
The private clause is the first with 'recipes', so a lot of infrastructure is included here, including some MLIR dialect changes that allow simple adding of a privatization. We'll likely get similar for firstprivate and reduction. Also, we have quite a bit of infrastructure in clause lowering to make sure we have most cases we could think of covered. At the moment, ONLY private is implemented, so all it requires is an 'init' segment (that doesn't call any copy operations), and potentially a 'destroy' segment. However, actually calling 'init' functions on each of the elements in them are not properly implemented, and will be in a followup patch. This patch implements all of that, and adds tests in a way that will be useful for firstprivate as well.
812 lines
30 KiB
C++
812 lines
30 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code to emit Decl nodes as CIR code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CIRGenConstantEmitter.h"
|
|
#include "CIRGenFunction.h"
|
|
#include "mlir/IR/Location.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclOpenACC.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/CIR/MissingFeatures.h"
|
|
|
|
using namespace clang;
|
|
using namespace clang::CIRGen;
|
|
|
|
CIRGenFunction::AutoVarEmission
|
|
CIRGenFunction::emitAutoVarAlloca(const VarDecl &d,
|
|
mlir::OpBuilder::InsertPoint ip) {
|
|
QualType ty = d.getType();
|
|
if (ty.getAddressSpace() != LangAS::Default)
|
|
cgm.errorNYI(d.getSourceRange(), "emitAutoVarAlloca: address space");
|
|
|
|
mlir::Location loc = getLoc(d.getSourceRange());
|
|
|
|
CIRGenFunction::AutoVarEmission emission(d);
|
|
emission.IsEscapingByRef = d.isEscapingByref();
|
|
if (emission.IsEscapingByRef)
|
|
cgm.errorNYI(d.getSourceRange(),
|
|
"emitAutoVarDecl: decl escaping by reference");
|
|
|
|
CharUnits alignment = getContext().getDeclAlign(&d);
|
|
|
|
// If the type is variably-modified, emit all the VLA sizes for it.
|
|
if (ty->isVariablyModifiedType())
|
|
cgm.errorNYI(d.getSourceRange(), "emitAutoVarDecl: variably modified type");
|
|
|
|
Address address = Address::invalid();
|
|
if (!ty->isConstantSizeType())
|
|
cgm.errorNYI(d.getSourceRange(), "emitAutoVarDecl: non-constant size type");
|
|
|
|
// A normal fixed sized variable becomes an alloca in the entry block,
|
|
mlir::Type allocaTy = convertTypeForMem(ty);
|
|
// Create the temp alloca and declare variable using it.
|
|
address = createTempAlloca(allocaTy, alignment, loc, d.getName(),
|
|
/*arraySize=*/nullptr, /*alloca=*/nullptr, ip);
|
|
declare(address.getPointer(), &d, ty, getLoc(d.getSourceRange()), alignment);
|
|
|
|
emission.Addr = address;
|
|
setAddrOfLocalVar(&d, address);
|
|
|
|
return emission;
|
|
}
|
|
|
|
/// Determine whether the given initializer is trivial in the sense
|
|
/// that it requires no code to be generated.
|
|
bool CIRGenFunction::isTrivialInitializer(const Expr *init) {
|
|
if (!init)
|
|
return true;
|
|
|
|
if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(init))
|
|
if (CXXConstructorDecl *constructor = construct->getConstructor())
|
|
if (constructor->isTrivial() && constructor->isDefaultConstructor() &&
|
|
!construct->requiresZeroInitialization())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void CIRGenFunction::emitAutoVarInit(
|
|
const CIRGenFunction::AutoVarEmission &emission) {
|
|
assert(emission.Variable && "emission was not valid!");
|
|
|
|
// If this was emitted as a global constant, we're done.
|
|
if (emission.wasEmittedAsGlobal())
|
|
return;
|
|
|
|
const VarDecl &d = *emission.Variable;
|
|
|
|
QualType type = d.getType();
|
|
|
|
// If this local has an initializer, emit it now.
|
|
const Expr *init = d.getInit();
|
|
|
|
// Initialize the variable here if it doesn't have a initializer and it is a
|
|
// C struct that is non-trivial to initialize or an array containing such a
|
|
// struct.
|
|
if (!init && type.isNonTrivialToPrimitiveDefaultInitialize() ==
|
|
QualType::PDIK_Struct) {
|
|
cgm.errorNYI(d.getSourceRange(),
|
|
"emitAutoVarInit: non-trivial to default initialize");
|
|
return;
|
|
}
|
|
|
|
const Address addr = emission.Addr;
|
|
|
|
// Check whether this is a byref variable that's potentially
|
|
// captured and moved by its own initializer. If so, we'll need to
|
|
// emit the initializer first, then copy into the variable.
|
|
assert(!cir::MissingFeatures::opAllocaCaptureByInit());
|
|
|
|
// Note: constexpr already initializes everything correctly.
