llvm-project/clang/lib/CodeGen/CoverageMappingGen.cpp
gulfemsavrun 23f895f656
[InstrProf] Single byte counters in coverage (#75425)
This patch inserts 1-byte counters instead of an 8-byte counters into
llvm profiles for source-based code coverage. The origial idea was
proposed as block-cov for PGO, and this patch repurposes that idea for
coverage: https://groups.google.com/g/llvm-dev/c/r03Z6JoN7d4

The current 8-byte counters mechanism add counters to minimal regions,
and infer the counters in the remaining regions via adding or
subtracting counters. For example, it infers the counter in the if.else
region by subtracting the counters between if.entry and if.then regions
in an if statement. Whenever there is a control-flow merge, it adds the
counters from all the incoming regions. However, we are not going to be
able to infer counters by subtracting two execution counts when using
single-byte counters. Therefore, this patch conservatively inserts
additional counters for the cases where we need to add or subtract
counters.

RFC:
https://discourse.llvm.org/t/rfc-single-byte-counters-for-source-based-code-coverage/75685
2024-02-26 14:44:55 -08:00

2457 lines
90 KiB
C++

//===--- CoverageMappingGen.cpp - Coverage mapping generation ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Instrumentation-based code coverage mapping generator
//
//===----------------------------------------------------------------------===//
#include "CoverageMappingGen.h"
#include "CodeGenFunction.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/FileManager.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Lex/Lexer.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ProfileData/Coverage/CoverageMapping.h"
#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
#include "llvm/ProfileData/Coverage/CoverageMappingWriter.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include <optional>
// This selects the coverage mapping format defined when `InstrProfData.inc`
// is textually included.
#define COVMAP_V3
namespace llvm {
cl::opt<bool>
EnableSingleByteCoverage("enable-single-byte-coverage",
llvm::cl::ZeroOrMore,
llvm::cl::desc("Enable single byte coverage"),
llvm::cl::Hidden, llvm::cl::init(false));
} // namespace llvm
static llvm::cl::opt<bool> EmptyLineCommentCoverage(
"emptyline-comment-coverage",
llvm::cl::desc("Emit emptylines and comment lines as skipped regions (only "
"disable it on test)"),
llvm::cl::init(true), llvm::cl::Hidden);
llvm::cl::opt<bool> SystemHeadersCoverage(
"system-headers-coverage",
llvm::cl::desc("Enable collecting coverage from system headers"),
llvm::cl::init(false), llvm::cl::Hidden);
using namespace clang;
using namespace CodeGen;
using namespace llvm::coverage;
CoverageSourceInfo *
CoverageMappingModuleGen::setUpCoverageCallbacks(Preprocessor &PP) {
CoverageSourceInfo *CoverageInfo =
new CoverageSourceInfo(PP.getSourceManager());
PP.addPPCallbacks(std::unique_ptr<PPCallbacks>(CoverageInfo));
if (EmptyLineCommentCoverage) {
PP.addCommentHandler(CoverageInfo);
PP.setEmptylineHandler(CoverageInfo);
PP.setPreprocessToken(true);
PP.setTokenWatcher([CoverageInfo](clang::Token Tok) {
// Update previous token location.
CoverageInfo->PrevTokLoc = Tok.getLocation();
if (Tok.getKind() != clang::tok::eod)
CoverageInfo->updateNextTokLoc(Tok.getLocation());
});
}
return CoverageInfo;
}
void CoverageSourceInfo::AddSkippedRange(SourceRange Range,
SkippedRange::Kind RangeKind) {
if (EmptyLineCommentCoverage && !SkippedRanges.empty() &&
PrevTokLoc == SkippedRanges.back().PrevTokLoc &&
SourceMgr.isWrittenInSameFile(SkippedRanges.back().Range.getEnd(),
Range.getBegin()))
SkippedRanges.back().Range.setEnd(Range.getEnd());
else
SkippedRanges.push_back({Range, RangeKind, PrevTokLoc});
}
void CoverageSourceInfo::SourceRangeSkipped(SourceRange Range, SourceLocation) {
AddSkippedRange(Range, SkippedRange::PPIfElse);
}
void CoverageSourceInfo::HandleEmptyline(SourceRange Range) {
AddSkippedRange(Range, SkippedRange::EmptyLine);
}
bool CoverageSourceInfo::HandleComment(Preprocessor &PP, SourceRange Range) {
AddSkippedRange(Range, SkippedRange::Comment);
return false;
}
void CoverageSourceInfo::updateNextTokLoc(SourceLocation Loc) {
if (!SkippedRanges.empty() && SkippedRanges.back().NextTokLoc.isInvalid())
SkippedRanges.back().NextTokLoc = Loc;
}
namespace {
/// A region of source code that can be mapped to a counter.
class SourceMappingRegion {
/// Primary Counter that is also used for Branch Regions for "True" branches.
Counter Count;
/// Secondary Counter used for Branch Regions for "False" branches.
std::optional<Counter> FalseCount;
/// Parameters used for Modified Condition/Decision Coverage
mcdc::Parameters MCDCParams;
/// The region's starting location.
std::optional<SourceLocation> LocStart;
/// The region's ending location.
std::optional<SourceLocation> LocEnd;
/// Whether this region is a gap region. The count from a gap region is set
/// as the line execution count if there are no other regions on the line.
bool GapRegion;
/// Whetever this region is skipped ('if constexpr' or 'if consteval' untaken
/// branch, or anything skipped but not empty line / comments)
bool SkippedRegion;
public:
SourceMappingRegion(Counter Count, std::optional<SourceLocation> LocStart,
std::optional<SourceLocation> LocEnd,
bool GapRegion = false)
: Count(Count), LocStart(LocStart), LocEnd(LocEnd), GapRegion(GapRegion),
SkippedRegion(false) {}
SourceMappingRegion(Counter Count, std::optional<Counter> FalseCount,
mcdc::Parameters MCDCParams,
std::optional<SourceLocation> LocStart,
std::optional<SourceLocation> LocEnd,
bool GapRegion = false)
: Count(Count), FalseCount(FalseCount), MCDCParams(MCDCParams),
LocStart(LocStart), LocEnd(LocEnd), GapRegion(GapRegion),
SkippedRegion(false) {}
SourceMappingRegion(mcdc::Parameters MCDCParams,
std::optional<SourceLocation> LocStart,
std::optional<SourceLocation> LocEnd)
: MCDCParams(MCDCParams), LocStart(LocStart), LocEnd(LocEnd),
GapRegion(false), SkippedRegion(false) {}
const Counter &getCounter() const { return Count; }
const Counter &getFalseCounter() const {
assert(FalseCount && "Region has no alternate counter");
return *FalseCount;
}
void setCounter(Counter C) { Count = C; }
bool hasStartLoc() const { return LocStart.has_value(); }
void setStartLoc(SourceLocation Loc) { LocStart = Loc; }
SourceLocation getBeginLoc() const {
assert(LocStart && "Region has no start location");
return *LocStart;
}
bool hasEndLoc() const { return LocEnd.has_value(); }
void setEndLoc(SourceLocation Loc) {
assert(Loc.isValid() && "Setting an invalid end location");
LocEnd = Loc;
}
SourceLocation getEndLoc() const {
assert(LocEnd && "Region has no end location");
return *LocEnd;
}
bool isGap() const { return GapRegion; }
void setGap(bool Gap) { GapRegion = Gap; }
bool isSkipped() const { return SkippedRegion; }
void setSkipped(bool Skipped) { SkippedRegion = Skipped; }
bool isBranch() const { return FalseCount.has_value(); }
bool isMCDCDecision() const {
const auto *DecisionParams =
std::get_if<mcdc::DecisionParameters>(&MCDCParams);
assert(!DecisionParams || DecisionParams->NumConditions > 0);
return DecisionParams;
}
const auto &getMCDCDecisionParams() const {
return mcdc::getParams<const mcdc::DecisionParameters>(MCDCParams);
}
const mcdc::Parameters &getMCDCParams() const { return MCDCParams; }
};
/// Spelling locations for the start and end of a source region.
struct SpellingRegion {
/// The line where the region starts.
unsigned LineStart;
/// The column where the region starts.
unsigned ColumnStart;
/// The line where the region ends.
unsigned LineEnd;
/// The column where the region ends.
unsigned ColumnEnd;
SpellingRegion(SourceManager &SM, SourceLocation LocStart,
SourceLocation LocEnd) {
LineStart = SM.getSpellingLineNumber(LocStart);
ColumnStart = SM.getSpellingColumnNumber(LocStart);
LineEnd = SM.getSpellingLineNumber(LocEnd);
ColumnEnd = SM.getSpellingColumnNumber(LocEnd);
}
SpellingRegion(SourceManager &SM, SourceMappingRegion &R)
: SpellingRegion(SM, R.getBeginLoc(), R.getEndLoc()) {}
/// Check if the start and end locations appear in source order, i.e
/// top->bottom, left->right.
bool isInSourceOrder() const {
return (LineStart < LineEnd) ||
(LineStart == LineEnd && ColumnStart <= ColumnEnd);
}
};
/// Provides the common functionality for the different
/// coverage mapping region builders.
class CoverageMappingBuilder {
public:
CoverageMappingModuleGen &CVM;
SourceManager &SM;
const LangOptions &LangOpts;
private:
/// Map of clang's FileIDs to IDs used for coverage mapping.
llvm::SmallDenseMap<FileID, std::pair<unsigned, SourceLocation>, 8>
FileIDMapping;
public:
/// The coverage mapping regions for this function
llvm::SmallVector<CounterMappingRegion, 32> MappingRegions;
/// The source mapping regions for this function.
std::vector<SourceMappingRegion> SourceRegions;
/// A set of regions which can be used as a filter.
///
/// It is produced by emitExpansionRegions() and is used in
/// emitSourceRegions() to suppress producing code regions if
/// the same area is covered by expansion regions.
typedef llvm::SmallSet<std::pair<SourceLocation, SourceLocation>, 8>
SourceRegionFilter;
CoverageMappingBuilder(CoverageMappingModuleGen &CVM, SourceManager &SM,
const LangOptions &LangOpts)
: CVM(CVM), SM(SM), LangOpts(LangOpts) {}
/// Return the precise end location for the given token.
SourceLocation getPreciseTokenLocEnd(SourceLocation Loc) {
// We avoid getLocForEndOfToken here, because it doesn't do what we want for
// macro locations, which we just treat as expanded files.
unsigned TokLen =
Lexer::MeasureTokenLength(SM.getSpellingLoc(Loc), SM, LangOpts);
return Loc.getLocWithOffset(TokLen);
}
/// Return the start location of an included file or expanded macro.
SourceLocation getStartOfFileOrMacro(SourceLocation Loc) {
if (Loc.isMacroID())
return Loc.getLocWithOffset(-SM.getFileOffset(Loc));
return SM.getLocForStartOfFile(SM.getFileID(Loc));
}
/// Return the end location of an included file or expanded macro.
SourceLocation getEndOfFileOrMacro(SourceLocation Loc) {
if (Loc.isMacroID())
return Loc.getLocWithOffset(SM.getFileIDSize(SM.getFileID(Loc)) -
SM.getFileOffset(Loc));
return SM.getLocForEndOfFile(SM.getFileID(Loc));
}
/// Find out where the current file is included or macro is expanded.
