Sanjay Patel 25c6544f32 [VectorCombine] add a debug flag to skip all transforms
As suggested in D75145 -

I'm not sure why, but several passes have this kind of disable/enable flag
implemented at the pass manager level. But that means we have to duplicate
the flag for both pass managers and add code to check the flag every time
the pass appears in the pipeline.

We want a debug option to see if this pass is misbehaving regardless of the
pass managers, so just add a disablement check at the single point before
any transforms run.

Differential Revision: https://reviews.llvm.org/D75204
2020-02-26 15:15:42 -05:00

259 lines
10 KiB
C++

//===------- VectorCombine.cpp - Optimize partial vector operations -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass optimizes scalar/vector interactions using target cost models. The
// transforms implemented here may not fit in traditional loop-based or SLP
// vectorization passes.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Vectorize/VectorCombine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Vectorize.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "vector-combine"
STATISTIC(NumVecCmp, "Number of vector compares formed");
STATISTIC(NumVecBO, "Number of vector binops formed");
static cl::opt<bool> DisableVectorCombine(
"disable-vector-combine", cl::init(false), cl::Hidden,
cl::desc("Disable all vector combine transforms"));
/// Compare the relative costs of extracts followed by scalar operation vs.
/// vector operation followed by extract:
/// opcode (extelt V0, C), (extelt V1, C) --> extelt (opcode V0, V1), C
/// Unless the vector op is much more expensive than the scalar op, this
/// eliminates an extract.
static bool isExtractExtractCheap(Instruction *Ext0, Instruction *Ext1,
unsigned Opcode,
const TargetTransformInfo &TTI) {
assert(Ext0->getOperand(1) == Ext1->getOperand(1) &&
isa<ConstantInt>(Ext0->getOperand(1)) &&
"Expected same constant extract index");
Type *ScalarTy = Ext0->getType();
Type *VecTy = Ext0->getOperand(0)->getType();
int ScalarOpCost, VectorOpCost;
// Get cost estimates for scalar and vector versions of the operation.
bool IsBinOp = Instruction::isBinaryOp(Opcode);
if (IsBinOp) {
ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
} else {
assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
"Expected a compare");
ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy,
CmpInst::makeCmpResultType(ScalarTy));
VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy,
CmpInst::makeCmpResultType(VecTy));
}
// Get cost estimate for the extract element. This cost will factor into
// both sequences.
unsigned ExtIndex = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue();
int ExtractCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
VecTy, ExtIndex);
// Extra uses of the extracts mean that we include those costs in the
// vector total because those instructions will not be eliminated.
int OldCost, NewCost;
if (Ext0->getOperand(0) == Ext1->getOperand(0)) {
// Handle a special case. If the 2 operands are identical, adjust the
// formulas to account for that. The extra use charge allows for either the
// CSE'd pattern or an unoptimized form with identical values:
// opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
: !Ext0->hasOneUse() || !Ext1->hasOneUse();
OldCost = ExtractCost + ScalarOpCost;
NewCost = VectorOpCost + ExtractCost + HasUseTax * ExtractCost;
} else {
// Handle the general case. Each extract is actually a different value:
// opcode (extelt V0, C), (extelt V1, C) --> extelt (opcode V0, V1), C
OldCost = 2 * ExtractCost + ScalarOpCost;
NewCost = VectorOpCost + ExtractCost + !Ext0->hasOneUse() * ExtractCost +
!Ext1->hasOneUse() * ExtractCost;
}
// Aggressively form a vector op if the cost is equal because the transform
// may enable further optimization.
// Codegen can reverse this transform (scalarize) if it was not profitable.
return OldCost < NewCost;
}
/// Try to reduce extract element costs by converting scalar compares to vector
/// compares followed by extract.
/// cmp (ext0 V0, C), (ext1 V1, C)
static void foldExtExtCmp(Instruction *Ext0, Instruction *Ext1,
Instruction &I, const TargetTransformInfo &TTI) {
assert(isa<CmpInst>(&I) && "Expected a compare");
// cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
++NumVecCmp;
