
Add a new recipe to model scalar cast instructions, without relying on an underlying instruction. This allows creating scalar casts, without relying on an underlying instruction (like the current VPReplicateRecipe). The new recipe is used to explicitly model both truncating the induction step and the VPDerivedIVRecipe, thus simplifying both the recipe and code needed to introduce it. Truncating VPWidenIntOrFpInductionRecipes should also be modeled using the new recipe, as follow-up. PR: https://github.com/llvm/llvm-project/pull/78113
473 lines
16 KiB
C++
473 lines
16 KiB
C++
//===- VPlanValue.h - Represent Values in Vectorizer Plan -----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file contains the declarations of the entities induced by Vectorization
|
|
/// Plans, e.g. the instructions the VPlan intends to generate if executed.
|
|
/// VPlan models the following entities:
|
|
/// VPValue VPUser VPDef
|
|
/// | |
|
|
/// VPInstruction
|
|
/// These are documented in docs/VectorizationPlan.rst.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_VALUE_H
|
|
#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_VALUE_H
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/TinyPtrVector.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
|
|
namespace llvm {
|
|
|
|
// Forward declarations.
|
|
class raw_ostream;
|
|
class Value;
|
|
class VPDef;
|
|
class VPSlotTracker;
|
|
class VPUser;
|
|
class VPRecipeBase;
|
|
class VPWidenMemoryInstructionRecipe;
|
|
|
|
// This is the base class of the VPlan Def/Use graph, used for modeling the data
|
|
// flow into, within and out of the VPlan. VPValues can stand for live-ins
|
|
// coming from the input IR, instructions which VPlan will generate if executed
|
|
// and live-outs which the VPlan will need to fix accordingly.
|
|
class VPValue {
|
|
friend class VPBuilder;
|
|
friend class VPDef;
|
|
friend class VPInstruction;
|
|
friend struct VPlanTransforms;
|
|
friend class VPBasicBlock;
|
|
friend class VPInterleavedAccessInfo;
|
|
friend class VPSlotTracker;
|
|
friend class VPRecipeBase;
|
|
friend class VPWidenMemoryInstructionRecipe;
|
|
|
|
const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
|
|
|
|
SmallVector<VPUser *, 1> Users;
|
|
|
|
protected:
|
|
// Hold the underlying Value, if any, attached to this VPValue.
|
|
Value *UnderlyingVal;
|
|
|
|
/// Pointer to the VPDef that defines this VPValue. If it is nullptr, the
|
|
/// VPValue is not defined by any recipe modeled in VPlan.
|
|
VPDef *Def;
|
|
|
|
VPValue(const unsigned char SC, Value *UV = nullptr, VPDef *Def = nullptr);
|
|
|
|
// DESIGN PRINCIPLE: Access to the underlying IR must be strictly limited to
|
|
// the front-end and back-end of VPlan so that the middle-end is as
|
|
// independent as possible of the underlying IR. We grant access to the
|
|
// underlying IR using friendship. In that way, we should be able to use VPlan
|
|
// for multiple underlying IRs (Polly?) by providing a new VPlan front-end,
|
|
// back-end and analysis information for the new IR.
|
|
|
|
// Set \p Val as the underlying Value of this VPValue.
|
|
void setUnderlyingValue(Value *Val) {
|
|
assert(!UnderlyingVal && "Underlying Value is already set.");
|
|
UnderlyingVal = Val;
|
|
}
|
|
|
|
public:
|
|
/// Return the underlying Value attached to this VPValue.
|
|
Value *getUnderlyingValue() { return UnderlyingVal; }
|
|
const Value *getUnderlyingValue() const { return UnderlyingVal; }
|
|
|
|
/// An enumeration for keeping track of the concrete subclass of VPValue that
|
|
/// are actually instantiated.
|
|
enum {
|
|
VPValueSC, /// A generic VPValue, like live-in values or defined by a recipe
|
|
/// that defines multiple values.
|
|
VPVRecipeSC /// A VPValue sub-class that is a VPRecipeBase.
|
|
};
|
|
|
|
/// Create a live-in VPValue.
