to \p O.
|
|
void print(raw_ostream &O, VPSlotTracker &SlotTracker) const;
|
|
#endif
|
|
};
|
|
|
|
/// VPRecipeBase is a base class modeling a sequence of one or more output IR
|
|
/// instructions. VPRecipeBase owns the VPValues it defines through VPDef
|
|
/// and is responsible for deleting its defined values. Single-value
|
|
/// recipes must inherit from VPSingleDef instead of inheriting from both
|
|
/// VPRecipeBase and VPValue separately.
|
|
class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock>,
|
|
public VPDef,
|
|
public VPUser {
|
|
friend VPBasicBlock;
|
|
friend class VPBlockUtils;
|
|
|
|
/// Each VPRecipe belongs to a single VPBasicBlock.
|
|
VPBasicBlock *Parent = nullptr;
|
|
|
|
/// The debug location for the recipe.
|
|
DebugLoc DL;
|
|
|
|
public:
|
|
VPRecipeBase(const unsigned char SC, ArrayRef<VPValue *> Operands,
|
|
DebugLoc DL = {})
|
|
: VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe), DL(DL) {}
|
|
|
|
template <typename IterT>
|
|
VPRecipeBase(const unsigned char SC, iterator_range<IterT> Operands,
|
|
DebugLoc DL = {})
|
|
: VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe), DL(DL) {}
|
|
virtual ~VPRecipeBase() = default;
|
|
|
|
/// Clone the current recipe.
|
|
virtual VPRecipeBase *clone() = 0;
|
|
|
|
/// \return the VPBasicBlock which this VPRecipe belongs to.
|
|
VPBasicBlock *getParent() { return Parent; }
|
|
const VPBasicBlock *getParent() const { return Parent; }
|
|
|
|
/// The method which generates the output IR instructions that correspond to
|
|
/// this VPRecipe, thereby "executing" the VPlan.
|
|
virtual void execute(VPTransformState &State) = 0;
|
|
|
|
/// Insert an unlinked recipe into a basic block immediately before
|
|
/// the specified recipe.
|
|
void insertBefore(VPRecipeBase *InsertPos);
|
|
/// Insert an unlinked recipe into \p BB immediately before the insertion
|
|
/// point \p IP;
|
|
void insertBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator IP);
|
|
|
|
/// Insert an unlinked Recipe into a basic block immediately after
|
|
/// the specified Recipe.
|
|
void insertAfter(VPRecipeBase *InsertPos);
|
|
|
|
/// Unlink this recipe from its current VPBasicBlock and insert it into
|
|
/// the VPBasicBlock that MovePos lives in, right after MovePos.
|
|
void moveAfter(VPRecipeBase *MovePos);
|
|
|
|
/// Unlink this recipe and insert into BB before I.
|
|
///
|
|
/// \pre I is a valid iterator into BB.
|
|
void moveBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator I);
|
|
|
|
/// This method unlinks 'this' from the containing basic block, but does not
|
|
/// delete it.
|
|
void removeFromParent();
|
|
|
|
/// This method unlinks 'this' from the containing basic block and deletes it.
|
|
///
|
|
/// \returns an iterator pointing to the element after the erased one
|
|
iplist<VPRecipeBase>::iterator eraseFromParent();
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPDef *D) {
|
|
// All VPDefs are also VPRecipeBases.
|
|
return true;
|
|
}
|
|
|
|
static inline bool classof(const VPUser *U) {
|
|
return U->getVPUserID() == VPUser::VPUserID::Recipe;
|
|
}
|
|
|
|
/// Returns true if the recipe may have side-effects.
|
|
bool mayHaveSideEffects() const;
|
|
|
|
/// Returns true for PHI-like recipes.
|
|
bool isPhi() const {
|
|
return getVPDefID() >= VPFirstPHISC && getVPDefID() <= VPLastPHISC;
|
|
}
|
|
|
|
/// Returns true if the recipe may read from memory.
|
|
bool mayReadFromMemory() const;
|
|
|
|
/// Returns true if the recipe may write to memory.
|
|
bool mayWriteToMemory() const;
|
|
|
|
/// Returns true if the recipe may read from or write to memory.
|
|
bool mayReadOrWriteMemory() const {
|
|
return mayReadFromMemory() || mayWriteToMemory();
|
|
}
|
|
|
|
/// Returns the debug location of the recipe.
|
|
DebugLoc getDebugLoc() const { return DL; }
|
|
};
|
|
|
|
// Helper macro to define common classof implementations for recipes.
|
|
#define VP_CLASSOF_IMPL(VPDefID) \
|
|
static inline bool classof(const VPDef *D) { \
|
|
return D->getVPDefID() == VPDefID; \
|
|
} \
|
|
static inline bool classof(const VPValue *V) { \
|
|
auto *R = V->getDefiningRecipe(); \
|
|
return R && R->getVPDefID() == VPDefID; \
|
|
} \
|
|
static inline bool classof(const VPUser *U) { \
|
|
auto *R = dyn_cast<VPRecipeBase>(U); \
|
|
return R && R->getVPDefID() == VPDefID; \
|
|
} \
|
|
static inline bool classof(const VPRecipeBase *R) { \
|
|
return R->getVPDefID() == VPDefID; \
|
|
} \
|
|
static inline bool classof(const VPSingleDefRecipe *R) { \
|
|
return R->getVPDefID() == VPDefID; \
|
|
}
|
|
|
|
/// VPSingleDef is a base class for recipes for modeling a sequence of one or
|
|
/// more output IR that define a single result VPValue.
|
|
/// Note that VPRecipeBase must be inherited from before VPValue.
|
|
class VPSingleDefRecipe : public VPRecipeBase, public VPValue {
|
|
public:
|
|
template <typename IterT>
|
|
VPSingleDefRecipe(const unsigned char SC, IterT Operands, DebugLoc DL = {})
|
|
: VPRecipeBase(SC, Operands, DL), VPValue(this) {}
|
|
|
|
VPSingleDefRecipe(const unsigned char SC, ArrayRef<VPValue *> Operands,
|
|
DebugLoc DL = {})
|
|
: VPRecipeBase(SC, Operands, DL), VPValue(this) {}
|
|
|
|
template <typename IterT>
|
|
VPSingleDefRecipe(const unsigned char SC, IterT Operands, Value *UV,
|
|
DebugLoc DL = {})
|
|
: VPRecipeBase(SC, Operands, DL), VPValue(this, UV) {}
|
|
|
|
static inline bool classof(const VPRecipeBase *R) {
|
|
switch (R->getVPDefID()) {
|
|
case VPRecipeBase::VPDerivedIVSC:
|
|
case VPRecipeBase::VPExpandSCEVSC:
|
|
case VPRecipeBase::VPInstructionSC:
|
|
case VPRecipeBase::VPReductionSC:
|
|
case VPRecipeBase::VPReplicateSC:
|
|
case VPRecipeBase::VPScalarIVStepsSC:
|
|
case VPRecipeBase::VPVectorPointerSC:
|
|
case VPRecipeBase::VPWidenCallSC:
|
|
case VPRecipeBase::VPWidenCanonicalIVSC:
|
|
case VPRecipeBase::VPWidenCastSC:
|
|
case VPRecipeBase::VPWidenGEPSC:
|
|
case VPRecipeBase::VPWidenSC:
|
|
case VPRecipeBase::VPWidenSelectSC:
|
|
case VPRecipeBase::VPBlendSC:
|
|
case VPRecipeBase::VPPredInstPHISC:
|
|
case VPRecipeBase::VPCanonicalIVPHISC:
|
|
case VPRecipeBase::VPActiveLaneMaskPHISC:
|
|
case VPRecipeBase::VPFirstOrderRecurrencePHISC:
|
|
case VPRecipeBase::VPWidenPHISC:
|
|
case VPRecipeBase::VPWidenIntOrFpInductionSC:
|
|
case VPRecipeBase::VPWidenPointerInductionSC:
|
|
case VPRecipeBase::VPReductionPHISC:
|
|
case VPRecipeBase::VPScalarCastSC:
|
|
return true;
|
|
case VPRecipeBase::VPInterleaveSC:
|
|
case VPRecipeBase::VPBranchOnMaskSC:
|
|
case VPRecipeBase::VPWidenMemoryInstructionSC:
|
|
// TODO: Widened stores don't define a value, but widened loads do. Split
|
|
// the recipes to be able to make widened loads VPSingleDefRecipes.
|
|
return false;
|
|
}
|
|
llvm_unreachable("Unhandled VPDefID");
|
|
}
|
|
|
|
static inline bool classof(const VPUser *U) {
|
|
auto *R = dyn_cast<VPRecipeBase>(U);
|
|
return R && classof(R);
|
|
}
|
|
|
|
/// Returns the underlying instruction.
|
|
Instruction *getUnderlyingInstr() {
|
|
return cast<Instruction>(getUnderlyingValue());
|
|
}
|
|
const Instruction *getUnderlyingInstr() const {
|
|
return cast<Instruction>(getUnderlyingValue());
|
|
}
|
|
};
|
|
|
|
/// Class to record LLVM IR flag for a recipe along with it.
|
|
class VPRecipeWithIRFlags : public VPSingleDefRecipe {
|
|
enum class OperationType : unsigned char {
|
|
Cmp,
|
|
OverflowingBinOp,
|
|
DisjointOp,
|
|
PossiblyExactOp,
|
|
GEPOp,
|
|
FPMathOp,
|
|
NonNegOp,
|
|
Other
|
|
};
|
|
|
|
public:
|
|
struct WrapFlagsTy {
|
|
char HasNUW : 1;
|
|
char HasNSW : 1;
|
|
|
|
WrapFlagsTy(bool HasNUW, bool HasNSW) : HasNUW(HasNUW), HasNSW(HasNSW) {}
|
|
};
|
|
|
|
protected:
|
|
struct GEPFlagsTy {
|
|
char IsInBounds : 1;
|
|
GEPFlagsTy(bool IsInBounds) : IsInBounds(IsInBounds) {}
|
|
};
|
|
|
|
private:
|
|
struct DisjointFlagsTy {
|
|
char IsDisjoint : 1;
|
|
};
|
|
struct ExactFlagsTy {
|
|
char IsExact : 1;
|
|
};
|
|
struct NonNegFlagsTy {
|
|
char NonNeg : 1;
|
|
};
|
|
struct FastMathFlagsTy {
|
|
char AllowReassoc : 1;
|
|
char NoNaNs : 1;
|
|
char NoInfs : 1;
|
|
char NoSignedZeros : 1;
|
|
char AllowReciprocal : 1;
|
|
char AllowContract : 1;
|
|
char ApproxFunc : 1;
|
|
|
|
FastMathFlagsTy(const FastMathFlags &FMF);
|
|
};
|
|
|
|
OperationType OpType;
|
|
|
|
union {
|
|
CmpInst::Predicate CmpPredicate;
|
|
WrapFlagsTy WrapFlags;
|
|
DisjointFlagsTy DisjointFlags;
|
|
ExactFlagsTy ExactFlags;
|
|
GEPFlagsTy GEPFlags;
|
|
NonNegFlagsTy NonNegFlags;
|
|
FastMathFlagsTy FMFs;
|
|
unsigned AllFlags;
|
|
};
|
|
|
|
protected:
|
|
void transferFlags(VPRecipeWithIRFlags &Other) {
|
|
OpType = Other.OpType;
|
|
AllFlags = Other.AllFlags;
|
|
}
|
|
|
|
public:
|
|
template <typename IterT>
|
|
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands, DebugLoc DL = {})
|
|
: VPSingleDefRecipe(SC, Operands, DL) {
|
|
OpType = OperationType::Other;
|
|
AllFlags = 0;
|
|
}
|
|
|
|
template <typename IterT>
|
|
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands, Instruction &I)
|
|
: VPSingleDefRecipe(SC, Operands, &I, I.getDebugLoc()) {
|
|
if (auto *Op = dyn_cast<CmpInst>(&I)) {
|
|
OpType = OperationType::Cmp;
|
|
CmpPredicate = Op->getPredicate();
|
|
} else if (auto *Op = dyn_cast<PossiblyDisjointInst>(&I)) {
|
|
OpType = OperationType::DisjointOp;
|
|
DisjointFlags.IsDisjoint = Op->isDisjoint();
|
|
} else if (auto *Op = dyn_cast<OverflowingBinaryOperator>(&I)) {
|
|
OpType = OperationType::OverflowingBinOp;
|
|
WrapFlags = {Op->hasNoUnsignedWrap(), Op->hasNoSignedWrap()};
|
|
} else if (auto *Op = dyn_cast<PossiblyExactOperator>(&I)) {
|
|
OpType = OperationType::PossiblyExactOp;
|
|
ExactFlags.IsExact = Op->isExact();
|
|
} else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
|
|
OpType = OperationType::GEPOp;
|
|
GEPFlags.IsInBounds = GEP->isInBounds();
|
|
} else if (auto *PNNI = dyn_cast<PossiblyNonNegInst>(&I)) {
|
|
OpType = OperationType::NonNegOp;
|
|
NonNegFlags.NonNeg = PNNI->hasNonNeg();
|
|
} else if (auto *Op = dyn_cast<FPMathOperator>(&I)) {
|
|
OpType = OperationType::FPMathOp;
|
|
FMFs = Op->getFastMathFlags();
|
|
} else {
|
|
OpType = OperationType::Other;
|
|
AllFlags = 0;
|
|
}
|
|
}
|
|
|
|
template <typename IterT>
|
|
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands,
|
|
CmpInst::Predicate Pred, DebugLoc DL = {})
|
|
: VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::Cmp),
|
|
CmpPredicate(Pred) {}
|
|
|
|
template <typename IterT>
|
|
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands,
|
|
WrapFlagsTy WrapFlags, DebugLoc DL = {})
|
|
: VPSingleDefRecipe(SC, Operands, DL),
|
|
OpType(OperationType::OverflowingBinOp), WrapFlags(WrapFlags) {}
|
|
|
|
template <typename IterT>
|
|
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands,
|
|
FastMathFlags FMFs, DebugLoc DL = {})
|
|
: VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::FPMathOp),
|
|
FMFs(FMFs) {}
|
|
|
|
protected:
|
|
template <typename IterT>
|
|
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands,
|
|
GEPFlagsTy GEPFlags, DebugLoc DL = {})
|
|
: VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::GEPOp),
|
|
GEPFlags(GEPFlags) {}
|
|
|
|
public:
|
|
static inline bool classof(const VPRecipeBase *R) {
|
|
return R->getVPDefID() == VPRecipeBase::VPInstructionSC ||
|
|
R->getVPDefID() == VPRecipeBase::VPWidenSC ||
|
|
R->getVPDefID() == VPRecipeBase::VPWidenGEPSC ||
|
|
R->getVPDefID() == VPRecipeBase::VPWidenCastSC ||
|
|
R->getVPDefID() == VPRecipeBase::VPReplicateSC ||
|
|
R->getVPDefID() == VPRecipeBase::VPVectorPointerSC;
|
|
}
|
|
|
|
/// Drop all poison-generating flags.
