
This commit marks the type converter in `populate...` functions as `const`. This is useful for debugging. Patterns already take a `const` type converter. However, some `populate...` functions do not only add new patterns, but also add additional type conversion rules. That makes it difficult to find the place where a type conversion was added in the code base. With this change, all `populate...` functions that only populate pattern now have a `const` type converter. Programmers can then conclude from the function signature that these functions do not register any new type conversion rules. Also some minor cleanups around the 1:N dialect conversion infrastructure, which did not always pass the type converter as a `const` object internally.
112 lines
4.4 KiB
C++
112 lines
4.4 KiB
C++
//===- TensorToSPIRV.cpp - Tensor to SPIR-V Patterns ----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements patterns to convert Tensor dialect to SPIR-V dialect.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Conversion/TensorToSPIRV/TensorToSPIRV.h"
|
|
#include "../SPIRVCommon/Pattern.h"
|
|
#include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h"
|
|
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
|
|
#include "mlir/Dialect/SPIRV/Transforms/SPIRVConversion.h"
|
|
#include "mlir/Dialect/SPIRV/Utils/LayoutUtils.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#define DEBUG_TYPE "tensor-to-spirv-pattern"
|
|
|
|
using namespace mlir;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Operation conversion
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// Converts tensor.extract into loading using access chains from SPIR-V local
|
|
/// variables.
|
|
class TensorExtractPattern final
|
|
: public OpConversionPattern<tensor::ExtractOp> {
|
|
public:
|
|
TensorExtractPattern(const TypeConverter &typeConverter, MLIRContext *context,
|
|
int64_t threshold, PatternBenefit benefit = 1)
|
|
: OpConversionPattern(typeConverter, context, benefit),
|
|
byteCountThreshold(threshold) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(tensor::ExtractOp extractOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto tensorType = cast<RankedTensorType>(extractOp.getTensor().getType());
|
|
|
|
if (!isa<spirv::ScalarType>(tensorType.getElementType()))
|
|
return rewriter.notifyMatchFailure(extractOp, "unsupported type");
|
|
if (!tensorType.hasStaticShape())
|
|
return rewriter.notifyMatchFailure(extractOp, "non-static tensor");
|
|
|
|
if (tensorType.getNumElements() * tensorType.getElementTypeBitWidth() >
|
|
byteCountThreshold * 8)
|
|
return rewriter.notifyMatchFailure(extractOp,
|
|
"exceeding byte count threshold");
|
|
|
|
Location loc = extractOp.getLoc();
|
|
|
|
int64_t rank = tensorType.getRank();
|
|
SmallVector<int64_t, 4> strides(rank, 1);
|
|
for (int i = rank - 2; i >= 0; --i) {
|
|
strides[i] = strides[i + 1] * tensorType.getDimSize(i + 1);
|
|
}
|
|
|
|
Type varType = spirv::PointerType::get(adaptor.getTensor().getType(),
|
|
spirv::StorageClass::Function);
|
|
|
|
spirv::VariableOp varOp;
|
|
if (adaptor.getTensor().getDefiningOp<spirv::ConstantOp>()) {
|
|
// We could use the initializer directly; but certain driver compilers
|
|
// have bugs dealing with that. So for now, use spirv.Store for
|
|
// initialization.
|
|
varOp = rewriter.create<spirv::VariableOp>(loc, varType,
|
|
spirv::StorageClass::Function,
|
|
/*initializer=*/nullptr);
|
|
rewriter.create<spirv::StoreOp>(loc, varOp, adaptor.getTensor());
|
|
} else {
|
|
// Need to store the value to the local variable. It's questionable
|
|
// whether we want to support such case though.
|
|
return failure();
|
|
}
|
|
|
|
auto &typeConverter = *getTypeConverter<SPIRVTypeConverter>();
|
|
auto indexType = typeConverter.getIndexType();
|
|
|
|
Value index = spirv::linearizeIndex(adaptor.getIndices(), strides,
|
|
/*offset=*/0, indexType, loc, rewriter);
|
|
auto acOp = rewriter.create<spirv::AccessChainOp>(loc, varOp, index);
|
|
|
|
rewriter.replaceOpWithNewOp<spirv::LoadOp>(extractOp, acOp);
|
|
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
int64_t byteCountThreshold;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pattern population
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void mlir::populateTensorToSPIRVPatterns(
|
|
const SPIRVTypeConverter &typeConverter, int64_t byteCountThreshold,
|
|
RewritePatternSet &patterns) {
|
|
patterns.add<TensorExtractPattern>(typeConverter, patterns.getContext(),
|
|
byteCountThreshold);
|
|
}
|