|
|
VPValue(Value *UV = nullptr) : VPValue(VPValueSC, UV, nullptr) {}
|
|
/// Create a VPValue for a \p Def which is a subclass of VPValue.
|
|
VPValue(VPDef *Def, Value *UV = nullptr) : VPValue(VPVRecipeSC, UV, Def) {}
|
|
/// Create a VPValue for a \p Def which defines multiple values.
|
|
VPValue(Value *UV, VPDef *Def) : VPValue(VPValueSC, UV, Def) {}
|
|
VPValue(const VPValue &) = delete;
|
|
VPValue &operator=(const VPValue &) = delete;
|
|
|
|
virtual ~VPValue();
|
|
|
|
/// \return an ID for the concrete type of this object.
|
|
/// This is used to implement the classof checks. This should not be used
|
|
/// for any other purpose, as the values may change as LLVM evolves.
|
|
unsigned getVPValueID() const { return SubclassID; }
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const;
|
|
void print(raw_ostream &OS, VPSlotTracker &Tracker) const;
|
|
|
|
/// Dump the value to stderr (for debugging).
|
|
void dump() const;
|
|
#endif
|
|
|
|
unsigned getNumUsers() const { return Users.size(); }
|
|
void addUser(VPUser &User) { Users.push_back(&User); }
|
|
|
|
/// Remove a single \p User from the list of users.
|
|
void removeUser(VPUser &User) {
|
|
// The same user can be added multiple times, e.g. because the same VPValue
|
|
// is used twice by the same VPUser. Remove a single one.
|
|
auto *I = find(Users, &User);
|
|
if (I != Users.end())
|
|
Users.erase(I);
|
|
}
|
|
|
|
typedef SmallVectorImpl<VPUser *>::iterator user_iterator;
|
|
typedef SmallVectorImpl<VPUser *>::const_iterator const_user_iterator;
|
|
typedef iterator_range<user_iterator> user_range;
|
|
typedef iterator_range<const_user_iterator> const_user_range;
|
|
|
|
user_iterator user_begin() { return Users.begin(); }
|
|
const_user_iterator user_begin() const { return Users.begin(); }
|
|
user_iterator user_end() { return Users.end(); }
|
|
const_user_iterator user_end() const { return Users.end(); }
|
|
user_range users() { return user_range(user_begin(), user_end()); }
|
|
const_user_range users() const {
|
|
return const_user_range(user_begin(), user_end());
|
|
}
|
|
|
|
/// Returns true if the value has more than one unique user.
|
|
bool hasMoreThanOneUniqueUser() {
|
|
if (getNumUsers() == 0)
|
|
return false;
|
|
|
|
// Check if all users match the first user.
|
|
auto Current = std::next(user_begin());
|
|
while (Current != user_end() && *user_begin() == *Current)
|
|
Current++;
|
|
return Current != user_end();
|
|
}
|
|
|
|
void replaceAllUsesWith(VPValue *New);
|
|
|
|
/// Go through the uses list for this VPValue and make each use point to \p
|
|
/// New if the callback ShouldReplace returns true for the given use specified
|
|
/// by a pair of (VPUser, the use index).
|
|
void replaceUsesWithIf(
|
|
VPValue *New,
|
|
llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace);
|
|
|
|
/// Returns the recipe defining this VPValue or nullptr if it is not defined
|
|
/// by a recipe, i.e. is a live-in.
|
|
VPRecipeBase *getDefiningRecipe();
|
|
const VPRecipeBase *getDefiningRecipe() const;
|
|
|
|
/// Returns true if this VPValue is defined by a recipe.
|
|
bool hasDefiningRecipe() const { return getDefiningRecipe(); }
|
|
|
|
/// Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
|
|
bool isLiveIn() const { return !hasDefiningRecipe(); }
|
|
|
|
/// Returns the underlying IR value, if this VPValue is defined outside the
|
|
/// scope of VPlan. Returns nullptr if the VPValue is defined by a VPDef
|
|
/// inside a VPlan.