|
|
LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
|
|
(d.isConstexpr()
|
|
? LangOptions::TrivialAutoVarInitKind::Uninitialized
|
|
: (d.getAttr<UninitializedAttr>()
|
|
? LangOptions::TrivialAutoVarInitKind::Uninitialized
|
|
: getContext().getLangOpts().getTrivialAutoVarInit()));
|
|
|
|
auto initializeWhatIsTechnicallyUninitialized = [&](Address addr) {
|
|
if (trivialAutoVarInit ==
|
|
LangOptions::TrivialAutoVarInitKind::Uninitialized)
|
|
return;
|
|
|
|
cgm.errorNYI(d.getSourceRange(), "emitAutoVarInit: trivial initialization");
|
|
};
|
|
|
|
if (isTrivialInitializer(init)) {
|
|
initializeWhatIsTechnicallyUninitialized(addr);
|
|
return;
|
|
}
|
|
|
|
mlir::Attribute constant;
|
|
if (emission.IsConstantAggregate ||
|
|
d.mightBeUsableInConstantExpressions(getContext())) {
|
|
// FIXME: Differently from LLVM we try not to emit / lower too much
|
|
// here for CIR since we are interested in seeing the ctor in some
|
|
// analysis later on. So CIR's implementation of ConstantEmitter will
|
|
// frequently return an empty Attribute, to signal we want to codegen
|
|
// some trivial ctor calls and whatnots.
|
|
constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(d);
|
|
if (constant && !mlir::isa<cir::ZeroAttr>(constant) &&
|
|
(trivialAutoVarInit !=
|
|
LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
|
|
cgm.errorNYI(d.getSourceRange(), "emitAutoVarInit: constant aggregate");
|
|
return;
|
|
}
|
|
}
|
|
|
|
// NOTE(cir): In case we have a constant initializer, we can just emit a
|
|
// store. But, in CIR, we wish to retain any ctor calls, so if it is a
|
|
// CXX temporary object creation, we ensure the ctor call is used deferring
|
|
// its removal/optimization to the CIR lowering.
|
|
if (!constant || isa<CXXTemporaryObjectExpr>(init)) {
|
|
initializeWhatIsTechnicallyUninitialized(addr);
|
|
LValue lv = makeAddrLValue(addr, type, AlignmentSource::Decl);
|
|
emitExprAsInit(init, &d, lv);
|
|
// In case lv has uses it means we indeed initialized something
|
|
// out of it while trying to build the expression, mark it as such.
|
|
mlir::Value val = lv.getAddress().getPointer();
|
|
assert(val && "Should have an address");
|
|
auto allocaOp = dyn_cast_or_null<cir::AllocaOp>(val.getDefiningOp());
|
|
assert(allocaOp && "Address should come straight out of the alloca");
|
|
|
|
if (!allocaOp.use_empty())
|
|
allocaOp.setInitAttr(mlir::UnitAttr::get(&getMLIRContext()));
|
|
return;
|
|
}
|
|
|
|
// FIXME(cir): migrate most of this file to use mlir::TypedAttr directly.
|
|
auto typedConstant = mlir::dyn_cast<mlir::TypedAttr>(constant);
|
|
assert(typedConstant && "expected typed attribute");
|
|
if (!emission.IsConstantAggregate) {
|
|
// For simple scalar/complex initialization, store the value directly.
|
|
LValue lv = makeAddrLValue(addr, type);
|
|
assert(init && "expected initializer");
|
|
mlir::Location initLoc = getLoc(init->getSourceRange());
|
|
// lv.setNonGC(true);
|
|
return emitStoreThroughLValue(
|
|
RValue::get(builder.getConstant(initLoc, typedConstant)), lv);
|
|
}
|
|
}
|
|
|
|
void CIRGenFunction::emitAutoVarCleanups(
|
|
const CIRGenFunction::AutoVarEmission &emission) {
|
|
const VarDecl &d = *emission.Variable;
|
|
|
|
// Check the type for a cleanup.
|
|
if (QualType::DestructionKind dtorKind = d.needsDestruction(getContext()))
|
|
emitAutoVarTypeCleanup(emission, dtorKind);
|
|
|
|
assert(!cir::MissingFeatures::opAllocaPreciseLifetime());
|
|
|
|
// Handle the cleanup attribute.
|
|
if (d.hasAttr<CleanupAttr>())
|
|
cgm.errorNYI(d.getSourceRange(), "emitAutoVarCleanups: CleanupAttr");
|
|
}
|
|
|
|
/// Emit code and set up symbol table for a variable declaration with auto,
|
|
/// register, or no storage class specifier. These turn into simple stack
|
|
/// objects, globals depending on target.
|
|
void CIRGenFunction::emitAutoVarDecl(const VarDecl &d) {
|
|
CIRGenFunction::AutoVarEmission emission = emitAutoVarAlloca(d);
|
|
emitAutoVarInit(emission);
|
|
emitAutoVarCleanups(emission);
|
|
}
|
|
|
|
void CIRGenFunction::emitVarDecl(const VarDecl &d) {
|
|
// If the declaration has external storage, don't emit it now, allow it to be
|
|
// emitted lazily on its first use.