SourceLocation getIncludeOrExpansionLoc(SourceLocation Loc) {
return Loc.isMacroID() ? SM.getImmediateExpansionRange(Loc).getBegin()
: SM.getIncludeLoc(SM.getFileID(Loc));
}
/// Return true if \c Loc is a location in a built-in macro.
bool isInBuiltin(SourceLocation Loc) {
return SM.getBufferName(SM.getSpellingLoc(Loc)) == "<built-in>";
}
/// Check whether \c Loc is included or expanded from \c Parent.
bool isNestedIn(SourceLocation Loc, FileID Parent) {
do {
Loc = getIncludeOrExpansionLoc(Loc);
if (Loc.isInvalid())
return false;
} while (!SM.isInFileID(Loc, Parent));
return true;
}
/// Get the start of \c S ignoring macro arguments and builtin macros.
SourceLocation getStart(const Stmt *S) {
SourceLocation Loc = S->getBeginLoc();
while (SM.isMacroArgExpansion(Loc) || isInBuiltin(Loc))
Loc = SM.getImmediateExpansionRange(Loc).getBegin();
return Loc;
}
/// Get the end of \c S ignoring macro arguments and builtin macros.
SourceLocation getEnd(const Stmt *S) {
SourceLocation Loc = S->getEndLoc();
while (SM.isMacroArgExpansion(Loc) || isInBuiltin(Loc))
Loc = SM.getImmediateExpansionRange(Loc).getBegin();
return getPreciseTokenLocEnd(Loc);
}
/// Find the set of files we have regions for and assign IDs
///
/// Fills \c Mapping with the virtual file mapping needed to write out
/// coverage and collects the necessary file information to emit source and
/// expansion regions.
void gatherFileIDs(SmallVectorImpl<unsigned> &Mapping) {
FileIDMapping.clear();
llvm::SmallSet<FileID, 8> Visited;
SmallVector<std::pair<SourceLocation, unsigned>, 8> FileLocs;
for (const auto &Region : SourceRegions) {
SourceLocation Loc = Region.getBeginLoc();
FileID File = SM.getFileID(Loc);
if (!Visited.insert(File).second)
continue;
// Do not map FileID's associated with system headers unless collecting
// coverage from system headers is explicitly enabled.
if (!SystemHeadersCoverage && SM.isInSystemHeader(SM.getSpellingLoc(Loc)))
continue;
unsigned Depth = 0;
for (SourceLocation Parent = getIncludeOrExpansionLoc(Loc);
Parent.isValid(); Parent = getIncludeOrExpansionLoc(Parent))
++Depth;
FileLocs.push_back(std::make_pair(Loc, Depth));
}
llvm::stable_sort(FileLocs, llvm::less_second());
for (const auto &FL : FileLocs) {
SourceLocation Loc = FL.first;
FileID SpellingFile = SM.getDecomposedSpellingLoc(Loc).first;
auto Entry = SM.getFileEntryRefForID(SpellingFile);
if (!Entry)
continue;
FileIDMapping[SM.getFileID(Loc)] = std::make_pair(Mapping.size(), Loc);
Mapping.push_back(CVM.getFileID(*Entry));
}
}
/// Get the coverage mapping file ID for \c Loc.
///
/// If such file id doesn't exist, return std::nullopt.
std::optional<unsigned> getCoverageFileID(SourceLocation Loc) {
auto Mapping = FileIDMapping.find(SM.getFileID(Loc));
if (Mapping != FileIDMapping.end())
return Mapping->second.first;
return std::nullopt;
}
/// This shrinks the skipped range if it spans a line that contains a
/// non-comment token. If shrinking the skipped range would make it empty,
/// this returns std::nullopt.
/// Note this function can potentially be expensive because
/// getSpellingLineNumber uses getLineNumber, which is expensive.
std::optional<SpellingRegion> adjustSkippedRange(SourceManager &SM,
SourceLocation LocStart,
SourceLocation LocEnd,
SourceLocation PrevTokLoc,
SourceLocation NextTokLoc) {
SpellingRegion SR{SM, LocStart, LocEnd};
SR.ColumnStart = 1;
if (PrevTokLoc.isValid() && SM.isWrittenInSameFile(LocStart, PrevTokLoc) &&
SR.LineStart == SM.getSpellingLineNumber(PrevTokLoc))
SR.LineStart++;
if (NextTokLoc.isValid() && SM.isWrittenInSameFile(LocEnd, NextTokLoc) &&
SR.LineEnd == SM.getSpellingLineNumber(NextTokLoc)) {
SR.LineEnd--;
SR.ColumnEnd++;
}
if (SR.isInSourceOrder())
return SR;
return std::nullopt;
}
/// Gather all the regions that were skipped by the preprocessor
/// using the constructs like #if or comments.
void gatherSkippedRegions() {
/// An array of the minimum lineStarts and the maximum lineEnds
/// for mapping regions from the appropriate source files.
llvm::SmallVector<std::pair<unsigned, unsigned>, 8> FileLineRanges;
FileLineRanges.resize(
FileIDMapping.size(),
std::make_pair(std::numeric_limits<unsigned>::max(), 0));
for (const auto &R : MappingRegions) {
FileLineRanges[R.FileID].first =
std::min(FileLineRanges[R.FileID].first, R.LineStart);
FileLineRanges[R.FileID].second =
std::max(FileLineRanges[R.FileID].second, R.LineEnd);
}
auto SkippedRanges = CVM.getSourceInfo().getSkippedRanges();
for (auto &I : SkippedRanges) {
SourceRange Range = I.Range;
auto LocStart = Range.getBegin();
auto LocEnd = Range.getEnd();
assert(SM.isWrittenInSameFile(LocStart, LocEnd) &&
"region spans multiple files");
auto CovFileID = getCoverageFileID(LocStart);
if (!CovFileID)
continue;
std::optional<SpellingRegion> SR;
if (I.isComment())
SR = adjustSkippedRange(SM, LocStart, LocEnd, I.PrevTokLoc,
I.NextTokLoc);
else if (I.isPPIfElse() || I.isEmptyLine())
SR = {SM, LocStart, LocEnd};
if (!SR)
continue;
auto Region = CounterMappingRegion::makeSkipped(
*CovFileID, SR->LineStart, SR->ColumnStart, SR->LineEnd,
SR->ColumnEnd);
// Make sure that we only collect the regions that are inside
// the source code of this function.
if (Region.LineStart >= FileLineRanges[*CovFileID].first &&
Region.LineEnd <= FileLineRanges[*CovFileID].second)
MappingRegions.push_back(Region);
}
}
/// Generate the coverage counter mapping regions from collected
/// source regions.
void emitSourceRegions(const SourceRegionFilter &Filter) {
for (const auto &Region : SourceRegions) {
assert(Region.hasEndLoc() && "incomplete region");
SourceLocation LocStart = Region.getBeginLoc();
assert(SM.getFileID(LocStart).isValid() && "region in invalid file");
// Ignore regions from system headers unless collecting coverage from
// system headers is explicitly enabled.
if (!SystemHeadersCoverage &&
SM.isInSystemHeader(SM.getSpellingLoc(LocStart)))
continue;
auto CovFileID = getCoverageFileID(LocStart);
// Ignore regions that don't have a file, such as builtin macros.
if (!CovFileID)
continue;
SourceLocation LocEnd = Region.getEndLoc();
assert(SM.isWrittenInSameFile(LocStart, LocEnd) &&
"region spans multiple files");
// Don't add code regions for the area covered by expansion regions.
// This not only suppresses redundant regions, but sometimes prevents
// creating regions with wrong counters if, for example, a statement's
// body ends at the end of a nested macro.
if (Filter.count(std::make_pair(LocStart, LocEnd)))
continue;
// Find the spelling locations for the mapping region.
SpellingRegion SR{SM, LocStart, LocEnd};
assert(SR.isInSourceOrder() && "region start and end out of order");
if (Region.isGap()) {
MappingRegions.push_back(CounterMappingRegion::makeGapRegion(
Region.getCounter(), *CovFileID, SR.LineStart, SR.ColumnStart,
SR.LineEnd, SR.ColumnEnd));
} else if (Region.isSkipped()) {
MappingRegions.push_back(CounterMappingRegion::makeSkipped(
*CovFileID, SR.LineStart, SR.ColumnStart, SR.LineEnd,
SR.ColumnEnd));
} else if (Region.isBranch()) {
MappingRegions.push_back(CounterMappingRegion::makeBranchRegion(
Region.getCounter(), Region.getFalseCounter(), *CovFileID,
SR.LineStart, SR.ColumnStart, SR.LineEnd, SR.ColumnEnd,
Region.getMCDCParams()));
} else if (Region.isMCDCDecision()) {
MappingRegions.push_back(CounterMappingRegion::makeDecisionRegion(
Region.getMCDCDecisionParams(), *CovFileID, SR.LineStart,
SR.ColumnStart, SR.LineEnd, SR.ColumnEnd));
} else {
MappingRegions.push_back(CounterMappingRegion::makeRegion(
Region.getCounter(), *CovFileID, SR.LineStart, SR.ColumnStart,
SR.LineEnd, SR.ColumnEnd));
}
}
}
/// Generate expansion regions for each virtual file we've seen.
SourceRegionFilter emitExpansionRegions() {
SourceRegionFilter Filter;
for (const auto &FM : FileIDMapping) {
SourceLocation ExpandedLoc = FM.second.second;
SourceLocation ParentLoc = getIncludeOrExpansionLoc(ExpandedLoc);
if (ParentLoc.isInvalid())
continue;
auto ParentFileID = getCoverageFileID(ParentLoc);
if (!ParentFileID)
continue;
auto ExpandedFileID = getCoverageFileID(ExpandedLoc);
assert(ExpandedFileID && "expansion in uncovered file");
SourceLocation LocEnd = getPreciseTokenLocEnd(ParentLoc);
assert(SM.isWrittenInSameFile(ParentLoc, LocEnd) &&
"region spans multiple files");
Filter.insert(std::make_pair(ParentLoc, LocEnd));
SpellingRegion SR{SM, ParentLoc, LocEnd};
assert(SR.isInSourceOrder() && "region start and end out of order");
MappingRegions.push_back(CounterMappingRegion::makeExpansion(
*ParentFileID, *ExpandedFileID, SR.LineStart, SR.ColumnStart,
SR.LineEnd, SR.ColumnEnd));
}
return Filter;
}
};
/// Creates unreachable coverage regions for the functions that
/// are not emitted.
struct EmptyCoverageMappingBuilder : public CoverageMappingBuilder {
EmptyCoverageMappingBuilder(CoverageMappingModuleGen &CVM, SourceManager &SM,
const LangOptions &LangOpts)
: CoverageMappingBuilder(CVM, SM, LangOpts) {}
void VisitDecl(const Decl *D) {
if (!D->hasBody())
return;
auto Body = D->getBody();
SourceLocation Start = getStart(Body);
SourceLocation End = getEnd(Body);
if (!SM.isWrittenInSameFile(Start, End)) {
// Walk up to find the common ancestor.
// Correct the locations accordingly.