|
|
Value *getLiveInIRValue() {
|
|
assert(isLiveIn() &&
|
|
"VPValue is not a live-in; it is defined by a VPDef inside a VPlan");
|
|
return getUnderlyingValue();
|
|
}
|
|
const Value *getLiveInIRValue() const {
|
|
assert(isLiveIn() &&
|
|
"VPValue is not a live-in; it is defined by a VPDef inside a VPlan");
|
|
return getUnderlyingValue();
|
|
}
|
|
|
|
/// Returns true if the VPValue is defined outside any vector regions, i.e. it
|
|
/// is a live-in value.
|
|
/// TODO: Also handle recipes defined in pre-header blocks.
|
|
bool isDefinedOutsideVectorRegions() const { return !hasDefiningRecipe(); }
|
|
};
|
|
|
|
typedef DenseMap<Value *, VPValue *> Value2VPValueTy;
|
|
typedef DenseMap<VPValue *, Value *> VPValue2ValueTy;
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const VPValue &V);
|
|
|
|
/// This class augments VPValue with operands which provide the inverse def-use
|
|
/// edges from VPValue's users to their defs.
|
|
class VPUser {
|
|
public:
|
|
/// Subclass identifier (for isa/dyn_cast).
|
|
enum class VPUserID {
|
|
Recipe,
|
|
LiveOut,
|
|
};
|
|
|
|
private:
|
|
SmallVector<VPValue *, 2> Operands;
|
|
|
|
VPUserID ID;
|
|
|
|
protected:
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the operands to \p O.
|
|
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const;
|
|
#endif
|
|
|
|
VPUser(ArrayRef<VPValue *> Operands, VPUserID ID) : ID(ID) {
|
|
for (VPValue *Operand : Operands)
|
|
addOperand(Operand);
|
|
}
|
|
|
|
VPUser(std::initializer_list<VPValue *> Operands, VPUserID ID)
|
|
: VPUser(ArrayRef<VPValue *>(Operands), ID) {}
|
|
|
|
template <typename IterT>
|
|
VPUser(iterator_range<IterT> Operands, VPUserID ID) : ID(ID) {
|
|
for (VPValue *Operand : Operands)
|
|
addOperand(Operand);
|
|
}
|
|
|
|
public:
|
|
VPUser() = delete;
|
|
VPUser(const VPUser &) = delete;
|
|
VPUser &operator=(const VPUser &) = delete;
|
|
virtual ~VPUser() {
|
|
for (VPValue *Op : operands())
|
|
Op->removeUser(*this);
|
|
}
|
|
|
|
VPUserID getVPUserID() const { return ID; }
|
|
|
|
void addOperand(VPValue *Operand) {
|
|
Operands.push_back(Operand);
|
|
Operand->addUser(*this);
|
|
}
|
|
|
|
unsigned getNumOperands() const { return Operands.size(); }
|
|
inline VPValue *getOperand(unsigned N) const {
|
|
assert(N < Operands.size() && "Operand index out of bounds");
|
|
return Operands[N];
|
|
}
|
|
|
|
void setOperand(unsigned I, VPValue *New) {
|
|
Operands[I]->removeUser(*this);
|
|
Operands[I] = New;
|
|
New->addUser(*this);
|
|
}
|
|
|
|
void removeLastOperand() {
|
|
VPValue *Op = Operands.pop_back_val();
|
|
Op->removeUser(*this);
|
|
}
|
|
|
|
typedef SmallVectorImpl<VPValue *>::iterator operand_iterator;
|
|
typedef SmallVectorImpl<VPValue *>::const_iterator const_operand_iterator;
|
|
typedef iterator_range<operand_iterator> operand_range;
|
|
typedef iterator_range<const_operand_iterator> const_operand_range;
|
|
|
|
operand_iterator op_begin() { return Operands.begin(); }
|
|
const_operand_iterator op_begin() const { return Operands.begin(); }
|
|
operand_iterator op_end() { return Operands.end(); }
|
|
const_operand_iterator op_end() const { return Operands.end(); }
|
|
operand_range operands() { return operand_range(op_begin(), op_end()); }
|
|
const_operand_range operands() const {
|
|
return const_operand_range(op_begin(), op_end());
|
|
}
|
|
|
|
/// Returns true if the VPUser uses scalars of operand \p Op. Conservatively
|
|
/// returns if only first (scalar) lane is used, as default.