|
|
if (d.hasExternalStorage())
|
|
return;
|
|
|
|
if (d.getStorageDuration() != SD_Automatic) {
|
|
// Static sampler variables translated to function calls.
|
|
if (d.getType()->isSamplerT()) {
|
|
// Nothing needs to be done here, but let's flag it as an error until we
|
|
// have a test. It requires OpenCL support.
|
|
cgm.errorNYI(d.getSourceRange(), "emitVarDecl static sampler type");
|
|
return;
|
|
}
|
|
|
|
cir::GlobalLinkageKind linkage =
|
|
cgm.getCIRLinkageVarDefinition(&d, /*IsConstant=*/false);
|
|
|
|
// FIXME: We need to force the emission/use of a guard variable for
|
|
// some variables even if we can constant-evaluate them because
|
|
// we can't guarantee every translation unit will constant-evaluate them.
|
|
|
|
return emitStaticVarDecl(d, linkage);
|
|
}
|
|
|
|
if (d.getType().getAddressSpace() == LangAS::opencl_local)
|
|
cgm.errorNYI(d.getSourceRange(), "emitVarDecl openCL address space");
|
|
|
|
assert(d.hasLocalStorage());
|
|
|
|
CIRGenFunction::VarDeclContext varDeclCtx{*this, &d};
|
|
return emitAutoVarDecl(d);
|
|
}
|
|
|
|
static std::string getStaticDeclName(CIRGenModule &cgm, const VarDecl &d) {
|
|
if (cgm.getLangOpts().CPlusPlus)
|
|
return cgm.getMangledName(&d).str();
|
|
|
|
// If this isn't C++, we don't need a mangled name, just a pretty one.
|
|
assert(!d.isExternallyVisible() && "name shouldn't matter");
|
|
std::string contextName;
|
|
const DeclContext *dc = d.getDeclContext();
|
|
if (auto *cd = dyn_cast<CapturedDecl>(dc))
|
|
dc = cast<DeclContext>(cd->getNonClosureContext());
|
|
if (const auto *fd = dyn_cast<FunctionDecl>(dc))
|
|
contextName = std::string(cgm.getMangledName(fd));
|
|
else if (isa<BlockDecl>(dc))
|
|
cgm.errorNYI(d.getSourceRange(), "block decl context for static var");
|
|
else if (isa<ObjCMethodDecl>(dc))
|
|
cgm.errorNYI(d.getSourceRange(), "ObjC decl context for static var");
|
|
else
|
|
cgm.errorNYI(d.getSourceRange(), "Unknown context for static var decl");
|
|
|
|
contextName += "." + d.getNameAsString();
|
|
return contextName;
|
|
}
|
|
|
|
// TODO(cir): LLVM uses a Constant base class. Maybe CIR could leverage an
|
|
// interface for all constants?
|
|
cir::GlobalOp
|
|
CIRGenModule::getOrCreateStaticVarDecl(const VarDecl &d,
|
|
cir::GlobalLinkageKind linkage) {
|
|
// In general, we don't always emit static var decls once before we reference
|
|
// them. It is possible to reference them before emitting the function that
|
|
// contains them, and it is possible to emit the containing function multiple
|
|
// times.
|
|
if (cir::GlobalOp existingGV = getStaticLocalDeclAddress(&d))
|
|
return existingGV;
|
|
|
|
QualType ty = d.getType();
|
|
assert(ty->isConstantSizeType() && "VLAs can't be static");
|
|
|
|
// Use the label if the variable is renamed with the asm-label extension.
|
|
if (d.hasAttr<AsmLabelAttr>())
|
|
errorNYI(d.getSourceRange(), "getOrCreateStaticVarDecl: asm label");
|
|
|
|
std::string name = getStaticDeclName(*this, d);
|
|
|
|
mlir::Type lty = getTypes().convertTypeForMem(ty);
|
|
assert(!cir::MissingFeatures::addressSpace());
|
|
|
|
if (d.hasAttr<LoaderUninitializedAttr>() || d.hasAttr<CUDASharedAttr>())
|
|
errorNYI(d.getSourceRange(),
|
|
"getOrCreateStaticVarDecl: LoaderUninitializedAttr");
|
|
assert(!cir::MissingFeatures::addressSpace());
|
|
|
|
mlir::Attribute init = builder.getZeroInitAttr(convertType(ty));
|
|
|
|
cir::GlobalOp gv = builder.createVersionedGlobal(
|
|
getModule(), getLoc(d.getLocation()), name, lty, linkage);
|
|
// TODO(cir): infer visibility from linkage in global op builder.