FileID StartFileID = SM.getFileID(Start);
FileID EndFileID = SM.getFileID(End);
while (StartFileID != EndFileID && !isNestedIn(End, StartFileID)) {
Start = getIncludeOrExpansionLoc(Start);
assert(Start.isValid() &&
"Declaration start location not nested within a known region");
StartFileID = SM.getFileID(Start);
}
while (StartFileID != EndFileID) {
End = getPreciseTokenLocEnd(getIncludeOrExpansionLoc(End));
assert(End.isValid() &&
"Declaration end location not nested within a known region");
EndFileID = SM.getFileID(End);
}
}
SourceRegions.emplace_back(Counter(), Start, End);
}
/// Write the mapping data to the output stream
void write(llvm::raw_ostream &OS) {
SmallVector<unsigned, 16> FileIDMapping;
gatherFileIDs(FileIDMapping);
emitSourceRegions(SourceRegionFilter());
if (MappingRegions.empty())
return;
CoverageMappingWriter Writer(FileIDMapping, std::nullopt, MappingRegions);
Writer.write(OS);
}
};
/// A wrapper object for maintaining stacks to track the resursive AST visitor
/// walks for the purpose of assigning IDs to leaf-level conditions measured by
/// MC/DC. The object is created with a reference to the MCDCBitmapMap that was
/// created during the initial AST walk. The presence of a bitmap associated
/// with a boolean expression (top-level logical operator nest) indicates that
/// the boolean expression qualified for MC/DC. The resulting condition IDs
/// are preserved in a map reference that is also provided during object
/// creation.
struct MCDCCoverageBuilder {
/// The AST walk recursively visits nested logical-AND or logical-OR binary
/// operator nodes and then visits their LHS and RHS children nodes. As this
/// happens, the algorithm will assign IDs to each operator's LHS and RHS side
/// as the walk moves deeper into the nest. At each level of the recursive
/// nest, the LHS and RHS may actually correspond to larger subtrees (not
/// leaf-conditions). If this is the case, when that node is visited, the ID
/// assigned to the subtree is re-assigned to its LHS, and a new ID is given
/// to its RHS. At the end of the walk, all leaf-level conditions will have a
/// unique ID -- keep in mind that the final set of IDs may not be in
/// numerical order from left to right.
///
/// Example: "x = (A && B) || (C && D) || (D && F)"
///
/// Visit Depth1:
/// (A && B) || (C && D) || (D && F)
/// ^-------LHS--------^ ^-RHS--^
/// ID=1 ID=2
///
/// Visit LHS-Depth2:
/// (A && B) || (C && D)
/// ^-LHS--^ ^-RHS--^
/// ID=1 ID=3
///
/// Visit LHS-Depth3:
/// (A && B)
/// LHS RHS
/// ID=1 ID=4
///
/// Visit RHS-Depth3:
/// (C && D)
/// LHS RHS
/// ID=3 ID=5
///
/// Visit RHS-Depth2: (D && F)
/// LHS RHS
/// ID=2 ID=6
///
/// Visit Depth1:
/// (A && B) || (C && D) || (D && F)
/// ID=1 ID=4 ID=3 ID=5 ID=2 ID=6
///
/// A node ID of '0' always means MC/DC isn't being tracked.
///
/// As the AST walk proceeds recursively, the algorithm will also use a stack
/// to track the IDs of logical-AND and logical-OR operations on the RHS so
/// that it can be determined which nodes are executed next, depending on how
/// a LHS or RHS of a logical-AND or logical-OR is evaluated. This
/// information relies on the assigned IDs and are embedded within the
/// coverage region IDs of each branch region associated with a leaf-level
/// condition. This information helps the visualization tool reconstruct all
/// possible test vectors for the purposes of MC/DC analysis. If a "next" node
/// ID is '0', it means it's the end of the test vector. The following rules
/// are used:
///
/// For logical-AND ("LHS && RHS"):
/// - If LHS is TRUE, execution goes to the RHS node.
/// - If LHS is FALSE, execution goes to the LHS node of the next logical-OR.
/// If that does not exist, execution exits (ID == 0).
///
/// - If RHS is TRUE, execution goes to LHS node of the next logical-AND.
/// If that does not exist, execution exits (ID == 0).
/// - If RHS is FALSE, execution goes to the LHS node of the next logical-OR.
/// If that does not exist, execution exits (ID == 0).
///
/// For logical-OR ("LHS || RHS"):
/// - If LHS is TRUE, execution goes to the LHS node of the next logical-AND.
/// If that does not exist, execution exits (ID == 0).
/// - If LHS is FALSE, execution goes to the RHS node.
///
/// - If RHS is TRUE, execution goes to LHS node of the next logical-AND.
/// If that does not exist, execution exits (ID == 0).
/// - If RHS is FALSE, execution goes to the LHS node of the next logical-OR.
/// If that does not exist, execution exits (ID == 0).
///
/// Finally, the condition IDs are also used when instrumenting the code to
/// indicate a unique offset into a temporary bitmap that represents the true
/// or false evaluation of that particular condition.
///
/// NOTE regarding the use of CodeGenFunction::stripCond(). Even though, for
/// simplicity, parentheses and unary logical-NOT operators are considered
/// part of their underlying condition for both MC/DC and branch coverage, the
/// condition IDs themselves are assigned and tracked using the underlying
/// condition itself. This is done solely for consistency since parentheses
/// and logical-NOTs are ignored when checking whether the condition is
/// actually an instrumentable condition. This can also make debugging a bit
/// easier.
private:
CodeGenModule &CGM;
llvm::SmallVector<mcdc::ConditionIDs> DecisionStack;
MCDC::State &MCDCState;
mcdc::ConditionID NextID = 0;
bool NotMapped = false;
/// Represent a sentinel value as a pair of final decisions for the bottom
// of DecisionStack.
static constexpr mcdc::ConditionIDs DecisionStackSentinel{-1, -1};
/// Is this a logical-AND operation?
bool isLAnd(const BinaryOperator *E) const {
return E->getOpcode() == BO_LAnd;
}
public:
MCDCCoverageBuilder(CodeGenModule &CGM, MCDC::State &MCDCState)
: CGM(CGM), DecisionStack(1, DecisionStackSentinel),
MCDCState(MCDCState) {}
/// Return whether the build of the control flow map is at the top-level
/// (root) of a logical operator nest in a boolean expression prior to the
/// assignment of condition IDs.
bool isIdle() const { return (NextID == 0 && !NotMapped); }
/// Return whether any IDs have been assigned in the build of the control
/// flow map, indicating that the map is being generated for this boolean
/// expression.
bool isBuilding() const { return (NextID > 0); }
/// Set the given condition's ID.
void setCondID(const Expr *Cond, mcdc::ConditionID ID) {
MCDCState.BranchByStmt[CodeGenFunction::stripCond(Cond)].ID = ID;
}
/// Return the ID of a given condition.
mcdc::ConditionID getCondID(const Expr *Cond) const {
auto I = MCDCState.BranchByStmt.find(CodeGenFunction::stripCond(Cond));
if (I == MCDCState.BranchByStmt.end())
return -1;
else
return I->second.ID;
}
/// Return the LHS Decision ([0,0] if not set).
const mcdc::ConditionIDs &back() const { return DecisionStack.back(); }
/// Push the binary operator statement to track the nest level and assign IDs
/// to the operator's LHS and RHS. The RHS may be a larger subtree that is
/// broken up on successive levels.
void pushAndAssignIDs(const BinaryOperator *E) {
if (!CGM.getCodeGenOpts().MCDCCoverage)
return;
// If binary expression is disqualified, don't do mapping.
if (!isBuilding() &&
!MCDCState.DecisionByStmt.contains(CodeGenFunction::stripCond(E)))
NotMapped = true;
// Don't go any further if we don't need to map condition IDs.
if (NotMapped)
return;
const mcdc::ConditionIDs &ParentDecision = DecisionStack.back();
// If the operator itself has an assigned ID, this means it represents a
// larger subtree. In this case, assign that ID to its LHS node. Its RHS
// will receive a new ID below. Otherwise, assign ID+1 to LHS.
if (MCDCState.BranchByStmt.contains(CodeGenFunction::stripCond(E)))
setCondID(E->getLHS(), getCondID(E));
else
setCondID(E->getLHS(), NextID++);
// Assign a ID+1 for the RHS.
mcdc::ConditionID RHSid = NextID++;
setCondID(E->getRHS(), RHSid);
// Push the LHS decision IDs onto the DecisionStack.
if (isLAnd(E))
DecisionStack.push_back({ParentDecision[false], RHSid});
else
DecisionStack.push_back({RHSid, ParentDecision[true]});
}
/// Pop and return the LHS Decision ([0,0] if not set).
mcdc::ConditionIDs pop() {
if (!CGM.getCodeGenOpts().MCDCCoverage || NotMapped)
return DecisionStackSentinel;
assert(DecisionStack.size() > 1);
return DecisionStack.pop_back_val();
}
/// Return the total number of conditions and reset the state. The number of
/// conditions is zero if the expression isn't mapped.
unsigned getTotalConditionsAndReset(const BinaryOperator *E) {
if (!CGM.getCodeGenOpts().MCDCCoverage)
return 0;
assert(!isIdle());
assert(DecisionStack.size() == 1);
// Reset state if not doing mapping.
if (NotMapped) {
NotMapped = false;
assert(NextID == 0);
return 0;
}
// Set number of conditions and reset.
unsigned TotalConds = NextID;
// Reset ID back to beginning.
NextID = 0;
return TotalConds;
}
};
/// A StmtVisitor that creates coverage mapping regions which map
/// from the source code locations to the PGO counters.
struct CounterCoverageMappingBuilder
: public CoverageMappingBuilder,
public ConstStmtVisitor<CounterCoverageMappingBuilder> {
/// The map of statements to count values.
llvm::DenseMap<const Stmt *, unsigned> &CounterMap;
MCDC::State &MCDCState;
/// A stack of currently live regions.
llvm::SmallVector<SourceMappingRegion> RegionStack;
/// An object to manage MCDC regions.
MCDCCoverageBuilder MCDCBuilder;
CounterExpressionBuilder Builder;
/// A location in the most recently visited file or macro.
///
/// This is used to adjust the active source regions appropriately when
/// expressions cross file or macro boundaries.
SourceLocation MostRecentLocation;
/// Whether the visitor at a terminate statement.
bool HasTerminateStmt = false;
/// Gap region counter after terminate statement.
Counter GapRegionCounter;
/// Return a counter for the subtraction of \c RHS from \c LHS
Counter subtractCounters(Counter LHS, Counter RHS, bool Simplify = true) {
assert(!llvm::EnableSingleByteCoverage &&
"cannot add counters when single byte coverage mode is enabled");
return Builder.subtract(LHS, RHS, Simplify);
}
/// Return a counter for the sum of \c LHS and \c RHS.
Counter addCounters(Counter LHS, Counter RHS, bool Simplify = true) {
assert(!llvm::EnableSingleByteCoverage &&
"cannot add counters when single byte coverage mode is enabled");
return Builder.add(LHS, RHS, Simplify);
}
Counter addCounters(Counter C1, Counter C2, Counter C3,
bool Simplify = true) {
assert(!llvm::EnableSingleByteCoverage &&
"cannot add counters when single byte coverage mode is enabled");
return addCounters(addCounters(C1, C2, Simplify), C3, Simplify);
}
/// Return the region counter for the given statement.
///
/// This should only be called on statements that have a dedicated counter.
Counter getRegionCounter(const Stmt *S) {
return Counter::getCounter(CounterMap[S]);
}
/// Push a region onto the stack.
///
/// Returns the index on the stack where the region was pushed. This can be
/// used with popRegions to exit a "scope", ending the region that was pushed.
size_t pushRegion(Counter Count,
std::optional<SourceLocation> StartLoc = std::nullopt,
std::optional<SourceLocation> EndLoc = std::nullopt,
std::optional<Counter> FalseCount = std::nullopt,
const mcdc::Parameters &BranchParams = std::monostate()) {
if (StartLoc && !FalseCount) {
MostRecentLocation = *StartLoc;
}
// If either of these locations is invalid, something elsewhere in the
// compiler has broken.
assert((!StartLoc || StartLoc->isValid()) && "Start location is not valid");
assert((!EndLoc || EndLoc->isValid()) && "End location is not valid");
// However, we can still recover without crashing.