|
|
virtual bool usesScalars(const VPValue *Op) const {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return onlyFirstLaneUsed(Op);
|
|
}
|
|
|
|
/// Returns true if the VPUser only uses the first lane of operand \p Op.
|
|
/// Conservatively returns false.
|
|
virtual bool onlyFirstLaneUsed(const VPValue *Op) const {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if the VPUser only uses the first part of operand \p Op.
|
|
/// Conservatively returns false.
|
|
virtual bool onlyFirstPartUsed(const VPValue *Op) const {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return false;
|
|
}
|
|
};
|
|
|
|
/// This class augments a recipe with a set of VPValues defined by the recipe.
|
|
/// It allows recipes to define zero, one or multiple VPValues. A VPDef owns
|
|
/// the VPValues it defines and is responsible for deleting its defined values.
|
|
/// Single-value VPDefs that also inherit from VPValue must make sure to inherit
|
|
/// from VPDef before VPValue.
|
|
class VPDef {
|
|
friend class VPValue;
|
|
|
|
/// Subclass identifier (for isa/dyn_cast).
|
|
const unsigned char SubclassID;
|
|
|
|
/// The VPValues defined by this VPDef.
|
|
TinyPtrVector<VPValue *> DefinedValues;
|
|
|
|
/// Add \p V as a defined value by this VPDef.
|
|
void addDefinedValue(VPValue *V) {
|
|
assert(V->Def == this &&
|
|
"can only add VPValue already linked with this VPDef");
|
|
DefinedValues.push_back(V);
|
|
}
|
|
|
|
/// Remove \p V from the values defined by this VPDef. \p V must be a defined
|
|
/// value of this VPDef.
|
|
void removeDefinedValue(VPValue *V) {
|
|
assert(V->Def == this && "can only remove VPValue linked with this VPDef");
|
|
assert(is_contained(DefinedValues, V) &&
|
|
"VPValue to remove must be in DefinedValues");
|
|
llvm::erase(DefinedValues, V);
|
|
V->Def = nullptr;
|
|
}
|
|
|
|
public:
|
|
/// An enumeration for keeping track of the concrete subclass of VPRecipeBase
|
|
/// that is actually instantiated. Values of this enumeration are kept in the
|
|
/// SubclassID field of the VPRecipeBase objects. They are used for concrete
|
|
/// type identification.
|
|
using VPRecipeTy = enum {
|
|
VPBranchOnMaskSC,
|
|
VPDerivedIVSC,
|
|
VPExpandSCEVSC,
|
|
VPInstructionSC,
|
|
VPInterleaveSC,
|
|
VPReductionSC,
|
|
VPReplicateSC,
|
|
VPScalarCastSC,
|
|
VPScalarIVStepsSC,
|
|
VPVectorPointerSC,
|
|
VPWidenCallSC,
|
|
VPWidenCanonicalIVSC,
|
|
VPWidenCastSC,
|
|
VPWidenGEPSC,
|
|
VPWidenMemoryInstructionSC,
|
|
VPWidenSC,
|
|
VPWidenSelectSC,
|
|
// START: Phi-like recipes. Need to be kept together.
|
|
VPBlendSC,
|
|
VPPredInstPHISC,
|
|
// START: SubclassID for recipes that inherit VPHeaderPHIRecipe.
|
|
// VPHeaderPHIRecipe need to be kept together.