|
|
gv.setVisibility(getMLIRVisibilityFromCIRLinkage(linkage));
|
|
gv.setInitialValueAttr(init);
|
|
gv.setAlignment(getASTContext().getDeclAlign(&d).getAsAlign().value());
|
|
|
|
if (supportsCOMDAT() && gv.isWeakForLinker())
|
|
gv.setComdat(true);
|
|
|
|
assert(!cir::MissingFeatures::opGlobalThreadLocal());
|
|
|
|
setGVProperties(gv, &d);
|
|
|
|
// OG checks if the expected address space, denoted by the type, is the
|
|
// same as the actual address space indicated by attributes. If they aren't
|
|
// the same, an addrspacecast is emitted when this variable is accessed.
|
|
// In CIR however, cir.get_global already carries that information in
|
|
// !cir.ptr type - if this global is in OpenCL local address space, then its
|
|
// type would be !cir.ptr<..., addrspace(offload_local)>. Therefore we don't
|
|
// need an explicit address space cast in CIR: they will get emitted when
|
|
// lowering to LLVM IR.
|
|
|
|
// Ensure that the static local gets initialized by making sure the parent
|
|
// function gets emitted eventually.
|
|
const Decl *dc = cast<Decl>(d.getDeclContext());
|
|
|
|
// We can't name blocks or captured statements directly, so try to emit their
|
|
// parents.
|
|
if (isa<BlockDecl>(dc) || isa<CapturedDecl>(dc)) {
|
|
dc = dc->getNonClosureContext();
|
|
// FIXME: Ensure that global blocks get emitted.
|
|
if (!dc)
|
|
errorNYI(d.getSourceRange(), "non-closure context");
|
|
}
|
|
|
|
GlobalDecl gd;
|
|
if (isa<CXXConstructorDecl>(dc))
|
|
errorNYI(d.getSourceRange(), "C++ constructors static var context");
|
|
else if (isa<CXXDestructorDecl>(dc))
|
|
errorNYI(d.getSourceRange(), "C++ destructors static var context");
|
|
else if (const auto *fd = dyn_cast<FunctionDecl>(dc))
|
|
gd = GlobalDecl(fd);
|
|
else {
|
|
// Don't do anything for Obj-C method decls or global closures. We should
|
|
// never defer them.
|
|
assert(isa<ObjCMethodDecl>(dc) && "unexpected parent code decl");
|
|
}
|
|
if (gd.getDecl() && cir::MissingFeatures::openMP()) {
|
|
// Disable emission of the parent function for the OpenMP device codegen.
|
|
errorNYI(d.getSourceRange(), "OpenMP");
|
|
}
|
|
|
|
return gv;
|
|
}
|
|
|
|
/// Add the initializer for 'd' to the global variable that has already been
|
|
/// created for it. If the initializer has a different type than gv does, this
|
|
/// may free gv and return a different one. Otherwise it just returns gv.
|
|
cir::GlobalOp CIRGenFunction::addInitializerToStaticVarDecl(
|
|
const VarDecl &d, cir::GlobalOp gv, cir::GetGlobalOp gvAddr) {
|
|
ConstantEmitter emitter(*this);
|
|
mlir::TypedAttr init =
|
|
mlir::cast<mlir::TypedAttr>(emitter.tryEmitForInitializer(d));
|
|
|
|
// If constant emission failed, then this should be a C++ static
|
|
// initializer.
|
|
if (!init) {
|
|
cgm.errorNYI(d.getSourceRange(), "static var without initializer");
|
|
return gv;
|
|
}
|
|
|
|
// TODO(cir): There should be debug code here to assert that the decl size
|
|
// matches the CIR data layout type alloc size, but the code for calculating
|
|
// the type alloc size is not implemented yet.
|
|
assert(!cir::MissingFeatures::dataLayoutTypeAllocSize());
|
|
|
|
// The initializer may differ in type from the global. Rewrite
|
|
// the global to match the initializer. (We have to do this
|
|
// because some types, like unions, can't be completely represented
|
|
// in the LLVM type system.)
|
|
if (gv.getSymType() != init.getType()) {
|
|
gv.setSymType(init.getType());
|
|
|
|
// Normally this should be done with a call to cgm.replaceGlobal(oldGV, gv),
|
|
// but since at this point the current block hasn't been really attached,
|
|
// there's no visibility into the GetGlobalOp corresponding to this Global.
|
|
// Given those constraints, thread in the GetGlobalOp and update it
|
|
// directly.
|
|
assert(!cir::MissingFeatures::addressSpace());
|
|
gvAddr.getAddr().setType(builder.getPointerTo(init.getType()));
|
|
}
|
|
|
|
bool needsDtor =
|
|
d.needsDestruction(getContext()) == QualType::DK_cxx_destructor;
|
|
|
|
assert(!cir::MissingFeatures::opGlobalConstant());
|
|
gv.setInitialValueAttr(init);
|
|
|
|
emitter.finalize(gv);
|
|
|
|
if (needsDtor) {
|
|
// We have a constant initializer, but a nontrivial destructor. We still
|
|
// need to perform a guarded "initialization" in order to register the
|
|
// destructor.