|
|
void dropPoisonGeneratingFlags() {
|
|
// NOTE: This needs to be kept in-sync with
|
|
// Instruction::dropPoisonGeneratingFlags.
|
|
switch (OpType) {
|
|
case OperationType::OverflowingBinOp:
|
|
WrapFlags.HasNUW = false;
|
|
WrapFlags.HasNSW = false;
|
|
break;
|
|
case OperationType::DisjointOp:
|
|
DisjointFlags.IsDisjoint = false;
|
|
break;
|
|
case OperationType::PossiblyExactOp:
|
|
ExactFlags.IsExact = false;
|
|
break;
|
|
case OperationType::GEPOp:
|
|
GEPFlags.IsInBounds = false;
|
|
break;
|
|
case OperationType::FPMathOp:
|
|
FMFs.NoNaNs = false;
|
|
FMFs.NoInfs = false;
|
|
break;
|
|
case OperationType::NonNegOp:
|
|
NonNegFlags.NonNeg = false;
|
|
break;
|
|
case OperationType::Cmp:
|
|
case OperationType::Other:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Set the IR flags for \p I.
|
|
void setFlags(Instruction *I) const {
|
|
switch (OpType) {
|
|
case OperationType::OverflowingBinOp:
|
|
I->setHasNoUnsignedWrap(WrapFlags.HasNUW);
|
|
I->setHasNoSignedWrap(WrapFlags.HasNSW);
|
|
break;
|
|
case OperationType::DisjointOp:
|
|
cast<PossiblyDisjointInst>(I)->setIsDisjoint(DisjointFlags.IsDisjoint);
|
|
break;
|
|
case OperationType::PossiblyExactOp:
|
|
I->setIsExact(ExactFlags.IsExact);
|
|
break;
|
|
case OperationType::GEPOp:
|
|
cast<GetElementPtrInst>(I)->setIsInBounds(GEPFlags.IsInBounds);
|
|
break;
|
|
case OperationType::FPMathOp:
|
|
I->setHasAllowReassoc(FMFs.AllowReassoc);
|
|
I->setHasNoNaNs(FMFs.NoNaNs);
|
|
I->setHasNoInfs(FMFs.NoInfs);
|
|
I->setHasNoSignedZeros(FMFs.NoSignedZeros);
|
|
I->setHasAllowReciprocal(FMFs.AllowReciprocal);
|
|
I->setHasAllowContract(FMFs.AllowContract);
|
|
I->setHasApproxFunc(FMFs.ApproxFunc);
|
|
break;
|
|
case OperationType::NonNegOp:
|
|
I->setNonNeg(NonNegFlags.NonNeg);
|
|
break;
|
|
case OperationType::Cmp:
|
|
case OperationType::Other:
|
|
break;
|
|
}
|
|
}
|
|
|
|
CmpInst::Predicate getPredicate() const {
|
|
assert(OpType == OperationType::Cmp &&
|
|
"recipe doesn't have a compare predicate");
|
|
return CmpPredicate;
|
|
}
|
|
|
|
bool isInBounds() const {
|
|
assert(OpType == OperationType::GEPOp &&
|
|
"recipe doesn't have inbounds flag");
|
|
return GEPFlags.IsInBounds;
|
|
}
|
|
|
|
/// Returns true if the recipe has fast-math flags.
|
|
bool hasFastMathFlags() const { return OpType == OperationType::FPMathOp; }
|
|
|
|
FastMathFlags getFastMathFlags() const;
|
|
|
|
bool hasNoUnsignedWrap() const {
|
|
assert(OpType == OperationType::OverflowingBinOp &&
|
|
"recipe doesn't have a NUW flag");
|
|
return WrapFlags.HasNUW;
|
|
}
|
|
|
|
bool hasNoSignedWrap() const {
|
|
assert(OpType == OperationType::OverflowingBinOp &&
|
|
"recipe doesn't have a NSW flag");
|
|
return WrapFlags.HasNSW;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void printFlags(raw_ostream &O) const;
|
|
#endif
|
|
};
|
|
|
|
/// This is a concrete Recipe that models a single VPlan-level instruction.
|
|
/// While as any Recipe it may generate a sequence of IR instructions when
|
|
/// executed, these instructions would always form a single-def expression as
|
|
/// the VPInstruction is also a single def-use vertex.
|
|
class VPInstruction : public VPRecipeWithIRFlags {
|
|
friend class VPlanSlp;
|
|
|
|
public:
|
|
/// VPlan opcodes, extending LLVM IR with idiomatics instructions.
|
|
enum {
|
|
FirstOrderRecurrenceSplice =
|
|
Instruction::OtherOpsEnd + 1, // Combines the incoming and previous
|
|
// values of a first-order recurrence.
|
|
Not,
|
|
SLPLoad,
|
|
SLPStore,
|
|
ActiveLaneMask,
|
|
CalculateTripCountMinusVF,
|
|
// Increment the canonical IV separately for each unrolled part.
|
|
CanonicalIVIncrementForPart,
|
|
BranchOnCount,
|
|
BranchOnCond,
|
|
ComputeReductionResult,
|
|
};
|
|
|
|
private:
|
|
typedef unsigned char OpcodeTy;
|
|
OpcodeTy Opcode;
|
|
|
|
/// An optional name that can be used for the generated IR instruction.
|
|
const std::string Name;
|
|
|
|
/// Utility method serving execute(): generates a single instance of the
|
|
/// modeled instruction. \returns the generated value for \p Part.
|
|
/// In some cases an existing value is returned rather than a generated
|
|
/// one.
|
|
Value *generateInstruction(VPTransformState &State, unsigned Part);
|
|
|
|
#if !defined(NDEBUG)
|
|
/// Return true if the VPInstruction is a floating point math operation, i.e.
|
|
/// has fast-math flags.
|
|
bool isFPMathOp() const;
|
|
#endif
|
|
|
|
protected:
|
|
void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); }
|
|
|
|
public:
|
|
VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands, DebugLoc DL,
|
|
const Twine &Name = "")
|
|
: VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, DL),
|
|
Opcode(Opcode), Name(Name.str()) {}
|
|
|
|
VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands,
|
|
DebugLoc DL = {}, const Twine &Name = "")
|
|
: VPInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name) {}
|
|
|
|
VPInstruction(unsigned Opcode, CmpInst::Predicate Pred, VPValue *A,
|
|
VPValue *B, DebugLoc DL = {}, const Twine &Name = "");
|
|
|
|
VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands,
|
|
WrapFlagsTy WrapFlags, DebugLoc DL = {}, const Twine &Name = "")
|
|
: VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, WrapFlags, DL),
|
|
Opcode(Opcode), Name(Name.str()) {}
|
|
|
|
VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands,
|
|
FastMathFlags FMFs, DebugLoc DL = {}, const Twine &Name = "");
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPInstructionSC)
|
|
|
|
VPRecipeBase *clone() override {
|
|
SmallVector<VPValue *, 2> Operands(operands());
|
|
auto *New = new VPInstruction(Opcode, Operands, getDebugLoc(), Name);
|
|
New->transferFlags(*this);
|
|
return New;
|
|
}
|
|
|
|
unsigned getOpcode() const { return Opcode; }
|
|
|
|
/// Generate the instruction.
|
|
/// TODO: We currently execute only per-part unless a specific instance is
|
|
/// provided.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the VPInstruction to \p O.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
|
|
/// Print the VPInstruction to dbgs() (for debugging).
|
|
LLVM_DUMP_METHOD void dump() const;
|
|
#endif
|
|
|
|
/// Return true if this instruction may modify memory.
|
|
bool mayWriteToMemory() const {
|
|
// TODO: we can use attributes of the called function to rule out memory
|
|
// modifications.
|
|
return Opcode == Instruction::Store || Opcode == Instruction::Call ||
|
|
Opcode == Instruction::Invoke || Opcode == SLPStore;
|
|
}
|
|
|
|
bool hasResult() const {
|
|
// CallInst may or may not have a result, depending on the called function.
|
|
// Conservatively return calls have results for now.
|
|
switch (getOpcode()) {
|
|
case Instruction::Ret:
|
|
case Instruction::Br:
|
|
case Instruction::Store:
|
|
case Instruction::Switch:
|
|
case Instruction::IndirectBr:
|
|
case Instruction::Resume:
|
|
case Instruction::CatchRet:
|
|
case Instruction::Unreachable:
|
|
case Instruction::Fence:
|
|
case Instruction::AtomicRMW:
|
|
case VPInstruction::BranchOnCond:
|
|
case VPInstruction::BranchOnCount:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override;
|
|
|
|
/// Returns true if the recipe only uses the first part of operand \p Op.
|
|
bool onlyFirstPartUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
if (getOperand(0) != Op)
|
|
return false;
|
|
switch (getOpcode()) {
|
|
default:
|
|
return false;
|
|
case VPInstruction::BranchOnCount:
|
|
return true;
|
|
};
|
|
llvm_unreachable("switch should return");
|
|
}
|
|
};
|
|
|
|
/// VPWidenRecipe is a recipe for producing a copy of vector type its
|
|
/// ingredient. This recipe covers most of the traditional vectorization cases
|
|
/// where each ingredient transforms into a vectorized version of itself.
|
|
class VPWidenRecipe : public VPRecipeWithIRFlags {
|
|
unsigned Opcode;
|
|
|
|
public:
|
|
template <typename IterT>
|
|
VPWidenRecipe(Instruction &I, iterator_range<IterT> Operands)
|
|
: VPRecipeWithIRFlags(VPDef::VPWidenSC, Operands, I),
|
|
Opcode(I.getOpcode()) {}
|
|
|
|
~VPWidenRecipe() override = default;
|
|
|
|
VPRecipeBase *clone() override {
|
|
auto *R = new VPWidenRecipe(*getUnderlyingInstr(), operands());
|
|
R->transferFlags(*this);
|
|
return R;
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenSC)
|
|
|
|
/// Produce widened copies of all Ingredients.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
unsigned getOpcode() const { return Opcode; }
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
};
|
|
|
|
/// VPWidenCastRecipe is a recipe to create vector cast instructions.
|
|
class VPWidenCastRecipe : public VPRecipeWithIRFlags {
|
|
/// Cast instruction opcode.
|
|
Instruction::CastOps Opcode;
|
|
|
|
/// Result type for the cast.
|
|
Type *ResultTy;
|
|
|
|
public:
|
|
VPWidenCastRecipe(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy,
|
|
CastInst &UI)
|
|
: VPRecipeWithIRFlags(VPDef::VPWidenCastSC, Op, UI), Opcode(Opcode),
|
|
ResultTy(ResultTy) {
|
|
assert(UI.getOpcode() == Opcode &&
|
|
"opcode of underlying cast doesn't match");
|
|
assert(UI.getType() == ResultTy &&
|
|
"result type of underlying cast doesn't match");
|
|
}
|
|
|
|
VPWidenCastRecipe(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy)
|
|
: VPRecipeWithIRFlags(VPDef::VPWidenCastSC, Op), Opcode(Opcode),
|
|
ResultTy(ResultTy) {}
|
|
|
|
~VPWidenCastRecipe() override = default;
|
|
|
|
VPRecipeBase *clone() override {
|
|
if (auto *UV = getUnderlyingValue())
|
|
return new VPWidenCastRecipe(Opcode, getOperand(0), ResultTy,
|
|
*cast<CastInst>(UV));
|
|
|
|
return new VPWidenCastRecipe(Opcode, getOperand(0), ResultTy);
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenCastSC)
|
|
|
|
/// Produce widened copies of the cast.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
Instruction::CastOps getOpcode() const { return Opcode; }
|
|
|
|
/// Returns the result type of the cast.