// If either location is invalid, set it to std::nullopt to avoid
// letting users of RegionStack think that region has a valid start/end
// location.
if (StartLoc && StartLoc->isInvalid())
StartLoc = std::nullopt;
if (EndLoc && EndLoc->isInvalid())
EndLoc = std::nullopt;
RegionStack.emplace_back(Count, FalseCount, BranchParams, StartLoc, EndLoc);
return RegionStack.size() - 1;
}
size_t pushRegion(const mcdc::DecisionParameters &DecisionParams,
std::optional<SourceLocation> StartLoc = std::nullopt,
std::optional<SourceLocation> EndLoc = std::nullopt) {
RegionStack.emplace_back(DecisionParams, StartLoc, EndLoc);
return RegionStack.size() - 1;
}
size_t locationDepth(SourceLocation Loc) {
size_t Depth = 0;
while (Loc.isValid()) {
Loc = getIncludeOrExpansionLoc(Loc);
Depth++;
}
return Depth;
}
/// Pop regions from the stack into the function's list of regions.
///
/// Adds all regions from \c ParentIndex to the top of the stack to the
/// function's \c SourceRegions.
void popRegions(size_t ParentIndex) {
assert(RegionStack.size() >= ParentIndex && "parent not in stack");
while (RegionStack.size() > ParentIndex) {
SourceMappingRegion &Region = RegionStack.back();
if (Region.hasStartLoc() &&
(Region.hasEndLoc() || RegionStack[ParentIndex].hasEndLoc())) {
SourceLocation StartLoc = Region.getBeginLoc();
SourceLocation EndLoc = Region.hasEndLoc()
? Region.getEndLoc()
: RegionStack[ParentIndex].getEndLoc();
bool isBranch = Region.isBranch();
size_t StartDepth = locationDepth(StartLoc);
size_t EndDepth = locationDepth(EndLoc);
while (!SM.isWrittenInSameFile(StartLoc, EndLoc)) {
bool UnnestStart = StartDepth >= EndDepth;
bool UnnestEnd = EndDepth >= StartDepth;
if (UnnestEnd) {
// The region ends in a nested file or macro expansion. If the
// region is not a branch region, create a separate region for each
// expansion, and for all regions, update the EndLoc. Branch
// regions should not be split in order to keep a straightforward
// correspondance between the region and its associated branch
// condition, even if the condition spans multiple depths.
SourceLocation NestedLoc = getStartOfFileOrMacro(EndLoc);
assert(SM.isWrittenInSameFile(NestedLoc, EndLoc));
if (!isBranch && !isRegionAlreadyAdded(NestedLoc, EndLoc))
SourceRegions.emplace_back(Region.getCounter(), NestedLoc,
EndLoc);
EndLoc = getPreciseTokenLocEnd(getIncludeOrExpansionLoc(EndLoc));
if (EndLoc.isInvalid())
llvm::report_fatal_error(
"File exit not handled before popRegions");
EndDepth--;
}
if (UnnestStart) {
// The region ends in a nested file or macro expansion. If the
// region is not a branch region, create a separate region for each
// expansion, and for all regions, update the StartLoc. Branch
// regions should not be split in order to keep a straightforward
// correspondance between the region and its associated branch
// condition, even if the condition spans multiple depths.
SourceLocation NestedLoc = getEndOfFileOrMacro(StartLoc);
assert(SM.isWrittenInSameFile(StartLoc, NestedLoc));
if (!isBranch && !isRegionAlreadyAdded(StartLoc, NestedLoc))
SourceRegions.emplace_back(Region.getCounter(), StartLoc,
NestedLoc);
StartLoc = getIncludeOrExpansionLoc(StartLoc);
if (StartLoc.isInvalid())
llvm::report_fatal_error(
"File exit not handled before popRegions");
StartDepth--;
}
}
Region.setStartLoc(StartLoc);
Region.setEndLoc(EndLoc);
if (!isBranch) {
MostRecentLocation = EndLoc;
// If this region happens to span an entire expansion, we need to
// make sure we don't overlap the parent region with it.
if (StartLoc == getStartOfFileOrMacro(StartLoc) &&
EndLoc == getEndOfFileOrMacro(EndLoc))
MostRecentLocation = getIncludeOrExpansionLoc(EndLoc);
}
assert(SM.isWrittenInSameFile(Region.getBeginLoc(), EndLoc));
assert(SpellingRegion(SM, Region).isInSourceOrder());
SourceRegions.push_back(Region);
}
RegionStack.pop_back();
}
}
/// Return the currently active region.
SourceMappingRegion &getRegion() {
assert(!RegionStack.empty() && "statement has no region");
return RegionStack.back();
}
/// Propagate counts through the children of \p S if \p VisitChildren is true.
/// Otherwise, only emit a count for \p S itself.
Counter propagateCounts(Counter TopCount, const Stmt *S,
bool VisitChildren = true) {
SourceLocation StartLoc = getStart(S);
SourceLocation EndLoc = getEnd(S);
size_t Index = pushRegion(TopCount, StartLoc, EndLoc);
if (VisitChildren)
Visit(S);
Counter ExitCount = getRegion().getCounter();
popRegions(Index);
// The statement may be spanned by an expansion. Make sure we handle a file
// exit out of this expansion before moving to the next statement.
if (SM.isBeforeInTranslationUnit(StartLoc, S->getBeginLoc()))
MostRecentLocation = EndLoc;
return ExitCount;
}
/// Determine whether the given condition can be constant folded.
bool ConditionFoldsToBool(const Expr *Cond) {
Expr::EvalResult Result;
return (Cond->EvaluateAsInt(Result, CVM.getCodeGenModule().getContext()));
}
/// Create a Branch Region around an instrumentable condition for coverage
/// and add it to the function's SourceRegions. A branch region tracks a
/// "True" counter and a "False" counter for boolean expressions that
/// result in the generation of a branch.
void createBranchRegion(const Expr *C, Counter TrueCnt, Counter FalseCnt,
const mcdc::ConditionIDs &Conds = {}) {
// Check for NULL conditions.
if (!C)
return;
// Ensure we are an instrumentable condition (i.e. no "&&" or "||"). Push
// region onto RegionStack but immediately pop it (which adds it to the
// function's SourceRegions) because it doesn't apply to any other source
// code other than the Condition.
if (CodeGenFunction::isInstrumentedCondition(C)) {
mcdc::Parameters BranchParams;
mcdc::ConditionID ID = MCDCBuilder.getCondID(C);
if (ID >= 0)
BranchParams = mcdc::BranchParameters{ID, Conds};
// If a condition can fold to true or false, the corresponding branch
// will be removed. Create a region with both counters hard-coded to
// zero. This allows us to visualize them in a special way.
// Alternatively, we can prevent any optimization done via
// constant-folding by ensuring that ConstantFoldsToSimpleInteger() in
// CodeGenFunction.c always returns false, but that is very heavy-handed.
if (ConditionFoldsToBool(C))
popRegions(pushRegion(Counter::getZero(), getStart(C), getEnd(C),
Counter::getZero(), BranchParams));
else
// Otherwise, create a region with the True counter and False counter.
popRegions(pushRegion(TrueCnt, getStart(C), getEnd(C), FalseCnt,
BranchParams));
}
}
/// Create a Decision Region with a BitmapIdx and number of Conditions. This
/// type of region "contains" branch regions, one for each of the conditions.
/// The visualization tool will group everything together.
void createDecisionRegion(const Expr *C,
const mcdc::DecisionParameters &DecisionParams) {
popRegions(pushRegion(DecisionParams, getStart(C), getEnd(C)));
}
/// Create a Branch Region around a SwitchCase for code coverage
/// and add it to the function's SourceRegions.
void createSwitchCaseRegion(const SwitchCase *SC, Counter TrueCnt,
Counter FalseCnt) {
// Push region onto RegionStack but immediately pop it (which adds it to
// the function's SourceRegions) because it doesn't apply to any other
// source other than the SwitchCase.
popRegions(pushRegion(TrueCnt, getStart(SC), SC->getColonLoc(), FalseCnt));
}
/// Check whether a region with bounds \c StartLoc and \c EndLoc
/// is already added to \c SourceRegions.
bool isRegionAlreadyAdded(SourceLocation StartLoc, SourceLocation EndLoc,
bool isBranch = false) {
return llvm::any_of(
llvm::reverse(SourceRegions), [&](const SourceMappingRegion &Region) {
return Region.getBeginLoc() == StartLoc &&
Region.getEndLoc() == EndLoc && Region.isBranch() == isBranch;
});
}
/// Adjust the most recently visited location to \c EndLoc.
///
/// This should be used after visiting any statements in non-source order.
void adjustForOutOfOrderTraversal(SourceLocation EndLoc) {
MostRecentLocation = EndLoc;
// The code region for a whole macro is created in handleFileExit() when
// it detects exiting of the virtual file of that macro. If we visited
// statements in non-source order, we might already have such a region
// added, for example, if a body of a loop is divided among multiple
// macros. Avoid adding duplicate regions in such case.
if (getRegion().hasEndLoc() &&
MostRecentLocation == getEndOfFileOrMacro(MostRecentLocation) &&
isRegionAlreadyAdded(getStartOfFileOrMacro(MostRecentLocation),
MostRecentLocation, getRegion().isBranch()))
MostRecentLocation = getIncludeOrExpansionLoc(MostRecentLocation);
}
/// Adjust regions and state when \c NewLoc exits a file.
///
/// If moving from our most recently tracked location to \c NewLoc exits any
/// files, this adjusts our current region stack and creates the file regions
/// for the exited file.
void handleFileExit(SourceLocation NewLoc) {
if (NewLoc.isInvalid() ||
SM.isWrittenInSameFile(MostRecentLocation, NewLoc))
return;
// If NewLoc is not in a file that contains MostRecentLocation, walk up to
// find the common ancestor.
SourceLocation LCA = NewLoc;
FileID ParentFile = SM.getFileID(LCA);
while (!isNestedIn(MostRecentLocation, ParentFile)) {
LCA = getIncludeOrExpansionLoc(LCA);
if (LCA.isInvalid() || SM.isWrittenInSameFile(LCA, MostRecentLocation)) {
// Since there isn't a common ancestor, no file was exited. We just need
// to adjust our location to the new file.
MostRecentLocation = NewLoc;
return;
}
ParentFile = SM.getFileID(LCA);
}
llvm::SmallSet<SourceLocation, 8> StartLocs;
std::optional<Counter> ParentCounter;
for (SourceMappingRegion &I : llvm::reverse(RegionStack)) {
if (!I.hasStartLoc())
continue;
SourceLocation Loc = I.getBeginLoc();
if (!isNestedIn(Loc, ParentFile)) {
ParentCounter = I.getCounter();
break;
}
while (!SM.isInFileID(Loc, ParentFile)) {
// The most nested region for each start location is the one with the
// correct count. We avoid creating redundant regions by stopping once
// we've seen this region.
if (StartLocs.insert(Loc).second) {
if (I.isBranch())
SourceRegions.emplace_back(I.getCounter(), I.getFalseCounter(),
I.getMCDCParams(), Loc,
getEndOfFileOrMacro(Loc), I.isBranch());
else
SourceRegions.emplace_back(I.getCounter(), Loc,
getEndOfFileOrMacro(Loc));
}
Loc = getIncludeOrExpansionLoc(Loc);
}
I.setStartLoc(getPreciseTokenLocEnd(Loc));
}
if (ParentCounter) {
// If the file is contained completely by another region and doesn't
// immediately start its own region, the whole file gets a region
// corresponding to the parent.