|
|
cgm.errorNYI(d.getSourceRange(), "C++ guarded init");
|
|
}
|
|
|
|
return gv;
|
|
}
|
|
|
|
void CIRGenFunction::emitStaticVarDecl(const VarDecl &d,
|
|
cir::GlobalLinkageKind linkage) {
|
|
// Check to see if we already have a global variable for this
|
|
// declaration. This can happen when double-emitting function
|
|
// bodies, e.g. with complete and base constructors.
|
|
cir::GlobalOp globalOp = cgm.getOrCreateStaticVarDecl(d, linkage);
|
|
// TODO(cir): we should have a way to represent global ops as values without
|
|
// having to emit a get global op. Sometimes these emissions are not used.
|
|
mlir::Value addr = builder.createGetGlobal(globalOp);
|
|
auto getAddrOp = mlir::cast<cir::GetGlobalOp>(addr.getDefiningOp());
|
|
|
|
CharUnits alignment = getContext().getDeclAlign(&d);
|
|
|
|
// Store into LocalDeclMap before generating initializer to handle
|
|
// circular references.
|
|
mlir::Type elemTy = convertTypeForMem(d.getType());
|
|
setAddrOfLocalVar(&d, Address(addr, elemTy, alignment));
|
|
|
|
// We can't have a VLA here, but we can have a pointer to a VLA,
|
|
// even though that doesn't really make any sense.
|
|
// Make sure to evaluate VLA bounds now so that we have them for later.
|
|
if (d.getType()->isVariablyModifiedType()) {
|
|
cgm.errorNYI(d.getSourceRange(),
|
|
"emitStaticVarDecl: variably modified type");
|
|
}
|
|
|
|
// Save the type in case adding the initializer forces a type change.
|
|
mlir::Type expectedType = addr.getType();
|
|
|
|
cir::GlobalOp var = globalOp;
|
|
|
|
assert(!cir::MissingFeatures::cudaSupport());
|
|
|
|
// If this value has an initializer, emit it.
|
|
if (d.getInit())
|
|
var = addInitializerToStaticVarDecl(d, var, getAddrOp);
|
|
|
|
var.setAlignment(alignment.getAsAlign().value());
|
|
|
|
// There are a lot of attributes that need to be handled here. Until
|
|
// we start to support them, we just report an error if there are any.
|
|
if (d.hasAttrs())
|
|
cgm.errorNYI(d.getSourceRange(), "static var with attrs");
|
|
|
|
if (cgm.getCodeGenOpts().KeepPersistentStorageVariables)
|
|
cgm.errorNYI(d.getSourceRange(), "static var keep persistent storage");
|
|
|
|
// From traditional codegen:
|
|
// We may have to cast the constant because of the initializer
|
|
// mismatch above.
|
|
//
|
|
// FIXME: It is really dangerous to store this in the map; if anyone
|
|
// RAUW's the GV uses of this constant will be invalid.
|
|
mlir::Value castedAddr =
|
|
builder.createBitcast(getAddrOp.getAddr(), expectedType);
|
|
localDeclMap.find(&d)->second = Address(castedAddr, elemTy, alignment);
|
|
cgm.setStaticLocalDeclAddress(&d, var);
|
|
|
|
assert(!cir::MissingFeatures::sanitizers());
|
|
assert(!cir::MissingFeatures::generateDebugInfo());
|
|
}
|
|
|
|
void CIRGenFunction::emitScalarInit(const Expr *init, mlir::Location loc,
|
|
LValue lvalue, bool capturedByInit) {
|
|
assert(!cir::MissingFeatures::objCLifetime());
|
|
|
|
SourceLocRAIIObject locRAII{*this, loc};
|
|
mlir::Value value = emitScalarExpr(init);
|
|
if (capturedByInit) {
|
|
cgm.errorNYI(init->getSourceRange(), "emitScalarInit: captured by init");
|
|
return;
|
|
}
|
|
assert(!cir::MissingFeatures::emitNullabilityCheck());
|
|
emitStoreThroughLValue(RValue::get(value), lvalue, true);
|
|
}
|
|
|
|
void CIRGenFunction::emitExprAsInit(const Expr *init, const ValueDecl *d,
|
|
LValue lvalue, bool capturedByInit) {
|
|
SourceLocRAIIObject loc{*this, getLoc(init->getSourceRange())};
|
|
if (capturedByInit) {
|
|
cgm.errorNYI(init->getSourceRange(), "emitExprAsInit: captured by init");
|
|
return;
|
|
}
|
|
|
|
QualType type = d->getType();
|
|
|
|
if (type->isReferenceType()) {
|
|
RValue rvalue = emitReferenceBindingToExpr(init);
|
|
if (capturedByInit)
|
|
cgm.errorNYI(init->getSourceRange(), "emitExprAsInit: captured by init");
|
|
emitStoreThroughLValue(rvalue, lvalue);
|
|
return;
|
|
}
|
|
switch (CIRGenFunction::getEvaluationKind(type)) {
|
|
case cir::TEK_Scalar:
|
|
emitScalarInit(init, getLoc(d->getSourceRange()), lvalue);
|
|
return;
|
|
case cir::TEK_Complex: {
|
|
mlir::Value complex = emitComplexExpr(init);
|
|
if (capturedByInit)
|
|
cgm.errorNYI(init->getSourceRange(),
|
|
"emitExprAsInit: complex type captured by init");
|
|
mlir::Location loc = getLoc(init->getExprLoc());
|
|
emitStoreOfComplex(loc, complex, lvalue,
|
|
/*isInit*/ true);
|
|
return;
|
|
}
|
|
case cir::TEK_Aggregate:
|
|
// The overlap flag here should be calculated.