|
|
Type *getResultType() const { return ResultTy; }
|
|
};
|
|
|
|
/// VPScalarCastRecipe is a recipe to create scalar cast instructions.
|
|
class VPScalarCastRecipe : public VPSingleDefRecipe {
|
|
Instruction::CastOps Opcode;
|
|
|
|
Type *ResultTy;
|
|
|
|
Value *generate(VPTransformState &State, unsigned Part);
|
|
|
|
public:
|
|
VPScalarCastRecipe(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy)
|
|
: VPSingleDefRecipe(VPDef::VPScalarCastSC, {Op}), Opcode(Opcode),
|
|
ResultTy(ResultTy) {}
|
|
|
|
~VPScalarCastRecipe() override = default;
|
|
|
|
VPRecipeBase *clone() override {
|
|
return new VPScalarCastRecipe(Opcode, getOperand(0), ResultTy);
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPScalarCastSC)
|
|
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
/// Returns the result type of the cast.
|
|
Type *getResultType() const { return ResultTy; }
|
|
};
|
|
|
|
/// A recipe for widening Call instructions.
|
|
class VPWidenCallRecipe : public VPSingleDefRecipe {
|
|
/// ID of the vector intrinsic to call when widening the call. If set the
|
|
/// Intrinsic::not_intrinsic, a library call will be used instead.
|
|
Intrinsic::ID VectorIntrinsicID;
|
|
/// If this recipe represents a library call, Variant stores a pointer to
|
|
/// the chosen function. There is a 1:1 mapping between a given VF and the
|
|
/// chosen vectorized variant, so there will be a different vplan for each
|
|
/// VF with a valid variant.
|
|
Function *Variant;
|
|
|
|
public:
|
|
template <typename IterT>
|
|
VPWidenCallRecipe(CallInst &I, iterator_range<IterT> CallArguments,
|
|
Intrinsic::ID VectorIntrinsicID, DebugLoc DL = {},
|
|
Function *Variant = nullptr)
|
|
: VPSingleDefRecipe(VPDef::VPWidenCallSC, CallArguments, &I, DL),
|
|
VectorIntrinsicID(VectorIntrinsicID), Variant(Variant) {}
|
|
|
|
~VPWidenCallRecipe() override = default;
|
|
|
|
VPRecipeBase *clone() override {
|
|
return new VPWidenCallRecipe(*cast<CallInst>(getUnderlyingInstr()),
|
|
operands(), VectorIntrinsicID, getDebugLoc(),
|
|
Variant);
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenCallSC)
|
|
|
|
/// Produce a widened version of the call instruction.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
};
|
|
|
|
/// A recipe for widening select instructions.
|
|
struct VPWidenSelectRecipe : public VPSingleDefRecipe {
|
|
template <typename IterT>
|
|
VPWidenSelectRecipe(SelectInst &I, iterator_range<IterT> Operands)
|
|
: VPSingleDefRecipe(VPDef::VPWidenSelectSC, Operands, &I,
|
|
I.getDebugLoc()) {}
|
|
|
|
~VPWidenSelectRecipe() override = default;
|
|
|
|
VPRecipeBase *clone() override {
|
|
return new VPWidenSelectRecipe(*cast<SelectInst>(getUnderlyingInstr()),
|
|
operands());
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenSelectSC)
|
|
|
|
/// Produce a widened version of the select instruction.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
VPValue *getCond() const {
|
|
return getOperand(0);
|
|
}
|
|
|
|
bool isInvariantCond() const {
|
|
return getCond()->isDefinedOutsideVectorRegions();
|
|
}
|
|
};
|
|
|
|
/// A recipe for handling GEP instructions.
|
|
class VPWidenGEPRecipe : public VPRecipeWithIRFlags {
|
|
bool isPointerLoopInvariant() const {
|
|
return getOperand(0)->isDefinedOutsideVectorRegions();
|
|
}
|
|
|
|
bool isIndexLoopInvariant(unsigned I) const {
|
|
return getOperand(I + 1)->isDefinedOutsideVectorRegions();
|
|
}
|
|
|
|
bool areAllOperandsInvariant() const {
|
|
return all_of(operands(), [](VPValue *Op) {
|
|
return Op->isDefinedOutsideVectorRegions();
|
|
});
|
|
}
|
|
|
|
public:
|
|
template <typename IterT>
|
|
VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands)
|
|
: VPRecipeWithIRFlags(VPDef::VPWidenGEPSC, Operands, *GEP) {}
|
|
|
|
~VPWidenGEPRecipe() override = default;
|
|
|
|
VPRecipeBase *clone() override {
|
|
return new VPWidenGEPRecipe(cast<GetElementPtrInst>(getUnderlyingInstr()),
|
|
operands());
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenGEPSC)
|
|
|
|
/// Generate the gep nodes.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
};
|
|
|
|
/// A recipe to compute the pointers for widened memory accesses of IndexTy for
|
|
/// all parts. If IsReverse is true, compute pointers for accessing the input in
|
|
/// reverse order per part.
|
|
class VPVectorPointerRecipe : public VPRecipeWithIRFlags {
|
|
Type *IndexedTy;
|
|
bool IsReverse;
|
|
|
|
public:
|
|
VPVectorPointerRecipe(VPValue *Ptr, Type *IndexedTy, bool IsReverse,
|
|
bool IsInBounds, DebugLoc DL)
|
|
: VPRecipeWithIRFlags(VPDef::VPVectorPointerSC, ArrayRef<VPValue *>(Ptr),
|
|
GEPFlagsTy(IsInBounds), DL),
|
|
IndexedTy(IndexedTy), IsReverse(IsReverse) {}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPVectorPointerSC)
|
|
|
|
void execute(VPTransformState &State) override;
|
|
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return true;
|
|
}
|
|
|
|
VPRecipeBase *clone() override {
|
|
return new VPVectorPointerRecipe(getOperand(0), IndexedTy, IsReverse,
|
|
isInBounds(), getDebugLoc());
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
};
|
|
|
|
/// A pure virtual base class for all recipes modeling header phis, including
|
|
/// phis for first order recurrences, pointer inductions and reductions. The
|
|
/// start value is the first operand of the recipe and the incoming value from
|
|
/// the backedge is the second operand.
|
|
///
|
|
/// Inductions are modeled using the following sub-classes:
|
|
/// * VPCanonicalIVPHIRecipe: Canonical scalar induction of the vector loop,
|
|
/// starting at a specified value (zero for the main vector loop, the resume
|
|
/// value for the epilogue vector loop) and stepping by 1. The induction
|
|
/// controls exiting of the vector loop by comparing against the vector trip
|
|
/// count. Produces a single scalar PHI for the induction value per
|
|
/// iteration.
|
|
/// * VPWidenIntOrFpInductionRecipe: Generates vector values for integer and
|
|
/// floating point inductions with arbitrary start and step values. Produces
|
|
/// a vector PHI per-part.
|
|
/// * VPDerivedIVRecipe: Converts the canonical IV value to the corresponding
|
|
/// value of an IV with different start and step values. Produces a single
|
|
/// scalar value per iteration
|
|
/// * VPScalarIVStepsRecipe: Generates scalar values per-lane based on a
|
|
/// canonical or derived induction.
|
|
/// * VPWidenPointerInductionRecipe: Generate vector and scalar values for a
|
|
/// pointer induction. Produces either a vector PHI per-part or scalar values
|
|
/// per-lane based on the canonical induction.
|
|
class VPHeaderPHIRecipe : public VPSingleDefRecipe {
|
|
protected:
|
|
VPHeaderPHIRecipe(unsigned char VPDefID, Instruction *UnderlyingInstr,
|
|
VPValue *Start = nullptr, DebugLoc DL = {})
|
|
: VPSingleDefRecipe(VPDefID, ArrayRef<VPValue *>(), UnderlyingInstr, DL) {
|
|
if (Start)
|
|
addOperand(Start);
|
|
}
|
|
|
|
public:
|
|
~VPHeaderPHIRecipe() override = default;
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPRecipeBase *B) {
|
|
return B->getVPDefID() >= VPDef::VPFirstHeaderPHISC &&
|
|
B->getVPDefID() <= VPDef::VPLastHeaderPHISC;
|
|
}
|
|
static inline bool classof(const VPValue *V) {
|
|
auto *B = V->getDefiningRecipe();
|
|
return B && B->getVPDefID() >= VPRecipeBase::VPFirstHeaderPHISC &&
|
|
B->getVPDefID() <= VPRecipeBase::VPLastHeaderPHISC;
|
|
}
|
|
|
|
/// Generate the phi nodes.
|
|
void execute(VPTransformState &State) override = 0;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override = 0;
|
|
#endif
|
|
|
|
/// Returns the start value of the phi, if one is set.
|
|
VPValue *getStartValue() {
|
|
return getNumOperands() == 0 ? nullptr : getOperand(0);
|
|
}
|
|
VPValue *getStartValue() const {
|
|
return getNumOperands() == 0 ? nullptr : getOperand(0);
|
|
}
|
|
|
|
/// Update the start value of the recipe.
|
|
void setStartValue(VPValue *V) { setOperand(0, V); }
|
|
|
|
/// Returns the incoming value from the loop backedge.
|
|
virtual VPValue *getBackedgeValue() {
|
|
return getOperand(1);
|
|
}
|
|
|
|
/// Returns the backedge value as a recipe. The backedge value is guaranteed
|
|
/// to be a recipe.
|
|
virtual VPRecipeBase &getBackedgeRecipe() {
|
|
return *getBackedgeValue()->getDefiningRecipe();
|
|
}
|
|
};
|
|
|
|
/// A recipe for handling phi nodes of integer and floating-point inductions,
|
|
/// producing their vector values.
|
|
class VPWidenIntOrFpInductionRecipe : public VPHeaderPHIRecipe {
|
|
PHINode *IV;
|
|
TruncInst *Trunc;
|
|
const InductionDescriptor &IndDesc;
|
|
|
|
public:
|
|
VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, VPValue *Step,
|
|
const InductionDescriptor &IndDesc)
|
|
: VPHeaderPHIRecipe(VPDef::VPWidenIntOrFpInductionSC, IV, Start), IV(IV),
|
|
Trunc(nullptr), IndDesc(IndDesc) {
|
|
addOperand(Step);
|
|
}
|
|
|
|
VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, VPValue *Step,
|
|
const InductionDescriptor &IndDesc,
|
|
TruncInst *Trunc)
|
|
: VPHeaderPHIRecipe(VPDef::VPWidenIntOrFpInductionSC, Trunc, Start),
|
|
IV(IV), Trunc(Trunc), IndDesc(IndDesc) {
|
|
addOperand(Step);
|
|
}
|
|
|
|
~VPWidenIntOrFpInductionRecipe() override = default;
|
|
|
|
VPRecipeBase *clone() override {
|
|
return new VPWidenIntOrFpInductionRecipe(IV, getStartValue(),
|
|
getStepValue(), IndDesc, Trunc);
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenIntOrFpInductionSC)
|
|
|
|
/// Generate the vectorized and scalarized versions of the phi node as
|
|
/// needed by their users.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
VPValue *getBackedgeValue() override {
|
|
// TODO: All operands of base recipe must exist and be at same index in
|
|
// derived recipe.
|
|
llvm_unreachable(
|
|
"VPWidenIntOrFpInductionRecipe generates its own backedge value");
|
|
}
|
|
|
|
VPRecipeBase &getBackedgeRecipe() override {
|
|
// TODO: All operands of base recipe must exist and be at same index in
|
|
// derived recipe.
|
|
llvm_unreachable(
|
|
"VPWidenIntOrFpInductionRecipe generates its own backedge value");
|
|
}
|
|
|
|
/// Returns the step value of the induction.
|
|
VPValue *getStepValue() { return getOperand(1); }
|
|
const VPValue *getStepValue() const { return getOperand(1); }
|
|
|
|
/// Returns the first defined value as TruncInst, if it is one or nullptr
|
|
/// otherwise.
|
|
TruncInst *getTruncInst() { return Trunc; }
|
|
const TruncInst *getTruncInst() const { return Trunc; }
|
|
|
|
PHINode *getPHINode() { return IV; }
|
|
|
|
/// Returns the induction descriptor for the recipe.
|
|
const InductionDescriptor &getInductionDescriptor() const { return IndDesc; }
|
|
|
|
/// Returns true if the induction is canonical, i.e. starting at 0 and
|
|
/// incremented by UF * VF (= the original IV is incremented by 1).
|
|
bool isCanonical() const;
|
|
|
|
/// Returns the scalar type of the induction.
|
|
Type *getScalarType() const {
|
|
return Trunc ? Trunc->getType() : IV->getType();
|
|
}
|
|
};
|
|
|
|
class VPWidenPointerInductionRecipe : public VPHeaderPHIRecipe {
|
|
const InductionDescriptor &IndDesc;
|
|
|
|
bool IsScalarAfterVectorization;
|
|
|
|
public:
|
|
/// Create a new VPWidenPointerInductionRecipe for \p Phi with start value \p
|
|
/// Start.