SourceLocation Loc = MostRecentLocation;
while (isNestedIn(Loc, ParentFile)) {
SourceLocation FileStart = getStartOfFileOrMacro(Loc);
if (StartLocs.insert(FileStart).second) {
SourceRegions.emplace_back(*ParentCounter, FileStart,
getEndOfFileOrMacro(Loc));
assert(SpellingRegion(SM, SourceRegions.back()).isInSourceOrder());
}
Loc = getIncludeOrExpansionLoc(Loc);
}
}
MostRecentLocation = NewLoc;
}
/// Ensure that \c S is included in the current region.
void extendRegion(const Stmt *S) {
SourceMappingRegion &Region = getRegion();
SourceLocation StartLoc = getStart(S);
handleFileExit(StartLoc);
if (!Region.hasStartLoc())
Region.setStartLoc(StartLoc);
}
/// Mark \c S as a terminator, starting a zero region.
void terminateRegion(const Stmt *S) {
extendRegion(S);
SourceMappingRegion &Region = getRegion();
SourceLocation EndLoc = getEnd(S);
if (!Region.hasEndLoc())
Region.setEndLoc(EndLoc);
pushRegion(Counter::getZero());
HasTerminateStmt = true;
}
/// Find a valid gap range between \p AfterLoc and \p BeforeLoc.
std::optional<SourceRange> findGapAreaBetween(SourceLocation AfterLoc,
SourceLocation BeforeLoc) {
// If AfterLoc is in function-like macro, use the right parenthesis
// location.
if (AfterLoc.isMacroID()) {
FileID FID = SM.getFileID(AfterLoc);
const SrcMgr::ExpansionInfo *EI = &SM.getSLocEntry(FID).getExpansion();
if (EI->isFunctionMacroExpansion())
AfterLoc = EI->getExpansionLocEnd();
}
size_t StartDepth = locationDepth(AfterLoc);
size_t EndDepth = locationDepth(BeforeLoc);
while (!SM.isWrittenInSameFile(AfterLoc, BeforeLoc)) {
bool UnnestStart = StartDepth >= EndDepth;
bool UnnestEnd = EndDepth >= StartDepth;
if (UnnestEnd) {
assert(SM.isWrittenInSameFile(getStartOfFileOrMacro(BeforeLoc),
BeforeLoc));
BeforeLoc = getIncludeOrExpansionLoc(BeforeLoc);
assert(BeforeLoc.isValid());
EndDepth--;
}
if (UnnestStart) {
assert(SM.isWrittenInSameFile(AfterLoc,
getEndOfFileOrMacro(AfterLoc)));
AfterLoc = getIncludeOrExpansionLoc(AfterLoc);
assert(AfterLoc.isValid());
AfterLoc = getPreciseTokenLocEnd(AfterLoc);
assert(AfterLoc.isValid());
StartDepth--;
}
}
AfterLoc = getPreciseTokenLocEnd(AfterLoc);
// If the start and end locations of the gap are both within the same macro
// file, the range may not be in source order.
if (AfterLoc.isMacroID() || BeforeLoc.isMacroID())
return std::nullopt;
if (!SM.isWrittenInSameFile(AfterLoc, BeforeLoc) ||
!SpellingRegion(SM, AfterLoc, BeforeLoc).isInSourceOrder())
return std::nullopt;
return {{AfterLoc, BeforeLoc}};
}
/// Emit a gap region between \p StartLoc and \p EndLoc with the given count.
void fillGapAreaWithCount(SourceLocation StartLoc, SourceLocation EndLoc,
Counter Count) {
if (StartLoc == EndLoc)
return;
assert(SpellingRegion(SM, StartLoc, EndLoc).isInSourceOrder());
handleFileExit(StartLoc);
size_t Index = pushRegion(Count, StartLoc, EndLoc);
getRegion().setGap(true);
handleFileExit(EndLoc);
popRegions(Index);
}
/// Find a valid range starting with \p StartingLoc and ending before \p
/// BeforeLoc.
std::optional<SourceRange> findAreaStartingFromTo(SourceLocation StartingLoc,
SourceLocation BeforeLoc) {
// If StartingLoc is in function-like macro, use its start location.
if (StartingLoc.isMacroID()) {
FileID FID = SM.getFileID(StartingLoc);
const SrcMgr::ExpansionInfo *EI = &SM.getSLocEntry(FID).getExpansion();
if (EI->isFunctionMacroExpansion())
StartingLoc = EI->getExpansionLocStart();
}
size_t StartDepth = locationDepth(StartingLoc);
size_t EndDepth = locationDepth(BeforeLoc);
while (!SM.isWrittenInSameFile(StartingLoc, BeforeLoc)) {
bool UnnestStart = StartDepth >= EndDepth;
bool UnnestEnd = EndDepth >= StartDepth;
if (UnnestEnd) {
assert(SM.isWrittenInSameFile(getStartOfFileOrMacro(BeforeLoc),
BeforeLoc));
BeforeLoc = getIncludeOrExpansionLoc(BeforeLoc);
assert(BeforeLoc.isValid());
EndDepth--;
}
if (UnnestStart) {
assert(SM.isWrittenInSameFile(StartingLoc,
getStartOfFileOrMacro(StartingLoc)));
StartingLoc = getIncludeOrExpansionLoc(StartingLoc);
assert(StartingLoc.isValid());
StartDepth--;
}
}
// If the start and end locations of the gap are both within the same macro
// file, the range may not be in source order.
if (StartingLoc.isMacroID() || BeforeLoc.isMacroID())
return std::nullopt;
if (!SM.isWrittenInSameFile(StartingLoc, BeforeLoc) ||
!SpellingRegion(SM, StartingLoc, BeforeLoc).isInSourceOrder())
return std::nullopt;
return {{StartingLoc, BeforeLoc}};
}
void markSkipped(SourceLocation StartLoc, SourceLocation BeforeLoc) {
const auto Skipped = findAreaStartingFromTo(StartLoc, BeforeLoc);
if (!Skipped)
return;
const auto NewStartLoc = Skipped->getBegin();
const auto EndLoc = Skipped->getEnd();
if (NewStartLoc == EndLoc)
return;
assert(SpellingRegion(SM, NewStartLoc, EndLoc).isInSourceOrder());
handleFileExit(NewStartLoc);
size_t Index = pushRegion(Counter{}, NewStartLoc, EndLoc);
getRegion().setSkipped(true);
handleFileExit(EndLoc);
popRegions(Index);
}
/// Keep counts of breaks and continues inside loops.
struct BreakContinue {
Counter BreakCount;
Counter ContinueCount;
};
SmallVector<BreakContinue, 8> BreakContinueStack;
CounterCoverageMappingBuilder(
CoverageMappingModuleGen &CVM,
llvm::DenseMap<const Stmt *, unsigned> &CounterMap,
MCDC::State &MCDCState, SourceManager &SM, const LangOptions &LangOpts)
: CoverageMappingBuilder(CVM, SM, LangOpts), CounterMap(CounterMap),
MCDCState(MCDCState), MCDCBuilder(CVM.getCodeGenModule(), MCDCState) {}
/// Write the mapping data to the output stream
void write(llvm::raw_ostream &OS) {
llvm::SmallVector<unsigned, 8> VirtualFileMapping;
gatherFileIDs(VirtualFileMapping);
SourceRegionFilter Filter = emitExpansionRegions();
emitSourceRegions(Filter);
gatherSkippedRegions();
if (MappingRegions.empty())
return;
CoverageMappingWriter Writer(VirtualFileMapping, Builder.getExpressions(),
MappingRegions);
Writer.write(OS);
}
void VisitStmt(const Stmt *S) {
if (S->getBeginLoc().isValid())
extendRegion(S);
const Stmt *LastStmt = nullptr;
bool SaveTerminateStmt = HasTerminateStmt;
HasTerminateStmt = false;
GapRegionCounter = Counter::getZero();
for (const Stmt *Child : S->children())
if (Child) {
// If last statement contains terminate statements, add a gap area
// between the two statements. Skipping attributed statements, because
// they don't have valid start location.
if (LastStmt && HasTerminateStmt && !isa<AttributedStmt>(Child)) {
auto Gap = findGapAreaBetween(getEnd(LastStmt), getStart(Child));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(),
GapRegionCounter);
SaveTerminateStmt = true;
HasTerminateStmt = false;
}
this->Visit(Child);
LastStmt = Child;
}
if (SaveTerminateStmt)
HasTerminateStmt = true;
handleFileExit(getEnd(S));
}
void VisitDecl(const Decl *D) {
Stmt *Body = D->getBody();
// Do not propagate region counts into system headers unless collecting
// coverage from system headers is explicitly enabled.
if (!SystemHeadersCoverage && Body &&
SM.isInSystemHeader(SM.getSpellingLoc(getStart(Body))))
return;
// Do not visit the artificial children nodes of defaulted methods. The
// lexer may not be able to report back precise token end locations for
// these children nodes (llvm.org/PR39822), and moreover users will not be
// able to see coverage for them.
Counter BodyCounter = getRegionCounter(Body);
bool Defaulted = false;
if (auto *Method = dyn_cast<CXXMethodDecl>(D))
Defaulted = Method->isDefaulted();
if (auto *Ctor = dyn_cast<CXXConstructorDecl>(D)) {
for (auto *Initializer : Ctor->inits()) {
if (Initializer->isWritten()) {
auto *Init = Initializer->getInit();
if (getStart(Init).isValid() && getEnd(Init).isValid())
propagateCounts(BodyCounter, Init);
}
}
}
propagateCounts(BodyCounter, Body,
/*VisitChildren=*/!Defaulted);
assert(RegionStack.empty() && "Regions entered but never exited");
}
void VisitReturnStmt(const ReturnStmt *S) {
extendRegion(S);
if (S->getRetValue())
Visit(S->getRetValue());
terminateRegion(S);
}
void VisitCoroutineBodyStmt(const CoroutineBodyStmt *S) {
extendRegion(S);
Visit(S->getBody());
}
void VisitCoreturnStmt(const CoreturnStmt *S) {
extendRegion(S);
if (S->getOperand())
Visit(S->getOperand());
terminateRegion(S);
}
void VisitCXXThrowExpr(const CXXThrowExpr *E) {
extendRegion(E);
if (E->getSubExpr())
Visit(E->getSubExpr());
terminateRegion(E);
}
void VisitGotoStmt(const GotoStmt *S) { terminateRegion(S); }
void VisitLabelStmt(const LabelStmt *S) {
Counter LabelCount = getRegionCounter(S);
SourceLocation Start = getStart(S);
// We can't extendRegion here or we risk overlapping with our new region.
handleFileExit(Start);
pushRegion(LabelCount, Start);
Visit(S->getSubStmt());
}
void VisitBreakStmt(const BreakStmt *S) {
assert(!BreakContinueStack.empty() && "break not in a loop or switch!");
if (!llvm::EnableSingleByteCoverage)
BreakContinueStack.back().BreakCount = addCounters(
BreakContinueStack.back().BreakCount, getRegion().getCounter());
// FIXME: a break in a switch should terminate regions for all preceding
// case statements, not just the most recent one.
terminateRegion(S);
}
void VisitContinueStmt(const ContinueStmt *S) {
assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
if (!llvm::EnableSingleByteCoverage)
BreakContinueStack.back().ContinueCount = addCounters(
BreakContinueStack.back().ContinueCount, getRegion().getCounter());
terminateRegion(S);
}
void VisitCallExpr(const CallExpr *E) {
VisitStmt(E);
// Terminate the region when we hit a noreturn function.
