
For non-GlobalValue references, the small and medium code models can use 32 bit constants. For GlobalValue references, use TargetMachine::isLargeGlobalObject(). Look through aliases for determining if a GlobalValue is small or large. Even the large code model can reference small objects with 32 bit constants as long as we're in no-pic mode, or if the reference is offset from the GOT. Original commit broke the build... First reland broke large PIC builds referencing small data since it was using GOTOFF as a 32-bit constant.
295 lines
10 KiB
C++
295 lines
10 KiB
C++
//===-- TargetMachine.cpp - General Target Information ---------------------==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file describes the general parts of a Target machine.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Mangler.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCInstrInfo.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
using namespace llvm;
|
|
|
|
//---------------------------------------------------------------------------
|
|
// TargetMachine Class
|
|
//
|
|
|
|
TargetMachine::TargetMachine(const Target &T, StringRef DataLayoutString,
|
|
const Triple &TT, StringRef CPU, StringRef FS,
|
|
const TargetOptions &Options)
|
|
: TheTarget(T), DL(DataLayoutString), TargetTriple(TT),
|
|
TargetCPU(std::string(CPU)), TargetFS(std::string(FS)), AsmInfo(nullptr),
|
|
MRI(nullptr), MII(nullptr), STI(nullptr), RequireStructuredCFG(false),
|
|
O0WantsFastISel(false), Options(Options) {}
|
|
|
|
TargetMachine::~TargetMachine() = default;
|
|
|
|
bool TargetMachine::isLargeGlobalValue(const GlobalValue *GVal) const {
|
|
if (getTargetTriple().getArch() != Triple::x86_64)
|
|
return false;
|
|
|
|
auto *GO = GVal->getAliaseeObject();
|
|
|
|
// Be conservative if we can't find an underlying GlobalObject.
|
|
if (!GO)
|
|
return true;
|
|
|
|
auto *GV = dyn_cast<GlobalVariable>(GO);
|
|
|
|
// Functions/GlobalIFuncs are only large under the large code model.
|
|
if (!GV)
|
|
return getCodeModel() == CodeModel::Large;
|
|
|
|
if (GV->isThreadLocal())
|
|
return false;
|
|
|
|
// We should properly mark well-known section name prefixes as small/large,
|
|
// because otherwise the output section may have the wrong section flags and
|
|
// the linker will lay it out in an unexpected way.
|
|
// TODO: bring back lbss/ldata/lrodata checks after fixing accesses to large
|
|
// globals in the small code model.
|
|
StringRef Name = GV->getSection();
|
|
if (!Name.empty()) {
|
|
auto IsPrefix = [&](StringRef Prefix) {
|
|
StringRef S = Name;
|
|
return S.consume_front(Prefix) && (S.empty() || S[0] == '.');
|
|
};
|
|
if (IsPrefix(".bss") || IsPrefix(".data") || IsPrefix(".rodata"))
|
|
return false;
|
|
}
|
|
|
|
// For x86-64, we treat an explicit GlobalVariable small code model to mean
|
|
// that the global should be placed in a small section, and ditto for large.
|
|
// Well-known section names above take precedence for correctness.
|
|
if (auto CM = GV->getCodeModel()) {
|
|
if (*CM == CodeModel::Small)
|
|
return false;
|
|
if (*CM == CodeModel::Large)
|
|
return true;
|
|
}
|
|
|
|
if (getCodeModel() == CodeModel::Medium ||
|
|
getCodeModel() == CodeModel::Large) {
|
|
if (!GV->getValueType()->isSized())
|
|
return true;
|
|
const DataLayout &DL = GV->getParent()->getDataLayout();
|
|
uint64_t Size = DL.getTypeSizeInBits(GV->getValueType()) / 8;
|
|
return Size == 0 || Size > LargeDataThreshold;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool TargetMachine::isPositionIndependent() const {
|
|
return getRelocationModel() == Reloc::PIC_;
|
|
}
|
|
|
|
/// Reset the target options based on the function's attributes.
|
|
/// setFunctionAttributes should have made the raw attribute value consistent
|
|
/// with the command line flag if used.
|
|
//
|
|
// FIXME: This function needs to go away for a number of reasons:
|
|
// a) global state on the TargetMachine is terrible in general,
|
|
// b) these target options should be passed only on the function
|
|
// and not on the TargetMachine (via TargetOptions) at all.