|
|
VPWidenPointerInductionRecipe(PHINode *Phi, VPValue *Start, VPValue *Step,
|
|
const InductionDescriptor &IndDesc,
|
|
bool IsScalarAfterVectorization)
|
|
: VPHeaderPHIRecipe(VPDef::VPWidenPointerInductionSC, Phi),
|
|
IndDesc(IndDesc),
|
|
IsScalarAfterVectorization(IsScalarAfterVectorization) {
|
|
addOperand(Start);
|
|
addOperand(Step);
|
|
}
|
|
|
|
~VPWidenPointerInductionRecipe() override = default;
|
|
|
|
VPRecipeBase *clone() override {
|
|
return new VPWidenPointerInductionRecipe(
|
|
cast<PHINode>(getUnderlyingInstr()), getOperand(0), getOperand(1),
|
|
IndDesc, IsScalarAfterVectorization);
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenPointerInductionSC)
|
|
|
|
/// Generate vector values for the pointer induction.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Returns true if only scalar values will be generated.
|
|
bool onlyScalarsGenerated(bool IsScalable);
|
|
|
|
/// Returns the induction descriptor for the recipe.
|
|
const InductionDescriptor &getInductionDescriptor() const { return IndDesc; }
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
};
|
|
|
|
/// A recipe for handling header phis that are widened in the vector loop.
|
|
/// In the VPlan native path, all incoming VPValues & VPBasicBlock pairs are
|
|
/// managed in the recipe directly.
|
|
class VPWidenPHIRecipe : public VPHeaderPHIRecipe {
|
|
/// List of incoming blocks. Only used in the VPlan native path.
|
|
SmallVector<VPBasicBlock *, 2> IncomingBlocks;
|
|
|
|
public:
|
|
/// Create a new VPWidenPHIRecipe for \p Phi with start value \p Start.
|
|
VPWidenPHIRecipe(PHINode *Phi, VPValue *Start = nullptr)
|
|
: VPHeaderPHIRecipe(VPDef::VPWidenPHISC, Phi) {
|
|
if (Start)
|
|
addOperand(Start);
|
|
}
|
|
|
|
VPRecipeBase *clone() override {
|
|
llvm_unreachable("cloning not implemented yet");
|
|
}
|
|
|
|
~VPWidenPHIRecipe() override = default;
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenPHISC)
|
|
|
|
/// Generate the phi/select nodes.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
/// Adds a pair (\p IncomingV, \p IncomingBlock) to the phi.
|
|
void addIncoming(VPValue *IncomingV, VPBasicBlock *IncomingBlock) {
|
|
addOperand(IncomingV);
|
|
IncomingBlocks.push_back(IncomingBlock);
|
|
}
|
|
|
|
/// Returns the \p I th incoming VPBasicBlock.
|
|
VPBasicBlock *getIncomingBlock(unsigned I) { return IncomingBlocks[I]; }
|
|
|
|
/// Returns the \p I th incoming VPValue.
|
|
VPValue *getIncomingValue(unsigned I) { return getOperand(I); }
|
|
};
|
|
|
|
/// A recipe for handling first-order recurrence phis. The start value is the
|
|
/// first operand of the recipe and the incoming value from the backedge is the
|
|
/// second operand.
|
|
struct VPFirstOrderRecurrencePHIRecipe : public VPHeaderPHIRecipe {
|
|
VPFirstOrderRecurrencePHIRecipe(PHINode *Phi, VPValue &Start)
|
|
: VPHeaderPHIRecipe(VPDef::VPFirstOrderRecurrencePHISC, Phi, &Start) {}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPFirstOrderRecurrencePHISC)
|
|
|
|
static inline bool classof(const VPHeaderPHIRecipe *R) {
|
|
return R->getVPDefID() == VPDef::VPFirstOrderRecurrencePHISC;
|
|
}
|
|
|
|
VPRecipeBase *clone() override {
|
|
return new VPFirstOrderRecurrencePHIRecipe(
|
|
cast<PHINode>(getUnderlyingInstr()), *getOperand(0));
|
|
}
|
|
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
};
|
|
|
|
/// A recipe for handling reduction phis. The start value is the first operand
|
|
/// of the recipe and the incoming value from the backedge is the second
|
|
/// operand.
|
|
class VPReductionPHIRecipe : public VPHeaderPHIRecipe {
|
|
/// Descriptor for the reduction.
|
|
const RecurrenceDescriptor &RdxDesc;
|
|
|
|
/// The phi is part of an in-loop reduction.
|
|
bool IsInLoop;
|
|
|
|
/// The phi is part of an ordered reduction. Requires IsInLoop to be true.
|
|
bool IsOrdered;
|
|
|
|
public:
|
|
/// Create a new VPReductionPHIRecipe for the reduction \p Phi described by \p
|
|
/// RdxDesc.
|
|
VPReductionPHIRecipe(PHINode *Phi, const RecurrenceDescriptor &RdxDesc,
|
|
VPValue &Start, bool IsInLoop = false,
|
|
bool IsOrdered = false)
|
|
: VPHeaderPHIRecipe(VPDef::VPReductionPHISC, Phi, &Start),
|
|
RdxDesc(RdxDesc), IsInLoop(IsInLoop), IsOrdered(IsOrdered) {
|
|
assert((!IsOrdered || IsInLoop) && "IsOrdered requires IsInLoop");
|
|
}
|
|
|
|
~VPReductionPHIRecipe() override = default;
|
|
|
|
VPRecipeBase *clone() override {
|
|
auto *R =
|
|
new VPReductionPHIRecipe(cast<PHINode>(getUnderlyingInstr()), RdxDesc,
|
|
*getOperand(0), IsInLoop, IsOrdered);
|
|
R->addOperand(getBackedgeValue());
|
|
return R;
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPReductionPHISC)
|
|
|
|
static inline bool classof(const VPHeaderPHIRecipe *R) {
|
|
return R->getVPDefID() == VPDef::VPReductionPHISC;
|
|
}
|
|
|
|
/// Generate the phi/select nodes.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
const RecurrenceDescriptor &getRecurrenceDescriptor() const {
|
|
return RdxDesc;
|
|
}
|
|
|
|
/// Returns true, if the phi is part of an ordered reduction.
|
|
bool isOrdered() const { return IsOrdered; }
|
|
|
|
/// Returns true, if the phi is part of an in-loop reduction.
|
|
bool isInLoop() const { return IsInLoop; }
|
|
};
|
|
|
|
/// A recipe for vectorizing a phi-node as a sequence of mask-based select
|
|
/// instructions.
|
|
class VPBlendRecipe : public VPSingleDefRecipe {
|
|
public:
|
|
/// The blend operation is a User of the incoming values and of their
|
|
/// respective masks, ordered [I0, M0, I1, M1, ...]. Note that a single value
|
|
/// might be incoming with a full mask for which there is no VPValue.
|
|
VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Operands)
|
|
: VPSingleDefRecipe(VPDef::VPBlendSC, Operands, Phi, Phi->getDebugLoc()) {
|
|
assert(Operands.size() > 0 &&
|
|
((Operands.size() == 1) || (Operands.size() % 2 == 0)) &&
|
|
"Expected either a single incoming value or a positive even number "
|
|
"of operands");
|
|
}
|
|
|
|
VPRecipeBase *clone() override {
|
|
SmallVector<VPValue *> Ops(operands());
|
|
return new VPBlendRecipe(cast<PHINode>(getUnderlyingValue()), Ops);
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPBlendSC)
|
|
|
|
/// Return the number of incoming values, taking into account that a single
|
|
/// incoming value has no mask.
|
|
unsigned getNumIncomingValues() const { return (getNumOperands() + 1) / 2; }
|
|
|
|
/// Return incoming value number \p Idx.
|
|
VPValue *getIncomingValue(unsigned Idx) const { return getOperand(Idx * 2); }
|
|
|
|
/// Return mask number \p Idx.
|
|
VPValue *getMask(unsigned Idx) const { return getOperand(Idx * 2 + 1); }
|
|
|
|
/// Generate the phi/select nodes.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
// Recursing through Blend recipes only, must terminate at header phi's the
|
|
// latest.
|
|
return all_of(users(),
|
|
[this](VPUser *U) { return U->onlyFirstLaneUsed(this); });
|
|
}
|
|
};
|
|
|
|
/// VPInterleaveRecipe is a recipe for transforming an interleave group of load
|
|
/// or stores into one wide load/store and shuffles. The first operand of a
|
|
/// VPInterleave recipe is the address, followed by the stored values, followed
|
|
/// by an optional mask.
|
|
class VPInterleaveRecipe : public VPRecipeBase {
|
|
const InterleaveGroup<Instruction> *IG;
|
|
|
|
/// Indicates if the interleave group is in a conditional block and requires a
|
|
/// mask.
|
|
bool HasMask = false;
|
|
|
|
/// Indicates if gaps between members of the group need to be masked out or if
|
|
/// unusued gaps can be loaded speculatively.
|
|
bool NeedsMaskForGaps = false;
|
|
|
|
public:
|
|
VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr,
|
|
ArrayRef<VPValue *> StoredValues, VPValue *Mask,
|
|
bool NeedsMaskForGaps)
|
|
: VPRecipeBase(VPDef::VPInterleaveSC, {Addr}), IG(IG),
|
|
NeedsMaskForGaps(NeedsMaskForGaps) {
|
|
for (unsigned i = 0; i < IG->getFactor(); ++i)
|
|
if (Instruction *I = IG->getMember(i)) {
|
|
if (I->getType()->isVoidTy())
|
|
continue;
|
|
new VPValue(I, this);
|
|
}
|
|
|
|
for (auto *SV : StoredValues)
|
|
addOperand(SV);
|
|
if (Mask) {
|
|
HasMask = true;
|
|
addOperand(Mask);
|
|
}
|
|
}
|
|
~VPInterleaveRecipe() override = default;
|
|
|
|
VPRecipeBase *clone() override {
|
|
return new VPInterleaveRecipe(IG, getAddr(), getStoredValues(), getMask(),
|
|
NeedsMaskForGaps);
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPInterleaveSC)
|
|
|
|
/// Return the address accessed by this recipe.
|
|
VPValue *getAddr() const {
|
|
return getOperand(0); // Address is the 1st, mandatory operand.
|
|
}
|
|
|
|
/// Return the mask used by this recipe. Note that a full mask is represented
|
|
/// by a nullptr.
|
|
VPValue *getMask() const {
|
|
// Mask is optional and therefore the last, currently 2nd operand.
|
|
return HasMask ? getOperand(getNumOperands() - 1) : nullptr;
|
|
}
|
|
|
|
/// Return the VPValues stored by this interleave group. If it is a load
|
|
/// interleave group, return an empty ArrayRef.
|
|
ArrayRef<VPValue *> getStoredValues() const {
|
|
// The first operand is the address, followed by the stored values, followed
|
|
// by an optional mask.
|
|
return ArrayRef<VPValue *>(op_begin(), getNumOperands())
|
|
.slice(1, getNumStoreOperands());
|
|
}
|
|
|
|
/// Generate the wide load or store, and shuffles.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; }
|
|
|
|
/// Returns the number of stored operands of this interleave group. Returns 0
|
|
/// for load interleave groups.
|
|
unsigned getNumStoreOperands() const {
|
|
return getNumOperands() - (HasMask ? 2 : 1);
|
|
}
|
|
|
|
/// The recipe only uses the first lane of the address.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return Op == getAddr() && !llvm::is_contained(getStoredValues(), Op);
|
|
}
|
|
};
|
|
|
|
/// A recipe to represent inloop reduction operations, performing a reduction on
|
|
/// a vector operand into a scalar value, and adding the result to a chain.
|
|
/// The Operands are {ChainOp, VecOp, [Condition]}.
|
|
class VPReductionRecipe : public VPSingleDefRecipe {
|
|
/// The recurrence decriptor for the reduction in question.
|
|
const RecurrenceDescriptor &RdxDesc;
|
|
|
|
public:
|
|
VPReductionRecipe(const RecurrenceDescriptor &R, Instruction *I,
|
|
VPValue *ChainOp, VPValue *VecOp, VPValue *CondOp)
|
|
: VPSingleDefRecipe(VPDef::VPReductionSC,
|
|
ArrayRef<VPValue *>({ChainOp, VecOp}), I),
|
|
RdxDesc(R) {
|
|
if (CondOp)
|
|
addOperand(CondOp);
|
|
}
|
|
|
|
~VPReductionRecipe() override = default;
|
|
|
|
VPRecipeBase *clone() override {
|
|
return new VPReductionRecipe(RdxDesc, getUnderlyingInstr(), getChainOp(),
|
|
getVecOp(), getCondOp());
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPReductionSC)
|
|
|
|
/// Generate the reduction in the loop
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
/// The VPValue of the scalar Chain being accumulated.
|
|
VPValue *getChainOp() const { return getOperand(0); }
|
|
/// The VPValue of the vector value to be reduced.
|
|
VPValue *getVecOp() const { return getOperand(1); }
|
|
/// The VPValue of the condition for the block.