|
|
assert(!cir::MissingFeatures::aggValueSlotMayOverlap());
|
|
emitAggExpr(init,
|
|
AggValueSlot::forLValue(lvalue, AggValueSlot::IsDestructed,
|
|
AggValueSlot::IsNotAliased,
|
|
AggValueSlot::MayOverlap));
|
|
return;
|
|
}
|
|
llvm_unreachable("bad evaluation kind");
|
|
}
|
|
|
|
void CIRGenFunction::emitDecl(const Decl &d, bool evaluateConditionDecl) {
|
|
switch (d.getKind()) {
|
|
case Decl::BuiltinTemplate:
|
|
case Decl::TranslationUnit:
|
|
case Decl::ExternCContext:
|
|
case Decl::Namespace:
|
|
case Decl::UnresolvedUsingTypename:
|
|
case Decl::ClassTemplateSpecialization:
|
|
case Decl::ClassTemplatePartialSpecialization:
|
|
case Decl::VarTemplateSpecialization:
|
|
case Decl::VarTemplatePartialSpecialization:
|
|
case Decl::TemplateTypeParm:
|
|
case Decl::UnresolvedUsingValue:
|
|
case Decl::NonTypeTemplateParm:
|
|
case Decl::CXXDeductionGuide:
|
|
case Decl::CXXMethod:
|
|
case Decl::CXXConstructor:
|
|
case Decl::CXXDestructor:
|
|
case Decl::CXXConversion:
|
|
case Decl::Field:
|
|
case Decl::MSProperty:
|
|
case Decl::IndirectField:
|
|
case Decl::ObjCIvar:
|
|
case Decl::ObjCAtDefsField:
|
|
case Decl::ParmVar:
|
|
case Decl::ImplicitParam:
|
|
case Decl::ClassTemplate:
|
|
case Decl::VarTemplate:
|
|
case Decl::FunctionTemplate:
|
|
case Decl::TypeAliasTemplate:
|
|
case Decl::TemplateTemplateParm:
|
|
case Decl::ObjCMethod:
|
|
case Decl::ObjCCategory:
|
|
case Decl::ObjCProtocol:
|
|
case Decl::ObjCInterface:
|
|
case Decl::ObjCCategoryImpl:
|
|
case Decl::ObjCImplementation:
|
|
case Decl::ObjCProperty:
|
|
case Decl::ObjCCompatibleAlias:
|
|
case Decl::PragmaComment:
|
|
case Decl::PragmaDetectMismatch:
|
|
case Decl::AccessSpec:
|
|
case Decl::LinkageSpec:
|
|
case Decl::Export:
|
|
case Decl::ObjCPropertyImpl:
|
|
case Decl::FileScopeAsm:
|
|
case Decl::Friend:
|
|
case Decl::FriendTemplate:
|
|
case Decl::Block:
|
|
case Decl::OutlinedFunction:
|
|
case Decl::Captured:
|
|
case Decl::UsingShadow:
|
|
case Decl::ConstructorUsingShadow:
|
|
case Decl::ObjCTypeParam:
|
|
case Decl::Binding:
|
|
case Decl::UnresolvedUsingIfExists:
|
|
case Decl::HLSLBuffer:
|
|
case Decl::HLSLRootSignature:
|
|
llvm_unreachable("Declaration should not be in declstmts!");
|
|
|
|
case Decl::Function: // void X();
|
|
case Decl::EnumConstant: // enum ? { X = ? }
|
|
case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
|
|
case Decl::Label: // __label__ x;
|
|
case Decl::Import:
|
|
case Decl::MSGuid: // __declspec(uuid("..."))
|
|
case Decl::TemplateParamObject:
|
|
case Decl::OMPThreadPrivate:
|
|
case Decl::OMPAllocate:
|
|
case Decl::OMPCapturedExpr:
|
|
case Decl::OMPRequires:
|
|
case Decl::Empty:
|
|
case Decl::Concept:
|
|
case Decl::LifetimeExtendedTemporary:
|
|
case Decl::RequiresExprBody:
|
|
case Decl::UnnamedGlobalConstant:
|
|
// None of these decls require codegen support.