IRBuilder<> Builder(&I);
CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
Value *V0 = Ext0->getOperand(0), *V1 = Ext1->getOperand(0);
Value *VecCmp =
Ext0->getType()->isFloatingPointTy() ? Builder.CreateFCmp(Pred, V0, V1)
: Builder.CreateICmp(Pred, V0, V1);
Value *Extract = Builder.CreateExtractElement(VecCmp, Ext0->getOperand(1));
I.replaceAllUsesWith(Extract);
}
/// Try to reduce extract element costs by converting scalar binops to vector
/// binops followed by extract.
/// bo (ext0 V0, C), (ext1 V1, C)
static void foldExtExtBinop(Instruction *Ext0, Instruction *Ext1,
Instruction &I, const TargetTransformInfo &TTI) {
assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
// bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
++NumVecBO;
IRBuilder<> Builder(&I);
Value *V0 = Ext0->getOperand(0), *V1 = Ext1->getOperand(0);
Value *VecBO =
Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
// All IR flags are safe to back-propagate because any potential poison
// created in unused vector elements is discarded by the extract.
if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
VecBOInst->copyIRFlags(&I);
Value *Extract = Builder.CreateExtractElement(VecBO, Ext0->getOperand(1));
I.replaceAllUsesWith(Extract);
}
/// Match an instruction with extracted vector operands.
static bool foldExtractExtract(Instruction &I, const TargetTransformInfo &TTI) {
// It is not safe to transform things like div, urem, etc. because we may
// create undefined behavior when executing those on unknown vector elements.
if (!isSafeToSpeculativelyExecute(&I))
return false;
Instruction *Ext0, *Ext1;
CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
if (!match(&I, m_Cmp(Pred, m_Instruction(Ext0), m_Instruction(Ext1))) &&
!match(&I, m_BinOp(m_Instruction(Ext0), m_Instruction(Ext1))))
return false;
Value *V0, *V1;
uint64_t C0, C1;
if (!match(Ext0, m_ExtractElement(m_Value(V0), m_ConstantInt(C0))) ||
!match(Ext1, m_ExtractElement(m_Value(V1), m_ConstantInt(C1))) ||
V0->getType() != V1->getType())
return false;
// TODO: Handle C0 != C1 by shuffling 1 of the operands.
if (C0 != C1)
return false;
if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), TTI))
return false;
if (Pred != CmpInst::BAD_ICMP_PREDICATE)
foldExtExtCmp(Ext0, Ext1, I, TTI);
else
foldExtExtBinop(Ext0, Ext1, I, TTI);
return true;
}
/// This is the entry point for all transforms. Pass manager differences are
/// handled in the callers of this function.
static bool runImpl(Function &F, const TargetTransformInfo &TTI,
const DominatorTree &DT) {
if (DisableVectorCombine)
return false;
bool MadeChange = false;
for (BasicBlock &BB : F) {
// Ignore unreachable basic blocks.
if (!DT.isReachableFromEntry(&BB))
continue;
// Do not delete instructions under here and invalidate the iterator.
// Walk the block backwards for efficiency. We're matching a chain of
// use->defs, so we're more likely to succeed by starting from the bottom.
// TODO: It could be more efficient to remove dead instructions
// iteratively in this loop rather than waiting until the end.
for (Instruction &I : make_range(BB.rbegin(), BB.rend()))
MadeChange |= foldExtractExtract(I, TTI);
}
// We're done with transforms, so remove dead instructions.
if (MadeChange)
for (BasicBlock &BB : F)
SimplifyInstructionsInBlock(&BB);
return MadeChange;
}
// Pass manager boilerplate below here.
namespace {
class VectorCombineLegacyPass : public FunctionPass {
public:
static char ID;
VectorCombineLegacyPass() : FunctionPass(ID) {
initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.setPreservesCFG();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
FunctionPass::getAnalysisUsage(AU);
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
return runImpl(F, TTI, DT);
}
};
} // namespace
char VectorCombineLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
"Optimize scalar/vector ops", false,
false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
"Optimize scalar/vector ops", false, false)
Pass *llvm::createVectorCombinePass() {
return new VectorCombineLegacyPass();
}
PreservedAnalyses VectorCombinePass::run(Function &F,
FunctionAnalysisManager &FAM) {
TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
if (!runImpl(F, TTI, DT))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
PA.preserve<GlobalsAA>();
return PA;
}