|
|
VPValue *getCondOp() const {
|
|
return getNumOperands() > 2 ? getOperand(2) : nullptr;
|
|
}
|
|
};
|
|
|
|
/// VPReplicateRecipe replicates a given instruction producing multiple scalar
|
|
/// copies of the original scalar type, one per lane, instead of producing a
|
|
/// single copy of widened type for all lanes. If the instruction is known to be
|
|
/// uniform only one copy, per lane zero, will be generated.
|
|
class VPReplicateRecipe : public VPRecipeWithIRFlags {
|
|
/// Indicator if only a single replica per lane is needed.
|
|
bool IsUniform;
|
|
|
|
/// Indicator if the replicas are also predicated.
|
|
bool IsPredicated;
|
|
|
|
public:
|
|
template <typename IterT>
|
|
VPReplicateRecipe(Instruction *I, iterator_range<IterT> Operands,
|
|
bool IsUniform, VPValue *Mask = nullptr)
|
|
: VPRecipeWithIRFlags(VPDef::VPReplicateSC, Operands, *I),
|
|
IsUniform(IsUniform), IsPredicated(Mask) {
|
|
if (Mask)
|
|
addOperand(Mask);
|
|
}
|
|
|
|
~VPReplicateRecipe() override = default;
|
|
|
|
VPRecipeBase *clone() override {
|
|
auto *Copy =
|
|
new VPReplicateRecipe(getUnderlyingInstr(), operands(), IsUniform,
|
|
isPredicated() ? getMask() : nullptr);
|
|
Copy->transferFlags(*this);
|
|
return Copy;
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPReplicateSC)
|
|
|
|
/// Generate replicas of the desired Ingredient. Replicas will be generated
|
|
/// for all parts and lanes unless a specific part and lane are specified in
|
|
/// the \p State.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
bool isUniform() const { return IsUniform; }
|
|
|
|
bool isPredicated() const { return IsPredicated; }
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return isUniform();
|
|
}
|
|
|
|
/// Returns true if the recipe uses scalars of operand \p Op.
|
|
bool usesScalars(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if the recipe is used by a widened recipe via an intervening
|
|
/// VPPredInstPHIRecipe. In this case, the scalar values should also be packed
|
|
/// in a vector.
|
|
bool shouldPack() const;
|
|
|
|
/// Return the mask of a predicated VPReplicateRecipe.
|
|
VPValue *getMask() {
|
|
assert(isPredicated() && "Trying to get the mask of a unpredicated recipe");
|
|
return getOperand(getNumOperands() - 1);
|
|
}
|
|
};
|
|
|
|
/// A recipe for generating conditional branches on the bits of a mask.
|
|
class VPBranchOnMaskRecipe : public VPRecipeBase {
|
|
public:
|
|
VPBranchOnMaskRecipe(VPValue *BlockInMask)
|
|
: VPRecipeBase(VPDef::VPBranchOnMaskSC, {}) {
|
|
if (BlockInMask) // nullptr means all-one mask.
|
|
addOperand(BlockInMask);
|
|
}
|
|
|
|
VPRecipeBase *clone() override {
|
|
return new VPBranchOnMaskRecipe(getOperand(0));
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPBranchOnMaskSC)
|
|
|
|
/// Generate the extraction of the appropriate bit from the block mask and the
|
|
/// conditional branch.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override {
|
|
O << Indent << "BRANCH-ON-MASK ";
|
|
if (VPValue *Mask = getMask())
|
|
Mask->printAsOperand(O, SlotTracker);
|
|
else
|
|
O << " All-One";
|
|
}
|
|
#endif
|
|
|
|
/// Return the mask used by this recipe. Note that a full mask is represented
|
|
/// by a nullptr.
|
|
VPValue *getMask() const {
|
|
assert(getNumOperands() <= 1 && "should have either 0 or 1 operands");
|
|
// Mask is optional.
|
|
return getNumOperands() == 1 ? getOperand(0) : nullptr;
|
|
}
|
|
|
|
/// Returns true if the recipe uses scalars of operand \p Op.
|
|
bool usesScalars(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return true;
|
|
}
|
|
};
|
|
|
|
/// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
|
|
/// control converges back from a Branch-on-Mask. The phi nodes are needed in
|
|
/// order to merge values that are set under such a branch and feed their uses.
|
|
/// The phi nodes can be scalar or vector depending on the users of the value.
|
|
/// This recipe works in concert with VPBranchOnMaskRecipe.
|
|
class VPPredInstPHIRecipe : public VPSingleDefRecipe {
|
|
public:
|
|
/// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
|
|
/// nodes after merging back from a Branch-on-Mask.
|
|
VPPredInstPHIRecipe(VPValue *PredV)
|
|
: VPSingleDefRecipe(VPDef::VPPredInstPHISC, PredV) {}
|
|
~VPPredInstPHIRecipe() override = default;
|
|
|
|
VPRecipeBase *clone() override {
|
|
return new VPPredInstPHIRecipe(getOperand(0));
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPPredInstPHISC)
|
|
|
|
/// Generates phi nodes for live-outs as needed to retain SSA form.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
/// Returns true if the recipe uses scalars of operand \p Op.
|
|
bool usesScalars(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return true;
|
|
}
|
|
};
|
|
|
|
/// A Recipe for widening load/store operations.
|
|
/// The recipe uses the following VPValues:
|
|
/// - For load: Address, optional mask
|
|
/// - For store: Address, stored value, optional mask
|
|
/// TODO: We currently execute only per-part unless a specific instance is
|
|
/// provided.
|
|
class VPWidenMemoryInstructionRecipe : public VPRecipeBase {
|
|
Instruction &Ingredient;
|
|
|
|
// Whether the loaded-from / stored-to addresses are consecutive.
|
|
bool Consecutive;
|
|
|
|
// Whether the consecutive loaded/stored addresses are in reverse order.
|
|
bool Reverse;
|
|
|
|
void setMask(VPValue *Mask) {
|
|
if (!Mask)
|
|
return;
|
|
addOperand(Mask);
|
|
}
|
|
|
|
bool isMasked() const {
|
|
return isStore() ? getNumOperands() == 3 : getNumOperands() == 2;
|
|
}
|
|
|
|
public:
|
|
VPWidenMemoryInstructionRecipe(LoadInst &Load, VPValue *Addr, VPValue *Mask,
|
|
bool Consecutive, bool Reverse)
|
|
: VPRecipeBase(VPDef::VPWidenMemoryInstructionSC, {Addr}),
|
|
Ingredient(Load), Consecutive(Consecutive), Reverse(Reverse) {
|
|
assert((Consecutive || !Reverse) && "Reverse implies consecutive");
|
|
new VPValue(this, &Load);
|
|
setMask(Mask);
|
|
}
|
|
|
|
VPWidenMemoryInstructionRecipe(StoreInst &Store, VPValue *Addr,
|
|
VPValue *StoredValue, VPValue *Mask,
|
|
bool Consecutive, bool Reverse)
|
|
: VPRecipeBase(VPDef::VPWidenMemoryInstructionSC, {Addr, StoredValue}),
|
|
Ingredient(Store), Consecutive(Consecutive), Reverse(Reverse) {
|
|
assert((Consecutive || !Reverse) && "Reverse implies consecutive");
|
|
setMask(Mask);
|
|
}
|
|
|
|
VPRecipeBase *clone() override {
|
|
if (isStore())
|
|
return new VPWidenMemoryInstructionRecipe(
|
|
cast<StoreInst>(Ingredient), getAddr(), getStoredValue(), getMask(),
|
|
Consecutive, Reverse);
|
|
|
|
return new VPWidenMemoryInstructionRecipe(
|
|
cast<LoadInst>(Ingredient), getAddr(), getMask(), Consecutive, Reverse);
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenMemoryInstructionSC)
|
|
|
|
/// Return the address accessed by this recipe.
|
|
VPValue *getAddr() const {
|
|
return getOperand(0); // Address is the 1st, mandatory operand.
|
|
}
|
|
|
|
/// Return the mask used by this recipe. Note that a full mask is represented
|
|
/// by a nullptr.
|
|
VPValue *getMask() const {
|
|
// Mask is optional and therefore the last operand.
|
|
return isMasked() ? getOperand(getNumOperands() - 1) : nullptr;
|
|
}
|
|
|
|
/// Returns true if this recipe is a store.
|
|
bool isStore() const { return isa<StoreInst>(Ingredient); }
|
|
|
|
/// Return the address accessed by this recipe.
|
|
VPValue *getStoredValue() const {
|
|
assert(isStore() && "Stored value only available for store instructions");
|
|
return getOperand(1); // Stored value is the 2nd, mandatory operand.
|
|
}
|
|
|
|
// Return whether the loaded-from / stored-to addresses are consecutive.
|
|
bool isConsecutive() const { return Consecutive; }
|
|
|
|
// Return whether the consecutive loaded/stored addresses are in reverse
|
|
// order.
|
|
bool isReverse() const { return Reverse; }
|
|
|
|
/// Generate the wide load/store.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
|
|
// Widened, consecutive memory operations only demand the first lane of
|
|
// their address, unless the same operand is also stored. That latter can
|
|
// happen with opaque pointers.
|
|
return Op == getAddr() && isConsecutive() &&
|
|
(!isStore() || Op != getStoredValue());
|
|
}
|
|
|
|
Instruction &getIngredient() const { return Ingredient; }
|
|
};
|
|
|
|
/// Recipe to expand a SCEV expression.
|
|
class VPExpandSCEVRecipe : public VPSingleDefRecipe {
|
|
const SCEV *Expr;
|
|
ScalarEvolution &SE;
|
|
|
|
public:
|
|
VPExpandSCEVRecipe(const SCEV *Expr, ScalarEvolution &SE)
|
|
: VPSingleDefRecipe(VPDef::VPExpandSCEVSC, {}), Expr(Expr), SE(SE) {}
|
|
|
|
~VPExpandSCEVRecipe() override = default;
|
|
|
|
VPRecipeBase *clone() override { return new VPExpandSCEVRecipe(Expr, SE); }
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPExpandSCEVSC)
|
|
|
|
/// Generate a canonical vector induction variable of the vector loop, with
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
const SCEV *getSCEV() const { return Expr; }
|
|
};
|
|
|
|
/// Canonical scalar induction phi of the vector loop. Starting at the specified
|
|
/// start value (either 0 or the resume value when vectorizing the epilogue
|
|
/// loop). VPWidenCanonicalIVRecipe represents the vector version of the
|
|
/// canonical induction variable.
|
|
class VPCanonicalIVPHIRecipe : public VPHeaderPHIRecipe {
|
|
public:
|
|
VPCanonicalIVPHIRecipe(VPValue *StartV, DebugLoc DL)
|
|
: VPHeaderPHIRecipe(VPDef::VPCanonicalIVPHISC, nullptr, StartV, DL) {}
|
|
|
|
~VPCanonicalIVPHIRecipe() override = default;
|
|
|
|
VPRecipeBase *clone() override {
|
|
auto *R = new VPCanonicalIVPHIRecipe(getOperand(0), getDebugLoc());
|
|
R->addOperand(getBackedgeValue());
|
|
return R;
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPCanonicalIVPHISC)
|
|
|
|
static inline bool classof(const VPHeaderPHIRecipe *D) {
|
|
return D->getVPDefID() == VPDef::VPCanonicalIVPHISC;
|
|
}
|
|
|
|
/// Generate the canonical scalar induction phi of the vector loop.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
/// Returns the scalar type of the induction.
|
|
Type *getScalarType() const {
|
|
return getStartValue()->getLiveInIRValue()->getType();
|
|
}
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if the recipe only uses the first part of operand \p Op.
|
|
bool onlyFirstPartUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return true;
|
|
}
|
|
|
|
/// Check if the induction described by \p Kind, /p Start and \p Step is
|
|
/// canonical, i.e. has the same start and step (of 1) as the canonical IV.
|
|
bool isCanonical(InductionDescriptor::InductionKind Kind, VPValue *Start,
|
|
VPValue *Step) const;
|
|
};
|
|
|
|
/// A recipe for generating the active lane mask for the vector loop that is
|
|
/// used to predicate the vector operations.
|
|
/// TODO: It would be good to use the existing VPWidenPHIRecipe instead and
|
|
/// remove VPActiveLaneMaskPHIRecipe.
|
|
class VPActiveLaneMaskPHIRecipe : public VPHeaderPHIRecipe {
|
|
public:
|
|
VPActiveLaneMaskPHIRecipe(VPValue *StartMask, DebugLoc DL)
|
|
: VPHeaderPHIRecipe(VPDef::VPActiveLaneMaskPHISC, nullptr, StartMask,
|
|
DL) {}
|
|
|
|
~VPActiveLaneMaskPHIRecipe() override = default;
|
|
|
|
VPRecipeBase *clone() override {
|
|
return new VPActiveLaneMaskPHIRecipe(getOperand(0), getDebugLoc());
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPActiveLaneMaskPHISC)
|
|
|
|
static inline bool classof(const VPHeaderPHIRecipe *D) {
|
|
return D->getVPDefID() == VPDef::VPActiveLaneMaskPHISC;
|
|
}
|
|
|
|
/// Generate the active lane mask phi of the vector loop.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
};
|
|
|
|
/// A Recipe for widening the canonical induction variable of the vector loop.