|
|
void TargetMachine::resetTargetOptions(const Function &F) const {
|
|
#define RESET_OPTION(X, Y) \
|
|
do { \
|
|
Options.X = F.getFnAttribute(Y).getValueAsBool(); \
|
|
} while (0)
|
|
|
|
RESET_OPTION(UnsafeFPMath, "unsafe-fp-math");
|
|
RESET_OPTION(NoInfsFPMath, "no-infs-fp-math");
|
|
RESET_OPTION(NoNaNsFPMath, "no-nans-fp-math");
|
|
RESET_OPTION(NoSignedZerosFPMath, "no-signed-zeros-fp-math");
|
|
RESET_OPTION(ApproxFuncFPMath, "approx-func-fp-math");
|
|
}
|
|
|
|
/// Returns the code generation relocation model. The choices are static, PIC,
|
|
/// and dynamic-no-pic.
|
|
Reloc::Model TargetMachine::getRelocationModel() const { return RM; }
|
|
|
|
uint64_t TargetMachine::getMaxCodeSize() const {
|
|
switch (getCodeModel()) {
|
|
case CodeModel::Tiny:
|
|
return llvm::maxUIntN(10);
|
|
case CodeModel::Small:
|
|
case CodeModel::Kernel:
|
|
case CodeModel::Medium:
|
|
return llvm::maxUIntN(31);
|
|
case CodeModel::Large:
|
|
return llvm::maxUIntN(64);
|
|
}
|
|
llvm_unreachable("Unhandled CodeModel enum");
|
|
}
|
|
|
|
/// Get the IR-specified TLS model for Var.
|
|
static TLSModel::Model getSelectedTLSModel(const GlobalValue *GV) {
|
|
switch (GV->getThreadLocalMode()) {
|
|
case GlobalVariable::NotThreadLocal:
|
|
llvm_unreachable("getSelectedTLSModel for non-TLS variable");
|
|
break;
|
|
case GlobalVariable::GeneralDynamicTLSModel:
|
|
return TLSModel::GeneralDynamic;
|
|
case GlobalVariable::LocalDynamicTLSModel:
|
|
return TLSModel::LocalDynamic;
|
|
case GlobalVariable::InitialExecTLSModel:
|
|
return TLSModel::InitialExec;
|
|
case GlobalVariable::LocalExecTLSModel:
|
|
return TLSModel::LocalExec;
|
|
}
|
|
llvm_unreachable("invalid TLS model");
|
|
}
|
|
|
|
bool TargetMachine::shouldAssumeDSOLocal(const Module &M,
|
|
const GlobalValue *GV) const {
|
|
const Triple &TT = getTargetTriple();
|
|
Reloc::Model RM = getRelocationModel();
|
|
|
|
// According to the llvm language reference, we should be able to
|
|
// just return false in here if we have a GV, as we know it is
|
|
// dso_preemptable. At this point in time, the various IR producers
|
|
// have not been transitioned to always produce a dso_local when it
|
|
// is possible to do so.
|
|
//
|
|
// As a result we still have some logic in here to improve the quality of the
|
|
// generated code.
|
|
if (!GV)
|
|
return false;
|
|
|
|
// If the IR producer requested that this GV be treated as dso local, obey.
|
|
if (GV->isDSOLocal())
|
|
return true;
|
|
|
|
if (TT.isOSBinFormatCOFF()) {
|
|
// DLLImport explicitly marks the GV as external.
|
|
if (GV->hasDLLImportStorageClass())
|
|
return false;
|
|
|
|
// On MinGW, variables that haven't been declared with DLLImport may still
|
|
// end up automatically imported by the linker. To make this feasible,
|
|
// don't assume the variables to be DSO local unless we actually know
|
|
// that for sure. This only has to be done for variables; for functions
|
|
// the linker can insert thunks for calling functions from another DLL.
|
|
if (TT.isWindowsGNUEnvironment() && GV->isDeclarationForLinker() &&
|
|
isa<GlobalVariable>(GV))
|
|
return false;
|
|
|
|
// Don't mark 'extern_weak' symbols as DSO local. If these symbols remain
|
|
// unresolved in the link, they can be resolved to zero, which is outside
|
|
// the current DSO.
|
|
if (GV->hasExternalWeakLinkage())
|
|
return false;
|
|
|
|
// Every other GV is local on COFF.