|
|
return;
|
|
|
|
case Decl::Enum: // enum X;
|
|
case Decl::Record: // struct/union/class X;
|
|
case Decl::CXXRecord: // struct/union/class X; [C++]
|
|
case Decl::NamespaceAlias:
|
|
case Decl::Using: // using X; [C++]
|
|
case Decl::UsingEnum: // using enum X; [C++]
|
|
case Decl::UsingDirective: // using namespace X; [C++]
|
|
assert(!cir::MissingFeatures::generateDebugInfo());
|
|
return;
|
|
case Decl::Var:
|
|
case Decl::Decomposition: {
|
|
const VarDecl &vd = cast<VarDecl>(d);
|
|
assert(vd.isLocalVarDecl() &&
|
|
"Should not see file-scope variables inside a function!");
|
|
emitVarDecl(vd);
|
|
if (evaluateConditionDecl)
|
|
maybeEmitDeferredVarDeclInit(&vd);
|
|
return;
|
|
}
|
|
case Decl::OpenACCDeclare:
|
|
emitOpenACCDeclare(cast<OpenACCDeclareDecl>(d));
|
|
return;
|
|
case Decl::OpenACCRoutine:
|
|
emitOpenACCRoutine(cast<OpenACCRoutineDecl>(d));
|
|
return;
|
|
case Decl::Typedef: // typedef int X;
|
|
case Decl::TypeAlias: { // using X = int; [C++0x]
|
|
QualType ty = cast<TypedefNameDecl>(d).getUnderlyingType();
|
|
assert(!cir::MissingFeatures::generateDebugInfo());
|
|
if (ty->isVariablyModifiedType())
|
|
cgm.errorNYI(d.getSourceRange(), "emitDecl: variably modified type");
|
|
return;
|
|
}
|
|
case Decl::ImplicitConceptSpecialization:
|
|
case Decl::TopLevelStmt:
|
|
case Decl::UsingPack:
|
|
case Decl::OMPDeclareReduction:
|
|
case Decl::OMPDeclareMapper:
|
|
cgm.errorNYI(d.getSourceRange(),
|
|
std::string("emitDecl: unhandled decl type: ") +
|
|
d.getDeclKindName());
|
|
}
|
|
}
|
|
|
|
void CIRGenFunction::emitNullabilityCheck(LValue lhs, mlir::Value rhs,
|
|
SourceLocation loc) {
|
|
if (!sanOpts.has(SanitizerKind::NullabilityAssign))
|
|
return;
|
|
|
|
assert(!cir::MissingFeatures::sanitizers());
|
|
}
|
|
|
|
/// Destroys all the elements of the given array, beginning from last to first.
|
|
/// The array cannot be zero-length.
|
|
///
|
|
/// \param begin - a type* denoting the first element of the array
|
|
/// \param end - a type* denoting one past the end of the array
|
|
/// \param elementType - the element type of the array
|
|
/// \param destroyer - the function to call to destroy elements
|
|
void CIRGenFunction::emitArrayDestroy(mlir::Value begin, mlir::Value end,
|
|
QualType elementType,
|
|
CharUnits elementAlign,
|
|
Destroyer *destroyer) {
|
|
assert(!elementType->isArrayType());
|
|
|
|
// Differently from LLVM traditional codegen, use a higher level
|
|
// representation instead of lowering directly to a loop.
|
|
mlir::Type cirElementType = convertTypeForMem(elementType);
|
|
cir::PointerType ptrToElmType = builder.getPointerTo(cirElementType);
|
|
|
|
// Emit the dtor call that will execute for every array element.
|
|
cir::ArrayDtor::create(
|
|
builder, *currSrcLoc, begin, [&](mlir::OpBuilder &b, mlir::Location loc) {
|
|
auto arg = b.getInsertionBlock()->addArgument(ptrToElmType, loc);
|
|
Address curAddr = Address(arg, cirElementType, elementAlign);
|
|
assert(!cir::MissingFeatures::dtorCleanups());
|
|
|
|
// Perform the actual destruction there.
|
|
destroyer(*this, curAddr, elementType);
|
|
|
|
cir::YieldOp::create(builder, loc);
|
|
});
|
|
}
|
|
|
|
/// Immediately perform the destruction of the given object.