|
|
class VPWidenCanonicalIVRecipe : public VPSingleDefRecipe {
|
|
public:
|
|
VPWidenCanonicalIVRecipe(VPCanonicalIVPHIRecipe *CanonicalIV)
|
|
: VPSingleDefRecipe(VPDef::VPWidenCanonicalIVSC, {CanonicalIV}) {}
|
|
|
|
~VPWidenCanonicalIVRecipe() override = default;
|
|
|
|
VPRecipeBase *clone() override {
|
|
return new VPWidenCanonicalIVRecipe(
|
|
cast<VPCanonicalIVPHIRecipe>(getOperand(0)));
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenCanonicalIVSC)
|
|
|
|
/// Generate a canonical vector induction variable of the vector loop, with
|
|
/// start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF}, and
|
|
/// step = <VF*UF, VF*UF, ..., VF*UF>.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
/// Returns the scalar type of the induction.
|
|
const Type *getScalarType() const {
|
|
return cast<VPCanonicalIVPHIRecipe>(getOperand(0)->getDefiningRecipe())
|
|
->getScalarType();
|
|
}
|
|
};
|
|
|
|
/// A recipe for converting the canonical IV value to the corresponding value of
|
|
/// an IV with different start and step values, using Start + CanonicalIV *
|
|
/// Step.
|
|
class VPDerivedIVRecipe : public VPSingleDefRecipe {
|
|
/// Kind of the induction.
|
|
const InductionDescriptor::InductionKind Kind;
|
|
/// If not nullptr, the floating point induction binary operator. Must be set
|
|
/// for floating point inductions.
|
|
const FPMathOperator *FPBinOp;
|
|
|
|
VPDerivedIVRecipe(InductionDescriptor::InductionKind Kind,
|
|
const FPMathOperator *FPBinOp, VPValue *Start,
|
|
VPCanonicalIVPHIRecipe *CanonicalIV, VPValue *Step)
|
|
: VPSingleDefRecipe(VPDef::VPDerivedIVSC, {Start, CanonicalIV, Step}),
|
|
Kind(Kind), FPBinOp(FPBinOp) {}
|
|
|
|
public:
|
|
VPDerivedIVRecipe(const InductionDescriptor &IndDesc, VPValue *Start,
|
|
VPCanonicalIVPHIRecipe *CanonicalIV, VPValue *Step)
|
|
: VPDerivedIVRecipe(
|
|
IndDesc.getKind(),
|
|
dyn_cast_or_null<FPMathOperator>(IndDesc.getInductionBinOp()),
|
|
Start, CanonicalIV, Step) {}
|
|
|
|
~VPDerivedIVRecipe() override = default;
|
|
|
|
VPRecipeBase *clone() override {
|
|
return new VPDerivedIVRecipe(Kind, FPBinOp, getStartValue(),
|
|
getCanonicalIV(), getStepValue());
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPDerivedIVSC)
|
|
|
|
/// Generate the transformed value of the induction at offset StartValue (1.
|
|
/// operand) + IV (2. operand) * StepValue (3, operand).
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
Type *getScalarType() const {
|
|
return getStartValue()->getLiveInIRValue()->getType();
|
|
}
|
|
|
|
VPValue *getStartValue() const { return getOperand(0); }
|
|
VPCanonicalIVPHIRecipe *getCanonicalIV() const {
|
|
return cast<VPCanonicalIVPHIRecipe>(getOperand(1));
|
|
}
|
|
VPValue *getStepValue() const { return getOperand(2); }
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return true;
|
|
}
|
|
};
|
|
|
|
/// A recipe for handling phi nodes of integer and floating-point inductions,
|
|
/// producing their scalar values.
|
|
class VPScalarIVStepsRecipe : public VPRecipeWithIRFlags {
|
|
Instruction::BinaryOps InductionOpcode;
|
|
|
|
public:
|
|
VPScalarIVStepsRecipe(VPValue *IV, VPValue *Step,
|
|
Instruction::BinaryOps Opcode, FastMathFlags FMFs)
|
|
: VPRecipeWithIRFlags(VPDef::VPScalarIVStepsSC,
|
|
ArrayRef<VPValue *>({IV, Step}), FMFs),
|
|
InductionOpcode(Opcode) {}
|
|
|
|
VPScalarIVStepsRecipe(const InductionDescriptor &IndDesc, VPValue *IV,
|
|
VPValue *Step)
|
|
: VPScalarIVStepsRecipe(
|
|
IV, Step, IndDesc.getInductionOpcode(),
|
|
dyn_cast_or_null<FPMathOperator>(IndDesc.getInductionBinOp())
|
|
? IndDesc.getInductionBinOp()->getFastMathFlags()
|
|
: FastMathFlags()) {}
|
|
|
|
~VPScalarIVStepsRecipe() override = default;
|
|
|
|
VPRecipeBase *clone() override {
|
|
return new VPScalarIVStepsRecipe(
|
|
getOperand(0), getOperand(1), InductionOpcode,
|
|
hasFastMathFlags() ? getFastMathFlags() : FastMathFlags());
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPScalarIVStepsSC)
|
|
|
|
/// Generate the scalarized versions of the phi node as needed by their users.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
VPValue *getStepValue() const { return getOperand(1); }
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return true;
|
|
}
|
|
};
|
|
|
|
/// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
|
|
/// holds a sequence of zero or more VPRecipe's each representing a sequence of
|
|
/// output IR instructions. All PHI-like recipes must come before any non-PHI recipes.
|
|
class VPBasicBlock : public VPBlockBase {
|
|
public:
|
|
using RecipeListTy = iplist<VPRecipeBase>;
|
|
|
|
private:
|
|
/// The VPRecipes held in the order of output instructions to generate.
|
|
RecipeListTy Recipes;
|
|
|
|
public:
|
|
VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
|
|
: VPBlockBase(VPBasicBlockSC, Name.str()) {
|
|
if (Recipe)
|
|
appendRecipe(Recipe);
|
|
}
|
|
|
|
~VPBasicBlock() override {
|
|
while (!Recipes.empty())
|
|
Recipes.pop_back();
|
|
}
|
|
|
|
/// Instruction iterators...
|
|
using iterator = RecipeListTy::iterator;
|
|
using const_iterator = RecipeListTy::const_iterator;
|
|
using reverse_iterator = RecipeListTy::reverse_iterator;
|
|
using const_reverse_iterator = RecipeListTy::const_reverse_iterator;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// Recipe iterator methods
|
|
///
|
|
inline iterator begin() { return Recipes.begin(); }
|
|
inline const_iterator begin() const { return Recipes.begin(); }
|
|
inline iterator end() { return Recipes.end(); }
|
|
inline const_iterator end() const { return Recipes.end(); }
|
|
|
|
inline reverse_iterator rbegin() { return Recipes.rbegin(); }
|
|
inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
|
|
inline reverse_iterator rend() { return Recipes.rend(); }
|
|
inline const_reverse_iterator rend() const { return Recipes.rend(); }
|
|
|
|
inline size_t size() const { return Recipes.size(); }
|
|
inline bool empty() const { return Recipes.empty(); }
|
|
inline const VPRecipeBase &front() const { return Recipes.front(); }
|
|
inline VPRecipeBase &front() { return Recipes.front(); }
|
|
inline const VPRecipeBase &back() const { return Recipes.back(); }
|
|
inline VPRecipeBase &back() { return Recipes.back(); }
|
|
|
|
/// Returns a reference to the list of recipes.
|
|
RecipeListTy &getRecipeList() { return Recipes; }
|
|
|
|
/// Returns a pointer to a member of the recipe list.
|
|
static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
|
|
return &VPBasicBlock::Recipes;
|
|
}
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPBlockBase *V) {
|
|
return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
|
|
}
|
|
|
|
void insert(VPRecipeBase *Recipe, iterator InsertPt) {
|
|
assert(Recipe && "No recipe to append.");
|
|
assert(!Recipe->Parent && "Recipe already in VPlan");
|
|
Recipe->Parent = this;
|
|
Recipes.insert(InsertPt, Recipe);
|
|
}
|
|
|
|
/// Augment the existing recipes of a VPBasicBlock with an additional
|
|
/// \p Recipe as the last recipe.
|
|
void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }
|
|
|
|
/// The method which generates the output IR instructions that correspond to
|
|
/// this VPBasicBlock, thereby "executing" the VPlan.
|
|
void execute(VPTransformState *State) override;
|
|
|
|
/// Return the position of the first non-phi node recipe in the block.
|
|
iterator getFirstNonPhi();
|
|
|
|
/// Returns an iterator range over the PHI-like recipes in the block.
|
|
iterator_range<iterator> phis() {
|
|
return make_range(begin(), getFirstNonPhi());
|
|
}
|
|
|
|
void dropAllReferences(VPValue *NewValue) override;
|
|
|
|
/// Split current block at \p SplitAt by inserting a new block between the
|
|
/// current block and its successors and moving all recipes starting at
|
|
/// SplitAt to the new block. Returns the new block.
|
|
VPBasicBlock *splitAt(iterator SplitAt);
|
|
|
|
VPRegionBlock *getEnclosingLoopRegion();
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print this VPBsicBlock to \p O, prefixing all lines with \p Indent. \p
|
|
/// SlotTracker is used to print unnamed VPValue's using consequtive numbers.
|
|
///
|
|
/// Note that the numbering is applied to the whole VPlan, so printing
|
|
/// individual blocks is consistent with the whole VPlan printing.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
using VPBlockBase::print; // Get the print(raw_stream &O) version.
|
|
#endif
|
|
|
|
/// If the block has multiple successors, return the branch recipe terminating
|
|
/// the block. If there are no or only a single successor, return nullptr;
|
|
VPRecipeBase *getTerminator();
|
|
const VPRecipeBase *getTerminator() const;
|
|
|
|
/// Returns true if the block is exiting it's parent region.
|
|
bool isExiting() const;
|
|
|
|
/// Clone the current block and it's recipes, without updating the operands of
|
|
/// the cloned recipes.
|
|
VPBasicBlock *clone() override {
|
|
auto *NewBlock = new VPBasicBlock(getName());
|
|
for (VPRecipeBase &R : *this)
|
|
NewBlock->appendRecipe(R.clone());
|
|
return NewBlock;
|
|
}
|
|
|
|
private:
|
|
/// Create an IR BasicBlock to hold the output instructions generated by this
|
|
/// VPBasicBlock, and return it. Update the CFGState accordingly.
|
|
BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
|
|
};
|
|
|
|
/// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
|
|
/// which form a Single-Entry-Single-Exiting subgraph of the output IR CFG.
|
|
/// A VPRegionBlock may indicate that its contents are to be replicated several
|
|
/// times. This is designed to support predicated scalarization, in which a
|
|
/// scalar if-then code structure needs to be generated VF * UF times. Having
|
|
/// this replication indicator helps to keep a single model for multiple
|
|
/// candidate VF's. The actual replication takes place only once the desired VF
|
|
/// and UF have been determined.
|
|
class VPRegionBlock : public VPBlockBase {
|
|
/// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
|
|
VPBlockBase *Entry;
|
|
|
|
/// Hold the Single Exiting block of the SESE region modelled by the
|
|
/// VPRegionBlock.
|
|
VPBlockBase *Exiting;
|
|
|
|
/// An indicator whether this region is to generate multiple replicated
|
|
/// instances of output IR corresponding to its VPBlockBases.
|
|
bool IsReplicator;
|
|
|
|
public:
|
|
VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting,
|
|
const std::string &Name = "", bool IsReplicator = false)
|
|
: VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exiting(Exiting),
|
|
IsReplicator(IsReplicator) {
|
|
assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
|
|
assert(Exiting->getSuccessors().empty() && "Exit block has successors.");
|
|
Entry->setParent(this);
|
|
Exiting->setParent(this);
|
|
}
|
|
VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
|
|
: VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exiting(nullptr),
|
|
IsReplicator(IsReplicator) {}
|
|
|
|
~VPRegionBlock() override {
|
|
if (Entry) {
|
|
VPValue DummyValue;
|
|
Entry->dropAllReferences(&DummyValue);
|
|
deleteCFG(Entry);
|
|
}
|
|
}
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPBlockBase *V) {
|
|
return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
|
|
}
|
|
|
|
const VPBlockBase *getEntry() const { return Entry; }
|
|
VPBlockBase *getEntry() { return Entry; }
|
|
|
|
/// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
|
|
/// EntryBlock must have no predecessors.
|
|
void setEntry(VPBlockBase *EntryBlock) {
|
|
assert(EntryBlock->getPredecessors().empty() &&
|
|
"Entry block cannot have predecessors.");
|
|
Entry = EntryBlock;
|
|
EntryBlock->setParent(this);
|
|
}
|
|
|
|
const VPBlockBase *getExiting() const { return Exiting; }
|
|
VPBlockBase *getExiting() { return Exiting; }
|
|
|
|
/// Set \p ExitingBlock as the exiting VPBlockBase of this VPRegionBlock. \p
|
|
/// ExitingBlock must have no successors.
|
|
void setExiting(VPBlockBase *ExitingBlock) {
|
|
assert(ExitingBlock->getSuccessors().empty() &&
|
|
"Exit block cannot have successors.");
|
|
Exiting = ExitingBlock;
|
|
ExitingBlock->setParent(this);
|
|
}
|
|
|
|
/// Returns the pre-header VPBasicBlock of the loop region.