// (This is helpful dealing with switch statements.)
QualType CalleeType = E->getCallee()->getType();
if (getFunctionExtInfo(*CalleeType).getNoReturn())
terminateRegion(E);
}
void VisitWhileStmt(const WhileStmt *S) {
extendRegion(S);
Counter ParentCount = getRegion().getCounter();
Counter BodyCount = llvm::EnableSingleByteCoverage
? getRegionCounter(S->getBody())
: getRegionCounter(S);
// Handle the body first so that we can get the backedge count.
BreakContinueStack.push_back(BreakContinue());
extendRegion(S->getBody());
Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
BreakContinue BC = BreakContinueStack.pop_back_val();
bool BodyHasTerminateStmt = HasTerminateStmt;
HasTerminateStmt = false;
// Go back to handle the condition.
Counter CondCount =
llvm::EnableSingleByteCoverage
? getRegionCounter(S->getCond())
: addCounters(ParentCount, BackedgeCount, BC.ContinueCount);
propagateCounts(CondCount, S->getCond());
adjustForOutOfOrderTraversal(getEnd(S));
// The body count applies to the area immediately after the increment.
auto Gap = findGapAreaBetween(S->getRParenLoc(), getStart(S->getBody()));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount);
Counter OutCount =
llvm::EnableSingleByteCoverage
? getRegionCounter(S)
: addCounters(BC.BreakCount,
subtractCounters(CondCount, BodyCount));
if (OutCount != ParentCount) {
pushRegion(OutCount);
GapRegionCounter = OutCount;
if (BodyHasTerminateStmt)
HasTerminateStmt = true;
}
// Create Branch Region around condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(S->getCond(), BodyCount,
subtractCounters(CondCount, BodyCount));
}
void VisitDoStmt(const DoStmt *S) {
extendRegion(S);
Counter ParentCount = getRegion().getCounter();
Counter BodyCount = llvm::EnableSingleByteCoverage
? getRegionCounter(S->getBody())
: getRegionCounter(S);
BreakContinueStack.push_back(BreakContinue());
extendRegion(S->getBody());
Counter BackedgeCount;
if (llvm::EnableSingleByteCoverage)
propagateCounts(BodyCount, S->getBody());
else
BackedgeCount =
propagateCounts(addCounters(ParentCount, BodyCount), S->getBody());
BreakContinue BC = BreakContinueStack.pop_back_val();
bool BodyHasTerminateStmt = HasTerminateStmt;
HasTerminateStmt = false;
Counter CondCount = llvm::EnableSingleByteCoverage
? getRegionCounter(S->getCond())
: addCounters(BackedgeCount, BC.ContinueCount);
propagateCounts(CondCount, S->getCond());
Counter OutCount =
llvm::EnableSingleByteCoverage
? getRegionCounter(S)
: addCounters(BC.BreakCount,
subtractCounters(CondCount, BodyCount));
if (OutCount != ParentCount) {
pushRegion(OutCount);
GapRegionCounter = OutCount;
}
// Create Branch Region around condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(S->getCond(), BodyCount,
subtractCounters(CondCount, BodyCount));
if (BodyHasTerminateStmt)
HasTerminateStmt = true;
}
void VisitForStmt(const ForStmt *S) {
extendRegion(S);
if (S->getInit())
Visit(S->getInit());
Counter ParentCount = getRegion().getCounter();
Counter BodyCount = llvm::EnableSingleByteCoverage
? getRegionCounter(S->getBody())
: getRegionCounter(S);
// The loop increment may contain a break or continue.
if (S->getInc())
BreakContinueStack.emplace_back();
// Handle the body first so that we can get the backedge count.
BreakContinueStack.emplace_back();
extendRegion(S->getBody());
Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
BreakContinue BodyBC = BreakContinueStack.pop_back_val();
bool BodyHasTerminateStmt = HasTerminateStmt;
HasTerminateStmt = false;
// The increment is essentially part of the body but it needs to include
// the count for all the continue statements.
BreakContinue IncrementBC;
if (const Stmt *Inc = S->getInc()) {
Counter IncCount;
if (llvm::EnableSingleByteCoverage)
IncCount = getRegionCounter(S->getInc());
else
IncCount = addCounters(BackedgeCount, BodyBC.ContinueCount);
propagateCounts(IncCount, Inc);
IncrementBC = BreakContinueStack.pop_back_val();
}
// Go back to handle the condition.
Counter CondCount =
llvm::EnableSingleByteCoverage
? getRegionCounter(S->getCond())
: addCounters(
addCounters(ParentCount, BackedgeCount, BodyBC.ContinueCount),
IncrementBC.ContinueCount);
if (const Expr *Cond = S->getCond()) {
propagateCounts(CondCount, Cond);
adjustForOutOfOrderTraversal(getEnd(S));
}
// The body count applies to the area immediately after the increment.
auto Gap = findGapAreaBetween(S->getRParenLoc(), getStart(S->getBody()));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount);
Counter OutCount =
llvm::EnableSingleByteCoverage
? getRegionCounter(S)
: addCounters(BodyBC.BreakCount, IncrementBC.BreakCount,
subtractCounters(CondCount, BodyCount));
if (OutCount != ParentCount) {
pushRegion(OutCount);
GapRegionCounter = OutCount;
if (BodyHasTerminateStmt)
HasTerminateStmt = true;
}
// Create Branch Region around condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(S->getCond(), BodyCount,
subtractCounters(CondCount, BodyCount));
}
void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
extendRegion(S);
if (S->getInit())
Visit(S->getInit());
Visit(S->getLoopVarStmt());
Visit(S->getRangeStmt());
Counter ParentCount = getRegion().getCounter();
Counter BodyCount = llvm::EnableSingleByteCoverage
? getRegionCounter(S->getBody())
: getRegionCounter(S);
BreakContinueStack.push_back(BreakContinue());
extendRegion(S->getBody());
Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
BreakContinue BC = BreakContinueStack.pop_back_val();
bool BodyHasTerminateStmt = HasTerminateStmt;
HasTerminateStmt = false;
// The body count applies to the area immediately after the range.
auto Gap = findGapAreaBetween(S->getRParenLoc(), getStart(S->getBody()));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount);
Counter OutCount;
Counter LoopCount;
if (llvm::EnableSingleByteCoverage)
OutCount = getRegionCounter(S);
else {
LoopCount = addCounters(ParentCount, BackedgeCount, BC.ContinueCount);
OutCount =
addCounters(BC.BreakCount, subtractCounters(LoopCount, BodyCount));
}
if (OutCount != ParentCount) {
pushRegion(OutCount);
GapRegionCounter = OutCount;
if (BodyHasTerminateStmt)
HasTerminateStmt = true;
}
// Create Branch Region around condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(S->getCond(), BodyCount,
subtractCounters(LoopCount, BodyCount));
}
void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
extendRegion(S);
Visit(S->getElement());
Counter ParentCount = getRegion().getCounter();
Counter BodyCount = getRegionCounter(S);
BreakContinueStack.push_back(BreakContinue());
extendRegion(S->getBody());
Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
BreakContinue BC = BreakContinueStack.pop_back_val();
// The body count applies to the area immediately after the collection.
auto Gap = findGapAreaBetween(S->getRParenLoc(), getStart(S->getBody()));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount);
Counter LoopCount =
addCounters(ParentCount, BackedgeCount, BC.ContinueCount);
Counter OutCount =
addCounters(BC.BreakCount, subtractCounters(LoopCount, BodyCount));
if (OutCount != ParentCount) {
pushRegion(OutCount);
GapRegionCounter = OutCount;
}
}
void VisitSwitchStmt(const SwitchStmt *S) {
extendRegion(S);
if (S->getInit())
Visit(S->getInit());
Visit(S->getCond());
BreakContinueStack.push_back(BreakContinue());
const Stmt *Body = S->getBody();
extendRegion(Body);
if (const auto *CS = dyn_cast<CompoundStmt>(Body)) {
if (!CS->body_empty()) {
// Make a region for the body of the switch. If the body starts with
// a case, that case will reuse this region; otherwise, this covers
// the unreachable code at the beginning of the switch body.
size_t Index = pushRegion(Counter::getZero(), getStart(CS));
getRegion().setGap(true);
Visit(Body);
// Set the end for the body of the switch, if it isn't already set.
for (size_t i = RegionStack.size(); i != Index; --i) {
if (!RegionStack[i - 1].hasEndLoc())
RegionStack[i - 1].setEndLoc(getEnd(CS->body_back()));
}
popRegions(Index);
}
} else
propagateCounts(Counter::getZero(), Body);
BreakContinue BC = BreakContinueStack.pop_back_val();
if (!BreakContinueStack.empty() && !llvm::EnableSingleByteCoverage)
BreakContinueStack.back().ContinueCount = addCounters(
BreakContinueStack.back().ContinueCount, BC.ContinueCount);
Counter ParentCount = getRegion().getCounter();
Counter ExitCount = getRegionCounter(S);
SourceLocation ExitLoc = getEnd(S);
pushRegion(ExitCount);
GapRegionCounter = ExitCount;
// Ensure that handleFileExit recognizes when the end location is located
// in a different file.
MostRecentLocation = getStart(S);
handleFileExit(ExitLoc);
// When single byte coverage mode is enabled, do not create branch region by
// early returning.
if (llvm::EnableSingleByteCoverage)
return;
// Create a Branch Region around each Case. Subtract the case's
// counter from the Parent counter to track the "False" branch count.
Counter CaseCountSum;
bool HasDefaultCase = false;
const SwitchCase *Case = S->getSwitchCaseList();
for (; Case; Case = Case->getNextSwitchCase()) {
HasDefaultCase = HasDefaultCase || isa<DefaultStmt>(Case);
CaseCountSum =
addCounters(CaseCountSum, getRegionCounter(Case), /*Simplify=*/false);
createSwitchCaseRegion(
Case, getRegionCounter(Case),
subtractCounters(ParentCount, getRegionCounter(Case)));
}
// Simplify is skipped while building the counters above: it can get really
// slow on top of switches with thousands of cases. Instead, trigger
// simplification by adding zero to the last counter.