|
|
return true;
|
|
}
|
|
|
|
if (TT.isOSBinFormatGOFF())
|
|
return true;
|
|
|
|
if (TT.isOSBinFormatMachO()) {
|
|
if (RM == Reloc::Static)
|
|
return true;
|
|
return GV->isStrongDefinitionForLinker();
|
|
}
|
|
|
|
assert(TT.isOSBinFormatELF() || TT.isOSBinFormatWasm() ||
|
|
TT.isOSBinFormatXCOFF());
|
|
return false;
|
|
}
|
|
|
|
bool TargetMachine::useEmulatedTLS() const { return Options.EmulatedTLS; }
|
|
|
|
TLSModel::Model TargetMachine::getTLSModel(const GlobalValue *GV) const {
|
|
bool IsPIE = GV->getParent()->getPIELevel() != PIELevel::Default;
|
|
Reloc::Model RM = getRelocationModel();
|
|
bool IsSharedLibrary = RM == Reloc::PIC_ && !IsPIE;
|
|
bool IsLocal = shouldAssumeDSOLocal(*GV->getParent(), GV);
|
|
|
|
TLSModel::Model Model;
|
|
if (IsSharedLibrary) {
|
|
if (IsLocal)
|
|
Model = TLSModel::LocalDynamic;
|
|
else
|
|
Model = TLSModel::GeneralDynamic;
|
|
} else {
|
|
if (IsLocal)
|
|
Model = TLSModel::LocalExec;
|
|
else
|
|
Model = TLSModel::InitialExec;
|
|
}
|
|
|
|
// If the user specified a more specific model, use that.
|
|
TLSModel::Model SelectedModel = getSelectedTLSModel(GV);
|
|
if (SelectedModel > Model)
|
|
return SelectedModel;
|
|
|
|
return Model;
|
|
}
|
|
|
|
/// Returns the optimization level: None, Less, Default, or Aggressive.
|
|
CodeGenOptLevel TargetMachine::getOptLevel() const { return OptLevel; }
|
|
|
|
void TargetMachine::setOptLevel(CodeGenOptLevel Level) { OptLevel = Level; }
|
|
|
|
TargetTransformInfo
|
|
TargetMachine::getTargetTransformInfo(const Function &F) const {
|
|
return TargetTransformInfo(F.getParent()->getDataLayout());
|
|
}
|
|
|
|
void TargetMachine::getNameWithPrefix(SmallVectorImpl<char> &Name,
|
|
const GlobalValue *GV, Mangler &Mang,
|
|
bool MayAlwaysUsePrivate) const {
|
|
if (MayAlwaysUsePrivate || !GV->hasPrivateLinkage()) {
|
|
// Simple case: If GV is not private, it is not important to find out if
|
|
// private labels are legal in this case or not.
|
|
Mang.getNameWithPrefix(Name, GV, false);
|
|
return;
|
|
}
|
|
const TargetLoweringObjectFile *TLOF = getObjFileLowering();
|
|
TLOF->getNameWithPrefix(Name, GV, *this);
|
|
}
|
|
|
|
MCSymbol *TargetMachine::getSymbol(const GlobalValue *GV) const {
|
|
const TargetLoweringObjectFile *TLOF = getObjFileLowering();
|
|
// XCOFF symbols could have special naming convention.
|
|
if (MCSymbol *TargetSymbol = TLOF->getTargetSymbol(GV, *this))
|
|
return TargetSymbol;
|
|
|
|
SmallString<128> NameStr;
|
|
getNameWithPrefix(NameStr, GV, TLOF->getMangler());
|
|
return TLOF->getContext().getOrCreateSymbol(NameStr);
|
|
}
|
|
|
|
TargetIRAnalysis TargetMachine::getTargetIRAnalysis() const {
|
|
// Since Analysis can't depend on Target, use a std::function to invert the
|
|
// dependency.
|
|
return TargetIRAnalysis(
|
|
[this](const Function &F) { return this->getTargetTransformInfo(F); });
|
|
}
|
|
|
|
std::pair<int, int> TargetMachine::parseBinutilsVersion(StringRef Version) {
|
|
if (Version == "none")
|
|
return {INT_MAX, INT_MAX}; // Make binutilsIsAtLeast() return true.
|
|
std::pair<int, int> Ret;
|
|
if (!Version.consumeInteger(10, Ret.first) && Version.consume_front("."))
|
|
Version.consumeInteger(10, Ret.second);
|
|
return Ret;
|
|
}
|