|
|
VPBasicBlock *getPreheaderVPBB() {
|
|
assert(!isReplicator() && "should only get pre-header of loop regions");
|
|
return getSinglePredecessor()->getExitingBasicBlock();
|
|
}
|
|
|
|
/// An indicator whether this region is to generate multiple replicated
|
|
/// instances of output IR corresponding to its VPBlockBases.
|
|
bool isReplicator() const { return IsReplicator; }
|
|
|
|
/// The method which generates the output IR instructions that correspond to
|
|
/// this VPRegionBlock, thereby "executing" the VPlan.
|
|
void execute(VPTransformState *State) override;
|
|
|
|
void dropAllReferences(VPValue *NewValue) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print this VPRegionBlock to \p O (recursively), prefixing all lines with
|
|
/// \p Indent. \p SlotTracker is used to print unnamed VPValue's using
|
|
/// consequtive numbers.
|
|
///
|
|
/// Note that the numbering is applied to the whole VPlan, so printing
|
|
/// individual regions is consistent with the whole VPlan printing.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
using VPBlockBase::print; // Get the print(raw_stream &O) version.
|
|
#endif
|
|
|
|
/// Clone all blocks in the single-entry single-exit region of the block and
|
|
/// their recipes without updating the operands of the cloned recipes.
|
|
VPRegionBlock *clone() override;
|
|
};
|
|
|
|
/// VPlan models a candidate for vectorization, encoding various decisions take
|
|
/// to produce efficient output IR, including which branches, basic-blocks and
|
|
/// output IR instructions to generate, and their cost. VPlan holds a
|
|
/// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
|
|
/// VPBasicBlock.
|
|
class VPlan {
|
|
friend class VPlanPrinter;
|
|
friend class VPSlotTracker;
|
|
|
|
/// Hold the single entry to the Hierarchical CFG of the VPlan, i.e. the
|
|
/// preheader of the vector loop.
|
|
VPBasicBlock *Entry;
|
|
|
|
/// VPBasicBlock corresponding to the original preheader. Used to place
|
|
/// VPExpandSCEV recipes for expressions used during skeleton creation and the
|
|
/// rest of VPlan execution.
|
|
VPBasicBlock *Preheader;
|
|
|
|
/// Holds the VFs applicable to this VPlan.
|
|
SmallSetVector<ElementCount, 2> VFs;
|
|
|
|
/// Holds the UFs applicable to this VPlan. If empty, the VPlan is valid for
|
|
/// any UF.
|
|
SmallSetVector<unsigned, 2> UFs;
|
|
|
|
/// Holds the name of the VPlan, for printing.
|
|
std::string Name;
|
|
|
|
/// Represents the trip count of the original loop, for folding
|
|
/// the tail.
|
|
VPValue *TripCount = nullptr;
|
|
|
|
/// Represents the backedge taken count of the original loop, for folding
|
|
/// the tail. It equals TripCount - 1.
|
|
VPValue *BackedgeTakenCount = nullptr;
|
|
|
|
/// Represents the vector trip count.
|
|
VPValue VectorTripCount;
|
|
|
|
/// Represents the loop-invariant VF * UF of the vector loop region.
|
|
VPValue VFxUF;
|
|
|
|
/// Holds a mapping between Values and their corresponding VPValue inside
|
|
/// VPlan.
|
|
Value2VPValueTy Value2VPValue;
|
|
|
|
/// Contains all the external definitions created for this VPlan. External
|
|
/// definitions are VPValues that hold a pointer to their underlying IR.
|
|
SmallVector<VPValue *, 16> VPLiveInsToFree;
|
|
|
|
/// Indicates whether it is safe use the Value2VPValue mapping or if the
|
|
/// mapping cannot be used any longer, because it is stale.
|
|
bool Value2VPValueEnabled = true;
|
|
|
|
/// Values used outside the plan.
|
|
MapVector<PHINode *, VPLiveOut *> LiveOuts;
|
|
|
|
/// Mapping from SCEVs to the VPValues representing their expansions.
|
|
/// NOTE: This mapping is temporary and will be removed once all users have
|
|
/// been modeled in VPlan directly.
|
|
DenseMap<const SCEV *, VPValue *> SCEVToExpansion;
|
|
|
|
public:
|
|
/// Construct a VPlan with original preheader \p Preheader, trip count \p TC
|
|
/// and \p Entry to the plan. At the moment, \p Preheader and \p Entry need to
|
|
/// be disconnected, as the bypass blocks between them are not yet modeled in
|
|
/// VPlan.
|
|
VPlan(VPBasicBlock *Preheader, VPValue *TC, VPBasicBlock *Entry)
|
|
: VPlan(Preheader, Entry) {
|
|
TripCount = TC;
|
|
}
|
|
|
|
/// Construct a VPlan with original preheader \p Preheader and \p Entry to
|
|
/// the plan. At the moment, \p Preheader and \p Entry need to be
|
|
/// disconnected, as the bypass blocks between them are not yet modeled in
|
|
/// VPlan.
|
|
VPlan(VPBasicBlock *Preheader, VPBasicBlock *Entry)
|
|
: Entry(Entry), Preheader(Preheader) {
|
|
Entry->setPlan(this);
|
|
Preheader->setPlan(this);
|
|
assert(Preheader->getNumSuccessors() == 0 &&
|
|
Preheader->getNumPredecessors() == 0 &&
|
|
"preheader must be disconnected");
|
|
}
|
|
|
|
~VPlan();
|
|
|
|
/// Create initial VPlan skeleton, having an "entry" VPBasicBlock (wrapping
|
|
/// original scalar pre-header) which contains SCEV expansions that need to
|
|
/// happen before the CFG is modified; a VPBasicBlock for the vector
|
|
/// pre-header, followed by a region for the vector loop, followed by the
|
|
/// middle VPBasicBlock.
|
|
static VPlanPtr createInitialVPlan(const SCEV *TripCount,
|
|
ScalarEvolution &PSE);
|
|
|
|
/// Prepare the plan for execution, setting up the required live-in values.
|
|
void prepareToExecute(Value *TripCount, Value *VectorTripCount,
|
|
Value *CanonicalIVStartValue, VPTransformState &State);
|
|
|
|
/// Generate the IR code for this VPlan.
|
|
void execute(VPTransformState *State);
|
|
|
|
VPBasicBlock *getEntry() { return Entry; }
|
|
const VPBasicBlock *getEntry() const { return Entry; }
|
|
|
|
/// The trip count of the original loop.
|
|
VPValue *getTripCount() const {
|
|
assert(TripCount && "trip count needs to be set before accessing it");
|
|
return TripCount;
|
|
}
|
|
|
|
/// The backedge taken count of the original loop.
|
|
VPValue *getOrCreateBackedgeTakenCount() {
|
|
if (!BackedgeTakenCount)
|
|
BackedgeTakenCount = new VPValue();
|
|
return BackedgeTakenCount;
|
|
}
|
|
|
|
/// The vector trip count.
|
|
VPValue &getVectorTripCount() { return VectorTripCount; }
|
|
|
|
/// Returns VF * UF of the vector loop region.
|
|
VPValue &getVFxUF() { return VFxUF; }
|
|
|
|
/// Mark the plan to indicate that using Value2VPValue is not safe any
|
|
/// longer, because it may be stale.
|
|
void disableValue2VPValue() { Value2VPValueEnabled = false; }
|
|
|
|
void addVF(ElementCount VF) { VFs.insert(VF); }
|
|
|
|
void setVF(ElementCount VF) {
|
|
assert(hasVF(VF) && "Cannot set VF not already in plan");
|
|
VFs.clear();
|
|
VFs.insert(VF);
|
|
}
|
|
|
|
bool hasVF(ElementCount VF) { return VFs.count(VF); }
|
|
bool hasScalableVF() {
|
|
return any_of(VFs, [](ElementCount VF) { return VF.isScalable(); });
|
|
}
|
|
|
|
bool hasScalarVFOnly() const { return VFs.size() == 1 && VFs[0].isScalar(); }
|
|
|
|
bool hasUF(unsigned UF) const { return UFs.empty() || UFs.contains(UF); }
|
|
|
|
void setUF(unsigned UF) {
|
|
assert(hasUF(UF) && "Cannot set the UF not already in plan");
|
|
UFs.clear();
|
|
UFs.insert(UF);
|
|
}
|
|
|
|
/// Return a string with the name of the plan and the applicable VFs and UFs.
|
|
std::string getName() const;
|
|
|
|
void setName(const Twine &newName) { Name = newName.str(); }
|
|
|
|
void addVPValue(Value *V, VPValue *VPV) {
|
|
assert((Value2VPValueEnabled || VPV->isLiveIn()) &&
|
|
"Value2VPValue mapping may be out of date!");
|
|
assert(V && "Trying to add a null Value to VPlan");
|
|
assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
|
|
Value2VPValue[V] = VPV;
|
|
}
|
|
|
|
/// Returns the VPValue for \p V. \p OverrideAllowed can be used to disable
|
|
/// /// checking whether it is safe to query VPValues using IR Values.
|
|
VPValue *getVPValue(Value *V, bool OverrideAllowed = false) {
|
|
assert(V && "Trying to get the VPValue of a null Value");
|
|
assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
|
|
assert((Value2VPValueEnabled || OverrideAllowed ||
|
|
Value2VPValue[V]->isLiveIn()) &&
|
|
"Value2VPValue mapping may be out of date!");
|
|
return Value2VPValue[V];
|
|
}
|
|
|
|
/// Gets the VPValue for \p V or adds a new live-in (if none exists yet) for
|
|
/// \p V.
|
|
VPValue *getVPValueOrAddLiveIn(Value *V) {
|
|
assert(V && "Trying to get or add the VPValue of a null Value");
|
|
if (!Value2VPValue.count(V)) {
|
|
VPValue *VPV = new VPValue(V);
|
|
VPLiveInsToFree.push_back(VPV);
|
|
addVPValue(V, VPV);
|
|
}
|
|
|
|
return getVPValue(V);
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the live-ins of this VPlan to \p O.
|
|
void printLiveIns(raw_ostream &O) const;
|
|
|
|
/// Print this VPlan to \p O.
|
|
void print(raw_ostream &O) const;
|
|
|
|
/// Print this VPlan in DOT format to \p O.
|
|
void printDOT(raw_ostream &O) const;
|
|
|
|
/// Dump the plan to stderr (for debugging).
|
|
LLVM_DUMP_METHOD void dump() const;
|
|
#endif
|
|
|
|
/// Returns a range mapping the values the range \p Operands to their
|
|
/// corresponding VPValues.
|
|
iterator_range<mapped_iterator<Use *, std::function<VPValue *(Value *)>>>
|
|
mapToVPValues(User::op_range Operands) {
|
|
std::function<VPValue *(Value *)> Fn = [this](Value *Op) {
|
|
return getVPValueOrAddLiveIn(Op);
|
|
};
|
|
return map_range(Operands, Fn);
|
|
}
|
|
|
|
/// Returns the VPRegionBlock of the vector loop.
|
|
VPRegionBlock *getVectorLoopRegion() {
|
|
return cast<VPRegionBlock>(getEntry()->getSingleSuccessor());
|
|
}
|
|
const VPRegionBlock *getVectorLoopRegion() const {
|
|
return cast<VPRegionBlock>(getEntry()->getSingleSuccessor());
|
|
}
|
|
|
|
/// Returns the canonical induction recipe of the vector loop.
|
|
VPCanonicalIVPHIRecipe *getCanonicalIV() {
|
|
VPBasicBlock *EntryVPBB = getVectorLoopRegion()->getEntryBasicBlock();
|
|
if (EntryVPBB->empty()) {
|
|
// VPlan native path.
|
|
EntryVPBB = cast<VPBasicBlock>(EntryVPBB->getSingleSuccessor());
|
|
}
|
|
return cast<VPCanonicalIVPHIRecipe>(&*EntryVPBB->begin());
|
|
}
|
|
|
|
void addLiveOut(PHINode *PN, VPValue *V);
|
|
|
|
void removeLiveOut(PHINode *PN) {
|
|
delete LiveOuts[PN];
|
|
LiveOuts.erase(PN);
|
|
}
|
|
|
|
const MapVector<PHINode *, VPLiveOut *> &getLiveOuts() const {
|
|
return LiveOuts;
|
|
}
|
|
|
|
VPValue *getSCEVExpansion(const SCEV *S) const {
|
|
return SCEVToExpansion.lookup(S);
|
|
}
|
|
|
|
void addSCEVExpansion(const SCEV *S, VPValue *V) {
|
|
assert(!SCEVToExpansion.contains(S) && "SCEV already expanded");
|
|
SCEVToExpansion[S] = V;
|
|
}
|
|
|
|
/// \return The block corresponding to the original preheader.
|
|
VPBasicBlock *getPreheader() { return Preheader; }
|
|
const VPBasicBlock *getPreheader() const { return Preheader; }
|
|
|
|
/// Clone the current VPlan, update all VPValues of the new VPlan and cloned
|
|
/// recipes to refer to the clones, and return it.
|
|
VPlan *duplicate();
|
|
|
|
private:
|
|
/// Add to the given dominator tree the header block and every new basic block
|
|
/// that was created between it and the latch block, inclusive.