CaseCountSum = addCounters(CaseCountSum, Counter::getZero());
// If no explicit default case exists, create a branch region to represent
// the hidden branch, which will be added later by the CodeGen. This region
// will be associated with the switch statement's condition.
if (!HasDefaultCase) {
Counter DefaultTrue = subtractCounters(ParentCount, CaseCountSum);
Counter DefaultFalse = subtractCounters(ParentCount, DefaultTrue);
createBranchRegion(S->getCond(), DefaultTrue, DefaultFalse);
}
}
void VisitSwitchCase(const SwitchCase *S) {
extendRegion(S);
SourceMappingRegion &Parent = getRegion();
Counter Count = llvm::EnableSingleByteCoverage
? getRegionCounter(S)
: addCounters(Parent.getCounter(), getRegionCounter(S));
// Reuse the existing region if it starts at our label. This is typical of
// the first case in a switch.
if (Parent.hasStartLoc() && Parent.getBeginLoc() == getStart(S))
Parent.setCounter(Count);
else
pushRegion(Count, getStart(S));
GapRegionCounter = Count;
if (const auto *CS = dyn_cast<CaseStmt>(S)) {
Visit(CS->getLHS());
if (const Expr *RHS = CS->getRHS())
Visit(RHS);
}
Visit(S->getSubStmt());
}
void coverIfConsteval(const IfStmt *S) {
assert(S->isConsteval());
const auto *Then = S->getThen();
const auto *Else = S->getElse();
// It's better for llvm-cov to create a new region with same counter
// so line-coverage can be properly calculated for lines containing
// a skipped region (without it the line is marked uncovered)
const Counter ParentCount = getRegion().getCounter();
extendRegion(S);
if (S->isNegatedConsteval()) {
// ignore 'if consteval'
markSkipped(S->getIfLoc(), getStart(Then));
propagateCounts(ParentCount, Then);
if (Else) {
// ignore 'else <else>'
markSkipped(getEnd(Then), getEnd(Else));
}
} else {
assert(S->isNonNegatedConsteval());
// ignore 'if consteval <then> [else]'
markSkipped(S->getIfLoc(), Else ? getStart(Else) : getEnd(Then));
if (Else)
propagateCounts(ParentCount, Else);
}
}
void coverIfConstexpr(const IfStmt *S) {
assert(S->isConstexpr());
// evaluate constant condition...
const bool isTrue =
S->getCond()
->EvaluateKnownConstInt(CVM.getCodeGenModule().getContext())
.getBoolValue();
extendRegion(S);
// I'm using 'propagateCounts' later as new region is better and allows me
// to properly calculate line coverage in llvm-cov utility
const Counter ParentCount = getRegion().getCounter();
// ignore 'if constexpr ('
SourceLocation startOfSkipped = S->getIfLoc();
if (const auto *Init = S->getInit()) {
const auto start = getStart(Init);
const auto end = getEnd(Init);
// this check is to make sure typedef here which doesn't have valid source
// location won't crash it
if (start.isValid() && end.isValid()) {
markSkipped(startOfSkipped, start);
propagateCounts(ParentCount, Init);
startOfSkipped = getEnd(Init);
}
}
const auto *Then = S->getThen();
const auto *Else = S->getElse();
if (isTrue) {
// ignore '<condition>)'
markSkipped(startOfSkipped, getStart(Then));
propagateCounts(ParentCount, Then);
if (Else)
// ignore 'else <else>'
markSkipped(getEnd(Then), getEnd(Else));
} else {
// ignore '<condition>) <then> [else]'
markSkipped(startOfSkipped, Else ? getStart(Else) : getEnd(Then));
if (Else)
propagateCounts(ParentCount, Else);
}
}
void VisitIfStmt(const IfStmt *S) {
// "if constexpr" and "if consteval" are not normal conditional statements,
// their discarded statement should be skipped
if (S->isConsteval())
return coverIfConsteval(S);
else if (S->isConstexpr())
return coverIfConstexpr(S);
extendRegion(S);
if (S->getInit())
Visit(S->getInit());
// Extend into the condition before we propagate through it below - this is
// needed to handle macros that generate the "if" but not the condition.
extendRegion(S->getCond());
Counter ParentCount = getRegion().getCounter();
Counter ThenCount = llvm::EnableSingleByteCoverage
? getRegionCounter(S->getThen())
: getRegionCounter(S);
// Emitting a counter for the condition makes it easier to interpret the
// counter for the body when looking at the coverage.
propagateCounts(ParentCount, S->getCond());
// The 'then' count applies to the area immediately after the condition.
std::optional<SourceRange> Gap =
findGapAreaBetween(S->getRParenLoc(), getStart(S->getThen()));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), ThenCount);
extendRegion(S->getThen());
Counter OutCount = propagateCounts(ThenCount, S->getThen());
Counter ElseCount;
if (!llvm::EnableSingleByteCoverage)
ElseCount = subtractCounters(ParentCount, ThenCount);
else if (S->getElse())
ElseCount = getRegionCounter(S->getElse());
if (const Stmt *Else = S->getElse()) {
bool ThenHasTerminateStmt = HasTerminateStmt;
HasTerminateStmt = false;
// The 'else' count applies to the area immediately after the 'then'.
std::optional<SourceRange> Gap =
findGapAreaBetween(getEnd(S->getThen()), getStart(Else));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), ElseCount);
extendRegion(Else);
Counter ElseOutCount = propagateCounts(ElseCount, Else);
if (!llvm::EnableSingleByteCoverage)
OutCount = addCounters(OutCount, ElseOutCount);
if (ThenHasTerminateStmt)
HasTerminateStmt = true;
} else if (!llvm::EnableSingleByteCoverage)
OutCount = addCounters(OutCount, ElseCount);
if (llvm::EnableSingleByteCoverage)
OutCount = getRegionCounter(S);
if (OutCount != ParentCount) {
pushRegion(OutCount);
GapRegionCounter = OutCount;
}
if (!S->isConsteval() && !llvm::EnableSingleByteCoverage)
// Create Branch Region around condition.
createBranchRegion(S->getCond(), ThenCount,
subtractCounters(ParentCount, ThenCount));
}
void VisitCXXTryStmt(const CXXTryStmt *S) {
extendRegion(S);
// Handle macros that generate the "try" but not the rest.
extendRegion(S->getTryBlock());
Counter ParentCount = getRegion().getCounter();
propagateCounts(ParentCount, S->getTryBlock());
for (unsigned I = 0, E = S->getNumHandlers(); I < E; ++I)
Visit(S->getHandler(I));
Counter ExitCount = getRegionCounter(S);
pushRegion(ExitCount);
}
void VisitCXXCatchStmt(const CXXCatchStmt *S) {
propagateCounts(getRegionCounter(S), S->getHandlerBlock());
}
void VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
extendRegion(E);
Counter ParentCount = getRegion().getCounter();
Counter TrueCount = llvm::EnableSingleByteCoverage
? getRegionCounter(E->getTrueExpr())
: getRegionCounter(E);
propagateCounts(ParentCount, E->getCond());
Counter OutCount;
if (!isa<BinaryConditionalOperator>(E)) {
// The 'then' count applies to the area immediately after the condition.
auto Gap =
findGapAreaBetween(E->getQuestionLoc(), getStart(E->getTrueExpr()));
if (Gap)
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), TrueCount);
extendRegion(E->getTrueExpr());
OutCount = propagateCounts(TrueCount, E->getTrueExpr());
} else {
OutCount = TrueCount;
}
extendRegion(E->getFalseExpr());
Counter FalseCount = llvm::EnableSingleByteCoverage
? getRegionCounter(E->getFalseExpr())
: subtractCounters(ParentCount, TrueCount);
Counter FalseOutCount = propagateCounts(FalseCount, E->getFalseExpr());
if (llvm::EnableSingleByteCoverage)
OutCount = getRegionCounter(E);
else
OutCount = addCounters(OutCount, FalseOutCount);
if (OutCount != ParentCount) {
pushRegion(OutCount);
GapRegionCounter = OutCount;
}
// Create Branch Region around condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(E->getCond(), TrueCount,
subtractCounters(ParentCount, TrueCount));
}
void createDecision(const BinaryOperator *E) {
unsigned NumConds = MCDCBuilder.getTotalConditionsAndReset(E);
if (NumConds == 0)
return;
auto DecisionParams = mcdc::DecisionParameters{
MCDCState.DecisionByStmt[E].BitmapIdx,
NumConds,
};
// Create MCDC Decision Region.
createDecisionRegion(E, DecisionParams);
}
void VisitBinLAnd(const BinaryOperator *E) {
bool IsRootNode = MCDCBuilder.isIdle();
// Keep track of Binary Operator and assign MCDC condition IDs.
MCDCBuilder.pushAndAssignIDs(E);
extendRegion(E->getLHS());
propagateCounts(getRegion().getCounter(), E->getLHS());
handleFileExit(getEnd(E->getLHS()));
// Track LHS True/False Decision.
const auto DecisionLHS = MCDCBuilder.pop();
// Counter tracks the right hand side of a logical and operator.
extendRegion(E->getRHS());
propagateCounts(getRegionCounter(E), E->getRHS());
// Track RHS True/False Decision.
const auto DecisionRHS = MCDCBuilder.back();
// Extract the RHS's Execution Counter.
Counter RHSExecCnt = getRegionCounter(E);
// Extract the RHS's "True" Instance Counter.
Counter RHSTrueCnt = getRegionCounter(E->getRHS());
// Extract the Parent Region Counter.
Counter ParentCnt = getRegion().getCounter();
// Create Branch Region around LHS condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(E->getLHS(), RHSExecCnt,
subtractCounters(ParentCnt, RHSExecCnt), DecisionLHS);
// Create Branch Region around RHS condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(E->getRHS(), RHSTrueCnt,
subtractCounters(RHSExecCnt, RHSTrueCnt), DecisionRHS);
// Create MCDC Decision Region if at top-level (root).
if (IsRootNode)
createDecision(E);
}
// Determine whether the right side of OR operation need to be visited.
bool shouldVisitRHS(const Expr *LHS) {
bool LHSIsTrue = false;
bool LHSIsConst = false;
if (!LHS->isValueDependent())
LHSIsConst = LHS->EvaluateAsBooleanCondition(
LHSIsTrue, CVM.getCodeGenModule().getContext());
return !LHSIsConst || (LHSIsConst && !LHSIsTrue);
}
void VisitBinLOr(const BinaryOperator *E) {
bool IsRootNode = MCDCBuilder.isIdle();
// Keep track of Binary Operator and assign MCDC condition IDs.
MCDCBuilder.pushAndAssignIDs(E);
extendRegion(E->getLHS());
Counter OutCount = propagateCounts(getRegion().getCounter(), E->getLHS());
handleFileExit(getEnd(E->getLHS()));
// Track LHS True/False Decision.
const auto DecisionLHS = MCDCBuilder.pop();
// Counter tracks the right hand side of a logical or operator.
extendRegion(E->getRHS());
propagateCounts(getRegionCounter(E), E->getRHS());
// Track RHS True/False Decision.
const auto DecisionRHS = MCDCBuilder.back();
// Extract the RHS's Execution Counter.
Counter RHSExecCnt = getRegionCounter(E);
// Extract the RHS's "False" Instance Counter.
Counter RHSFalseCnt = getRegionCounter(E->getRHS());
if (!shouldVisitRHS(E->getLHS())) {
GapRegionCounter = OutCount;
}
// Extract the Parent Region Counter.
Counter ParentCnt = getRegion().getCounter();
// Create Branch Region around LHS condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(E->getLHS(), subtractCounters(ParentCnt, RHSExecCnt),
RHSExecCnt, DecisionLHS);
// Create Branch Region around RHS condition.
if (!llvm::EnableSingleByteCoverage)
createBranchRegion(E->getRHS(), subtractCounters(RHSExecCnt, RHSFalseCnt),
RHSFalseCnt, DecisionRHS);
// Create MCDC Decision Region if at top-level (root).
if (IsRootNode)
createDecision(E);
}
void VisitLambdaExpr(const LambdaExpr *LE) {
// Lambdas are treated as their own functions for now, so we shouldn't
// propagate counts into them.
}
void VisitPseudoObjectExpr(const PseudoObjectExpr *POE) {
// Just visit syntatic expression as this is what users actually write.