|
|
///
|
|
/// \param addr - the address of the object; a type*
|
|
/// \param type - the type of the object; if an array type, all
|
|
/// objects are destroyed in reverse order
|
|
/// \param destroyer - the function to call to destroy individual
|
|
/// elements
|
|
void CIRGenFunction::emitDestroy(Address addr, QualType type,
|
|
Destroyer *destroyer) {
|
|
const ArrayType *arrayType = getContext().getAsArrayType(type);
|
|
if (!arrayType)
|
|
return destroyer(*this, addr, type);
|
|
|
|
mlir::Value length = emitArrayLength(arrayType, type, addr);
|
|
|
|
CharUnits elementAlign = addr.getAlignment().alignmentOfArrayElement(
|
|
getContext().getTypeSizeInChars(type));
|
|
|
|
auto constantCount = length.getDefiningOp<cir::ConstantOp>();
|
|
if (!constantCount) {
|
|
assert(!cir::MissingFeatures::vlas());
|
|
cgm.errorNYI("emitDestroy: variable length array");
|
|
return;
|
|
}
|
|
|
|
auto constIntAttr = mlir::dyn_cast<cir::IntAttr>(constantCount.getValue());
|
|
// If it's constant zero, we can just skip the entire thing.
|
|
if (constIntAttr && constIntAttr.getUInt() == 0)
|
|
return;
|
|
|
|
mlir::Value begin = addr.getPointer();
|
|
mlir::Value end; // This will be used for future non-constant counts.
|
|
emitArrayDestroy(begin, end, type, elementAlign, destroyer);
|
|
|
|
// If the array destroy didn't use the length op, we can erase it.
|
|
if (constantCount.use_empty())
|
|
constantCount.erase();
|
|
}
|
|
|
|
CIRGenFunction::Destroyer *
|
|
CIRGenFunction::getDestroyer(QualType::DestructionKind kind) {
|
|
switch (kind) {
|
|
case QualType::DK_none:
|
|
llvm_unreachable("no destroyer for trivial dtor");
|
|
case QualType::DK_cxx_destructor:
|
|
return destroyCXXObject;
|
|
case QualType::DK_objc_strong_lifetime:
|
|
case QualType::DK_objc_weak_lifetime:
|
|
case QualType::DK_nontrivial_c_struct:
|
|
cgm.errorNYI("getDestroyer: other destruction kind");
|
|
return nullptr;
|
|
}
|
|
llvm_unreachable("Unknown DestructionKind");
|
|
}
|
|
|
|
namespace {
|
|
struct DestroyObject final : EHScopeStack::Cleanup {
|
|
DestroyObject(Address addr, QualType type,
|
|
CIRGenFunction::Destroyer *destroyer)
|
|
: addr(addr), type(type), destroyer(destroyer) {}
|
|
|
|
Address addr;
|
|
QualType type;
|
|
CIRGenFunction::Destroyer *destroyer;
|
|
|
|
void emit(CIRGenFunction &cgf) override {
|
|
cgf.emitDestroy(addr, type, destroyer);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
/// Enter a destroy cleanup for the given local variable.
|
|
void CIRGenFunction::emitAutoVarTypeCleanup(
|
|
const CIRGenFunction::AutoVarEmission &emission,
|
|
QualType::DestructionKind dtorKind) {
|
|
assert(dtorKind != QualType::DK_none);
|
|
|
|
// Note that for __block variables, we want to destroy the
|
|
// original stack object, not the possibly forwarded object.
|
|
Address addr = emission.getObjectAddress(*this);
|
|
|
|
const VarDecl *var = emission.Variable;
|
|
QualType type = var->getType();
|
|
|
|
CleanupKind cleanupKind = NormalAndEHCleanup;
|
|
CIRGenFunction::Destroyer *destroyer = nullptr;
|
|
|
|
switch (dtorKind) {
|
|
case QualType::DK_none:
|
|
llvm_unreachable("no cleanup for trivially-destructible variable");
|
|
|
|
case QualType::DK_cxx_destructor:
|
|
// If there's an NRVO flag on the emission, we need a different
|
|
// cleanup.
|
|
if (emission.NRVOFlag) {
|
|
cgm.errorNYI(var->getSourceRange(), "emitAutoVarTypeCleanup: NRVO");
|
|
return;
|
|
}
|
|
// Otherwise, this is handled below.
|
|
break;
|
|
|
|
case QualType::DK_objc_strong_lifetime:
|
|
case QualType::DK_objc_weak_lifetime:
|
|
case QualType::DK_nontrivial_c_struct:
|
|
cgm.errorNYI(var->getSourceRange(),
|
|
"emitAutoVarTypeCleanup: other dtor kind");
|
|
return;
|
|
}
|
|
|
|
// If we haven't chosen a more specific destroyer, use the default.
|
|
if (!destroyer)
|
|
destroyer = getDestroyer(dtorKind);
|
|
|
|
assert(!cir::MissingFeatures::ehCleanupFlags());
|
|
ehStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer);
|
|
}
|
|
|
|
void CIRGenFunction::maybeEmitDeferredVarDeclInit(const VarDecl *vd) {
|
|
if (auto *dd = dyn_cast_if_present<DecompositionDecl>(vd)) {
|
|
for (auto *b : dd->flat_bindings())
|
|
if (auto *hd = b->getHoldingVar())
|
|
emitVarDecl(*hd);
|
|
}
|
|
}
|