|
|
static void updateDominatorTree(DominatorTree *DT, BasicBlock *LoopLatchBB,
|
|
BasicBlock *LoopPreHeaderBB,
|
|
BasicBlock *LoopExitBB);
|
|
};
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// VPlanPrinter prints a given VPlan to a given output stream. The printing is
|
|
/// indented and follows the dot format.
|
|
class VPlanPrinter {
|
|
raw_ostream &OS;
|
|
const VPlan &Plan;
|
|
unsigned Depth = 0;
|
|
unsigned TabWidth = 2;
|
|
std::string Indent;
|
|
unsigned BID = 0;
|
|
SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
|
|
|
|
VPSlotTracker SlotTracker;
|
|
|
|
/// Handle indentation.
|
|
void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
|
|
|
|
/// Print a given \p Block of the Plan.
|
|
void dumpBlock(const VPBlockBase *Block);
|
|
|
|
/// Print the information related to the CFG edges going out of a given
|
|
/// \p Block, followed by printing the successor blocks themselves.
|
|
void dumpEdges(const VPBlockBase *Block);
|
|
|
|
/// Print a given \p BasicBlock, including its VPRecipes, followed by printing
|
|
/// its successor blocks.
|
|
void dumpBasicBlock(const VPBasicBlock *BasicBlock);
|
|
|
|
/// Print a given \p Region of the Plan.
|
|
void dumpRegion(const VPRegionBlock *Region);
|
|
|
|
unsigned getOrCreateBID(const VPBlockBase *Block) {
|
|
return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
|
|
}
|
|
|
|
Twine getOrCreateName(const VPBlockBase *Block);
|
|
|
|
Twine getUID(const VPBlockBase *Block);
|
|
|
|
/// Print the information related to a CFG edge between two VPBlockBases.
|
|
void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
|
|
const Twine &Label);
|
|
|
|
public:
|
|
VPlanPrinter(raw_ostream &O, const VPlan &P)
|
|
: OS(O), Plan(P), SlotTracker(&P) {}
|
|
|
|
LLVM_DUMP_METHOD void dump();
|
|
};
|
|
|
|
struct VPlanIngredient {
|
|
const Value *V;
|
|
|
|
VPlanIngredient(const Value *V) : V(V) {}
|
|
|
|
void print(raw_ostream &O) const;
|
|
};
|
|
|
|
inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
|
|
I.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) {
|
|
Plan.print(OS);
|
|
return OS;
|
|
}
|
|
#endif
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VPlan Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Class that provides utilities for VPBlockBases in VPlan.
|
|
class VPBlockUtils {
|
|
public:
|
|
VPBlockUtils() = delete;
|
|
|
|
/// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
|
|
/// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
|
|
/// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. \p BlockPtr's
|
|
/// successors are moved from \p BlockPtr to \p NewBlock. \p NewBlock must
|
|
/// have neither successors nor predecessors.
|
|
static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
|
|
assert(NewBlock->getSuccessors().empty() &&
|
|
NewBlock->getPredecessors().empty() &&
|
|
"Can't insert new block with predecessors or successors.");
|
|
NewBlock->setParent(BlockPtr->getParent());
|
|
SmallVector<VPBlockBase *> Succs(BlockPtr->successors());
|
|
for (VPBlockBase *Succ : Succs) {
|
|
disconnectBlocks(BlockPtr, Succ);
|
|
connectBlocks(NewBlock, Succ);
|
|
}
|
|
connectBlocks(BlockPtr, NewBlock);
|
|
}
|
|
|
|
/// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
|
|
/// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
|
|
/// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
|
|
/// parent to \p IfTrue and \p IfFalse. \p BlockPtr must have no successors
|
|
/// and \p IfTrue and \p IfFalse must have neither successors nor
|
|
/// predecessors.
|
|
static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
|
|
VPBlockBase *BlockPtr) {
|
|
assert(IfTrue->getSuccessors().empty() &&
|
|
"Can't insert IfTrue with successors.");
|
|
assert(IfFalse->getSuccessors().empty() &&
|
|
"Can't insert IfFalse with successors.");
|
|
BlockPtr->setTwoSuccessors(IfTrue, IfFalse);
|
|
IfTrue->setPredecessors({BlockPtr});
|
|
IfFalse->setPredecessors({BlockPtr});
|
|
IfTrue->setParent(BlockPtr->getParent());
|
|
IfFalse->setParent(BlockPtr->getParent());
|
|
}
|
|
|
|
/// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
|
|
/// the successors of \p From and \p From to the predecessors of \p To. Both
|
|
/// VPBlockBases must have the same parent, which can be null. Both
|
|
/// VPBlockBases can be already connected to other VPBlockBases.
|
|
static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
|
|
assert((From->getParent() == To->getParent()) &&
|
|
"Can't connect two block with different parents");
|
|
assert(From->getNumSuccessors() < 2 &&
|
|
"Blocks can't have more than two successors.");
|
|
From->appendSuccessor(To);
|
|
To->appendPredecessor(From);
|
|
}
|
|
|
|
/// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
|
|
/// from the successors of \p From and \p From from the predecessors of \p To.
|
|
static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
|
|
assert(To && "Successor to disconnect is null.");
|
|
From->removeSuccessor(To);
|
|
To->removePredecessor(From);
|
|
}
|
|
|
|
/// Return an iterator range over \p Range which only includes \p BlockTy
|
|
/// blocks. The accesses are casted to \p BlockTy.
|
|
template <typename BlockTy, typename T>
|
|
static auto blocksOnly(const T &Range) {
|
|
// Create BaseTy with correct const-ness based on BlockTy.
|
|
using BaseTy = std::conditional_t<std::is_const<BlockTy>::value,
|
|
const VPBlockBase, VPBlockBase>;
|
|
|
|
// We need to first create an iterator range over (const) BlocktTy & instead
|
|
// of (const) BlockTy * for filter_range to work properly.
|
|
auto Mapped =
|
|
map_range(Range, [](BaseTy *Block) -> BaseTy & { return *Block; });
|
|
auto Filter = make_filter_range(
|
|
Mapped, [](BaseTy &Block) { return isa<BlockTy>(&Block); });
|
|
return map_range(Filter, [](BaseTy &Block) -> BlockTy * {
|
|
return cast<BlockTy>(&Block);
|
|
});
|
|
}
|
|
};
|
|
|
|
class VPInterleavedAccessInfo {
|
|
DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *>
|
|
InterleaveGroupMap;
|
|
|
|
/// Type for mapping of instruction based interleave groups to VPInstruction
|
|
/// interleave groups
|
|
using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *,
|
|
InterleaveGroup<VPInstruction> *>;
|
|
|
|
/// Recursively \p Region and populate VPlan based interleave groups based on
|
|
/// \p IAI.
|
|
void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New,
|
|
InterleavedAccessInfo &IAI);
|
|
/// Recursively traverse \p Block and populate VPlan based interleave groups
|
|
/// based on \p IAI.
|
|
void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
|
|
InterleavedAccessInfo &IAI);
|
|
|
|
public:
|
|
VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI);
|
|
|
|
~VPInterleavedAccessInfo() {
|
|
SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet;
|
|
// Avoid releasing a pointer twice.
|
|
for (auto &I : InterleaveGroupMap)
|
|
DelSet.insert(I.second);
|
|
for (auto *Ptr : DelSet)
|
|
delete Ptr;
|
|
}
|
|
|
|
/// Get the interleave group that \p Instr belongs to.
|
|
///
|
|
/// \returns nullptr if doesn't have such group.
|
|
InterleaveGroup<VPInstruction> *
|
|
getInterleaveGroup(VPInstruction *Instr) const {
|
|
return InterleaveGroupMap.lookup(Instr);
|
|
}
|
|
};
|
|
|
|
/// Class that maps (parts of) an existing VPlan to trees of combined
|
|
/// VPInstructions.
|
|
class VPlanSlp {
|
|
enum class OpMode { Failed, Load, Opcode };
|
|
|
|
/// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as
|
|
/// DenseMap keys.
|
|
struct BundleDenseMapInfo {
|
|
static SmallVector<VPValue *, 4> getEmptyKey() {
|
|
return {reinterpret_cast<VPValue *>(-1)};
|
|
}
|
|
|
|
static SmallVector<VPValue *, 4> getTombstoneKey() {
|
|
return {reinterpret_cast<VPValue *>(-2)};
|
|
}
|
|
|
|
static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) {
|
|
return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
|
|
}
|
|
|
|
static bool isEqual(const SmallVector<VPValue *, 4> &LHS,
|
|
const SmallVector<VPValue *, 4> &RHS) {
|
|
return LHS == RHS;
|
|
}
|
|
};
|
|
|
|
/// Mapping of values in the original VPlan to a combined VPInstruction.
|
|
DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo>
|
|
BundleToCombined;
|
|
|
|
VPInterleavedAccessInfo &IAI;
|
|
|
|
/// Basic block to operate on. For now, only instructions in a single BB are
|
|
/// considered.
|
|
const VPBasicBlock &BB;
|
|
|
|
/// Indicates whether we managed to combine all visited instructions or not.
|
|
bool CompletelySLP = true;
|
|
|
|
/// Width of the widest combined bundle in bits.
|
|
unsigned WidestBundleBits = 0;
|
|
|
|
using MultiNodeOpTy =
|
|
typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>;
|
|
|
|
// Input operand bundles for the current multi node. Each multi node operand
|
|
// bundle contains values not matching the multi node's opcode. They will
|
|
// be reordered in reorderMultiNodeOps, once we completed building a
|
|
// multi node.
|
|
SmallVector<MultiNodeOpTy, 4> MultiNodeOps;
|
|
|
|
/// Indicates whether we are building a multi node currently.
|
|
bool MultiNodeActive = false;
|
|
|
|
/// Check if we can vectorize Operands together.
|
|
bool areVectorizable(ArrayRef<VPValue *> Operands) const;
|
|
|
|
/// Add combined instruction \p New for the bundle \p Operands.
|
|
void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New);
|
|
|
|
/// Indicate we hit a bundle we failed to combine. Returns nullptr for now.
|
|
VPInstruction *markFailed();
|
|
|
|
/// Reorder operands in the multi node to maximize sequential memory access
|
|
/// and commutative operations.
|
|
SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps();
|
|
|
|
/// Choose the best candidate to use for the lane after \p Last. The set of
|
|
/// candidates to choose from are values with an opcode matching \p Last's
|
|
/// or loads consecutive to \p Last.
|
|
std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last,
|
|
SmallPtrSetImpl<VPValue *> &Candidates,
|
|
VPInterleavedAccessInfo &IAI);
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print bundle \p Values to dbgs().
|
|
void dumpBundle(ArrayRef<VPValue *> Values);
|
|
#endif
|
|
|
|
public:
|
|
VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {}
|
|
|
|
~VPlanSlp() = default;
|
|
|
|
/// Tries to build an SLP tree rooted at \p Operands and returns a
|
|
/// VPInstruction combining \p Operands, if they can be combined.
|
|
VPInstruction *buildGraph(ArrayRef<VPValue *> Operands);
|
|
|
|
/// Return the width of the widest combined bundle in bits.
|
|
unsigned getWidestBundleBits() const { return WidestBundleBits; }
|
|
|
|
/// Return true if all visited instruction can be combined.
|
|
bool isCompletelySLP() const { return CompletelySLP; }
|
|
};
|
|
|
|
namespace vputils {
|
|
|
|
/// Returns true if only the first lane of \p Def is used.
|
|
bool onlyFirstLaneUsed(const VPValue *Def);
|
|
|
|
/// Returns true if only the first part of \p Def is used.
|
|
bool onlyFirstPartUsed(const VPValue *Def);
|
|
|
|
/// Get or create a VPValue that corresponds to the expansion of \p Expr. If \p
|
|
/// Expr is a SCEVConstant or SCEVUnknown, return a VPValue wrapping the live-in
|
|
/// value. Otherwise return a VPExpandSCEVRecipe to expand \p Expr. If \p Plan's
|
|
/// pre-header already contains a recipe expanding \p Expr, return it. If not,
|
|
/// create a new one.
|
|
VPValue *getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr,
|
|
ScalarEvolution &SE);
|
|
|
|
/// Returns true if \p VPV is uniform after vectorization.
|
|
inline bool isUniformAfterVectorization(VPValue *VPV) {
|
|
// A value defined outside the vector region must be uniform after
|
|
// vectorization inside a vector region.
|
|
if (VPV->isDefinedOutsideVectorRegions())
|
|
return true;
|
|
VPRecipeBase *Def = VPV->getDefiningRecipe();
|
|
assert(Def && "Must have definition for value defined inside vector region");
|
|
if (auto Rep = dyn_cast<VPReplicateRecipe>(Def))
|
|
return Rep->isUniform();
|
|
if (auto *GEP = dyn_cast<VPWidenGEPRecipe>(Def))
|
|
return all_of(GEP->operands(), isUniformAfterVectorization);
|
|
if (auto *VPI = dyn_cast<VPInstruction>(Def))
|
|
return VPI->getOpcode() == VPInstruction::ComputeReductionResult;
|
|
return false;
|
|
}
|
|
} // end namespace vputils
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
|