VisitStmt(POE->getSyntacticForm());
}
void VisitOpaqueValueExpr(const OpaqueValueExpr* OVE) {
Visit(OVE->getSourceExpr());
}
};
} // end anonymous namespace
static void dump(llvm::raw_ostream &OS, StringRef FunctionName,
ArrayRef<CounterExpression> Expressions,
ArrayRef<CounterMappingRegion> Regions) {
OS << FunctionName << ":\n";
CounterMappingContext Ctx(Expressions);
for (const auto &R : Regions) {
OS.indent(2);
switch (R.Kind) {
case CounterMappingRegion::CodeRegion:
break;
case CounterMappingRegion::ExpansionRegion:
OS << "Expansion,";
break;
case CounterMappingRegion::SkippedRegion:
OS << "Skipped,";
break;
case CounterMappingRegion::GapRegion:
OS << "Gap,";
break;
case CounterMappingRegion::BranchRegion:
case CounterMappingRegion::MCDCBranchRegion:
OS << "Branch,";
break;
case CounterMappingRegion::MCDCDecisionRegion:
OS << "Decision,";
break;
}
OS << "File " << R.FileID << ", " << R.LineStart << ":" << R.ColumnStart
<< " -> " << R.LineEnd << ":" << R.ColumnEnd << " = ";
if (const auto *DecisionParams =
std::get_if<mcdc::DecisionParameters>(&R.MCDCParams)) {
OS << "M:" << DecisionParams->BitmapIdx;
OS << ", C:" << DecisionParams->NumConditions;
} else {
Ctx.dump(R.Count, OS);
if (R.Kind == CounterMappingRegion::BranchRegion ||
R.Kind == CounterMappingRegion::MCDCBranchRegion) {
OS << ", ";
Ctx.dump(R.FalseCount, OS);
}
}
if (const auto *BranchParams =
std::get_if<mcdc::BranchParameters>(&R.MCDCParams)) {
OS << " [" << BranchParams->ID + 1 << ","
<< BranchParams->Conds[true] + 1;
OS << "," << BranchParams->Conds[false] + 1 << "] ";
}
if (R.Kind == CounterMappingRegion::ExpansionRegion)
OS << " (Expanded file = " << R.ExpandedFileID << ")";
OS << "\n";
}
}
CoverageMappingModuleGen::CoverageMappingModuleGen(
CodeGenModule &CGM, CoverageSourceInfo &SourceInfo)
: CGM(CGM), SourceInfo(SourceInfo) {}
std::string CoverageMappingModuleGen::getCurrentDirname() {
if (!CGM.getCodeGenOpts().CoverageCompilationDir.empty())
return CGM.getCodeGenOpts().CoverageCompilationDir;
SmallString<256> CWD;
llvm::sys::fs::current_path(CWD);
return CWD.str().str();
}
std::string CoverageMappingModuleGen::normalizeFilename(StringRef Filename) {
llvm::SmallString<256> Path(Filename);
llvm::sys::path::remove_dots(Path, /*remove_dot_dot=*/true);
/// Traverse coverage prefix map in reverse order because prefix replacements
/// are applied in reverse order starting from the last one when multiple
/// prefix replacement options are provided.
for (const auto &[From, To] :
llvm::reverse(CGM.getCodeGenOpts().CoveragePrefixMap)) {
if (llvm::sys::path::replace_path_prefix(Path, From, To))
break;
}
return Path.str().str();
}
static std::string getInstrProfSection(const CodeGenModule &CGM,
llvm::InstrProfSectKind SK) {
return llvm::getInstrProfSectionName(
SK, CGM.getContext().getTargetInfo().getTriple().getObjectFormat());
}
void CoverageMappingModuleGen::emitFunctionMappingRecord(
const FunctionInfo &Info, uint64_t FilenamesRef) {
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
// Assign a name to the function record. This is used to merge duplicates.
std::string FuncRecordName = "__covrec_" + llvm::utohexstr(Info.NameHash);
// A dummy description for a function included-but-not-used in a TU can be
// replaced by full description provided by a different TU. The two kinds of
// descriptions play distinct roles: therefore, assign them different names
// to prevent `linkonce_odr` merging.
if (Info.IsUsed)
FuncRecordName += "u";
// Create the function record type.
const uint64_t NameHash = Info.NameHash;
const uint64_t FuncHash = Info.FuncHash;
const std::string &CoverageMapping = Info.CoverageMapping;
#define COVMAP_FUNC_RECORD(Type, LLVMType, Name, Init) LLVMType,
llvm::Type *FunctionRecordTypes[] = {
#include "llvm/ProfileData/InstrProfData.inc"
};
auto *FunctionRecordTy =
llvm::StructType::get(Ctx, ArrayRef(FunctionRecordTypes),
/*isPacked=*/true);
// Create the function record constant.
#define COVMAP_FUNC_RECORD(Type, LLVMType, Name, Init) Init,
llvm::Constant *FunctionRecordVals[] = {
#include "llvm/ProfileData/InstrProfData.inc"
};
auto *FuncRecordConstant =
llvm::ConstantStruct::get(FunctionRecordTy, ArrayRef(FunctionRecordVals));
// Create the function record global.
auto *FuncRecord = new llvm::GlobalVariable(
CGM.getModule(), FunctionRecordTy, /*isConstant=*/true,
llvm::GlobalValue::LinkOnceODRLinkage, FuncRecordConstant,
FuncRecordName);
FuncRecord->setVisibility(llvm::GlobalValue::HiddenVisibility);
FuncRecord->setSection(getInstrProfSection(CGM, llvm::IPSK_covfun));
FuncRecord->setAlignment(llvm::Align(8));
if (CGM.supportsCOMDAT())
FuncRecord->setComdat(CGM.getModule().getOrInsertComdat(FuncRecordName));
// Make sure the data doesn't get deleted.
CGM.addUsedGlobal(FuncRecord);
}
void CoverageMappingModuleGen::addFunctionMappingRecord(
llvm::GlobalVariable *NamePtr, StringRef NameValue, uint64_t FuncHash,
const std::string &CoverageMapping, bool IsUsed) {
const uint64_t NameHash = llvm::IndexedInstrProf::ComputeHash(NameValue);
FunctionRecords.push_back({NameHash, FuncHash, CoverageMapping, IsUsed});
if (!IsUsed)
FunctionNames.push_back(NamePtr);
if (CGM.getCodeGenOpts().DumpCoverageMapping) {
// Dump the coverage mapping data for this function by decoding the
// encoded data. This allows us to dump the mapping regions which were
// also processed by the CoverageMappingWriter which performs
// additional minimization operations such as reducing the number of
// expressions.
llvm::SmallVector<std::string, 16> FilenameStrs;
std::vector<StringRef> Filenames;
std::vector<CounterExpression> Expressions;
std::vector<CounterMappingRegion> Regions;
FilenameStrs.resize(FileEntries.size() + 1);
FilenameStrs[0] = normalizeFilename(getCurrentDirname());
for (const auto &Entry : FileEntries) {
auto I = Entry.second;
FilenameStrs[I] = normalizeFilename(Entry.first.getName());
}
ArrayRef<std::string> FilenameRefs = llvm::ArrayRef(FilenameStrs);
RawCoverageMappingReader Reader(CoverageMapping, FilenameRefs, Filenames,
Expressions, Regions);
if (Reader.read())
return;
dump(llvm::outs(), NameValue, Expressions, Regions);
}
}
void CoverageMappingModuleGen::emit() {
if (FunctionRecords.empty())
return;
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
auto *Int32Ty = llvm::Type::getInt32Ty(Ctx);
// Create the filenames and merge them with coverage mappings
llvm::SmallVector<std::string, 16> FilenameStrs;
FilenameStrs.resize(FileEntries.size() + 1);
// The first filename is the current working directory.
FilenameStrs[0] = normalizeFilename(getCurrentDirname());
for (const auto &Entry : FileEntries) {
auto I = Entry.second;
FilenameStrs[I] = normalizeFilename(Entry.first.getName());
}
std::string Filenames;
{
llvm::raw_string_ostream OS(Filenames);
CoverageFilenamesSectionWriter(FilenameStrs).write(OS);
}
auto *FilenamesVal =
llvm::ConstantDataArray::getString(Ctx, Filenames, false);
const int64_t FilenamesRef = llvm::IndexedInstrProf::ComputeHash(Filenames);
// Emit the function records.
for (const FunctionInfo &Info : FunctionRecords)
emitFunctionMappingRecord(Info, FilenamesRef);
const unsigned NRecords = 0;
const size_t FilenamesSize = Filenames.size();
const unsigned CoverageMappingSize = 0;
llvm::Type *CovDataHeaderTypes[] = {
#define COVMAP_HEADER(Type, LLVMType, Name, Init) LLVMType,
#include "llvm/ProfileData/InstrProfData.inc"
};
auto CovDataHeaderTy =
llvm::StructType::get(Ctx, ArrayRef(CovDataHeaderTypes));
llvm::Constant *CovDataHeaderVals[] = {
#define COVMAP_HEADER(Type, LLVMType, Name, Init) Init,
#include "llvm/ProfileData/InstrProfData.inc"
};
auto CovDataHeaderVal =
llvm::ConstantStruct::get(CovDataHeaderTy, ArrayRef(CovDataHeaderVals));
// Create the coverage data record
llvm::Type *CovDataTypes[] = {CovDataHeaderTy, FilenamesVal->getType()};
auto CovDataTy = llvm::StructType::get(Ctx, ArrayRef(CovDataTypes));
llvm::Constant *TUDataVals[] = {CovDataHeaderVal, FilenamesVal};
auto CovDataVal = llvm::ConstantStruct::get(CovDataTy, ArrayRef(TUDataVals));
auto CovData = new llvm::GlobalVariable(
CGM.getModule(), CovDataTy, true, llvm::GlobalValue::PrivateLinkage,
CovDataVal, llvm::getCoverageMappingVarName());
CovData->setSection(getInstrProfSection(CGM, llvm::IPSK_covmap));
CovData->setAlignment(llvm::Align(8));
// Make sure the data doesn't get deleted.
CGM.addUsedGlobal(CovData);
// Create the deferred function records array
if (!FunctionNames.empty()) {
auto NamesArrTy = llvm::ArrayType::get(llvm::PointerType::getUnqual(Ctx),
FunctionNames.size());
auto NamesArrVal = llvm::ConstantArray::get(NamesArrTy, FunctionNames);
// This variable will *NOT* be emitted to the object file. It is used
// to pass the list of names referenced to codegen.
new llvm::GlobalVariable(CGM.getModule(), NamesArrTy, true,
llvm::GlobalValue::InternalLinkage, NamesArrVal,
llvm::getCoverageUnusedNamesVarName());
}
}
unsigned CoverageMappingModuleGen::getFileID(FileEntryRef File) {
auto It = FileEntries.find(File);
if (It != FileEntries.end())
return It->second;
unsigned FileID = FileEntries.size() + 1;
FileEntries.insert(std::make_pair(File, FileID));
return FileID;
}
void CoverageMappingGen::emitCounterMapping(const Decl *D,
llvm::raw_ostream &OS) {
assert(CounterMap && MCDCState);
CounterCoverageMappingBuilder Walker(CVM, *CounterMap, *MCDCState, SM,
LangOpts);
Walker.VisitDecl(D);
Walker.write(OS);
}
void CoverageMappingGen::emitEmptyMapping(const Decl *D,
llvm::raw_ostream &OS) {
EmptyCoverageMappingBuilder Walker(CVM, SM, LangOpts);
Walker.VisitDecl(D);
Walker.write(OS);
}