|
|
VPCanonicalIVPHISC,
|
|
VPActiveLaneMaskPHISC,
|
|
VPFirstOrderRecurrencePHISC,
|
|
VPWidenPHISC,
|
|
VPWidenIntOrFpInductionSC,
|
|
VPWidenPointerInductionSC,
|
|
VPReductionPHISC,
|
|
// END: SubclassID for recipes that inherit VPHeaderPHIRecipe
|
|
// END: Phi-like recipes
|
|
VPFirstPHISC = VPBlendSC,
|
|
VPFirstHeaderPHISC = VPCanonicalIVPHISC,
|
|
VPLastHeaderPHISC = VPReductionPHISC,
|
|
VPLastPHISC = VPReductionPHISC,
|
|
};
|
|
|
|
VPDef(const unsigned char SC) : SubclassID(SC) {}
|
|
|
|
virtual ~VPDef() {
|
|
for (VPValue *D : make_early_inc_range(DefinedValues)) {
|
|
assert(D->Def == this &&
|
|
"all defined VPValues should point to the containing VPDef");
|
|
assert(D->getNumUsers() == 0 &&
|
|
"all defined VPValues should have no more users");
|
|
D->Def = nullptr;
|
|
delete D;
|
|
}
|
|
}
|
|
|
|
/// Returns the only VPValue defined by the VPDef. Can only be called for
|
|
/// VPDefs with a single defined value.
|
|
VPValue *getVPSingleValue() {
|
|
assert(DefinedValues.size() == 1 && "must have exactly one defined value");
|
|
assert(DefinedValues[0] && "defined value must be non-null");
|
|
return DefinedValues[0];
|
|
}
|
|
const VPValue *getVPSingleValue() const {
|
|
assert(DefinedValues.size() == 1 && "must have exactly one defined value");
|
|
assert(DefinedValues[0] && "defined value must be non-null");
|
|
return DefinedValues[0];
|
|
}
|
|
|
|
/// Returns the VPValue with index \p I defined by the VPDef.
|
|
VPValue *getVPValue(unsigned I) {
|
|
assert(DefinedValues[I] && "defined value must be non-null");
|
|
return DefinedValues[I];
|
|
}
|
|
const VPValue *getVPValue(unsigned I) const {
|
|
assert(DefinedValues[I] && "defined value must be non-null");
|
|
return DefinedValues[I];
|
|
}
|
|
|
|
/// Returns an ArrayRef of the values defined by the VPDef.
|
|
ArrayRef<VPValue *> definedValues() { return DefinedValues; }
|
|
/// Returns an ArrayRef of the values defined by the VPDef.
|
|
ArrayRef<VPValue *> definedValues() const { return DefinedValues; }
|
|
|
|
/// Returns the number of values defined by the VPDef.
|
|
unsigned getNumDefinedValues() const { return DefinedValues.size(); }
|
|
|
|
/// \return an ID for the concrete type of this object.
|
|
/// This is used to implement the classof checks. This should not be used
|
|
/// for any other purpose, as the values may change as LLVM evolves.
|
|
unsigned getVPDefID() const { return SubclassID; }
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Dump the VPDef to stderr (for debugging).
|
|
void dump() const;
|
|
|
|
/// Each concrete VPDef prints itself.
|
|
virtual void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const = 0;
|
|
#endif
|
|
};
|
|
|
|
class VPlan;
|
|
class VPBasicBlock;
|
|
|
|
/// This class can be used to assign consecutive numbers to all VPValues in a
|
|
/// VPlan and allows querying the numbering for printing, similar to the
|
|
/// ModuleSlotTracker for IR values.
|
|
class VPSlotTracker {
|
|
DenseMap<const VPValue *, unsigned> Slots;
|
|
unsigned NextSlot = 0;
|
|
|
|
void assignSlot(const VPValue *V);
|
|
void assignSlots(const VPlan &Plan);
|
|
void assignSlots(const VPBasicBlock *VPBB);
|
|
|
|
public:
|
|
VPSlotTracker(const VPlan *Plan = nullptr) {
|
|
if (Plan)
|
|
assignSlots(*Plan);
|
|
}
|
|
|
|
unsigned getSlot(const VPValue *V) const {
|
|
auto I = Slots.find(V);
|
|
if (I == Slots.end())
|
|
return -1;
|
|
return I->second;
|
|
}
|
|
};
|
|
|
|
} // namespace llvm
|
|
|
|
#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_VALUE_H
|