llvm-project/flang/lib/Evaluate/check-expression.cpp
Peter Klausler 26ac30bcec
[flang] Accept initialized SAVE local in specification expression (#107656)
Specification expressions may contain references to dummy arguments,
host objects, module variables, and variables in COMMON blocks, since
they will have values on entry to the scope. A local variable with a
initializer and the SAVE attribute (which will always be implied by an
explicit initialization) will also always work, and is accepted by at
least one other compiler, so accept it with a warning.
2024-09-10 14:13:09 -07:00

1208 lines
46 KiB
C++

//===-- lib/Evaluate/check-expression.cpp ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Evaluate/check-expression.h"
#include "flang/Evaluate/characteristics.h"
#include "flang/Evaluate/intrinsics.h"
#include "flang/Evaluate/tools.h"
#include "flang/Evaluate/traverse.h"
#include "flang/Evaluate/type.h"
#include "flang/Semantics/semantics.h"
#include "flang/Semantics/symbol.h"
#include "flang/Semantics/tools.h"
#include <set>
#include <string>
namespace Fortran::evaluate {
// Constant expression predicates IsConstantExpr() & IsScopeInvariantExpr().
// This code determines whether an expression is a "constant expression"
// in the sense of section 10.1.12. This is not the same thing as being
// able to fold it (yet) into a known constant value; specifically,
// the expression may reference derived type kind parameters whose values
// are not yet known.
//
// The variant form (IsScopeInvariantExpr()) also accepts symbols that are
// INTENT(IN) dummy arguments without the VALUE attribute.
template <bool INVARIANT>
class IsConstantExprHelper
: public AllTraverse<IsConstantExprHelper<INVARIANT>, true> {
public:
using Base = AllTraverse<IsConstantExprHelper, true>;
IsConstantExprHelper() : Base{*this} {}
using Base::operator();
// A missing expression is not considered to be constant.
template <typename A> bool operator()(const std::optional<A> &x) const {
return x && (*this)(*x);
}
bool operator()(const TypeParamInquiry &inq) const {
return INVARIANT || semantics::IsKindTypeParameter(inq.parameter());
}
bool operator()(const semantics::Symbol &symbol) const {
const auto &ultimate{GetAssociationRoot(symbol)};
return IsNamedConstant(ultimate) || IsImpliedDoIndex(ultimate) ||
IsInitialProcedureTarget(ultimate) ||
ultimate.has<semantics::TypeParamDetails>() ||
(INVARIANT && IsIntentIn(symbol) && !IsOptional(symbol) &&
!symbol.attrs().test(semantics::Attr::VALUE));
}
bool operator()(const CoarrayRef &) const { return false; }
bool operator()(const semantics::ParamValue &param) const {
return param.isExplicit() && (*this)(param.GetExplicit());
}
bool operator()(const ProcedureRef &) const;
bool operator()(const StructureConstructor &constructor) const {
for (const auto &[symRef, expr] : constructor) {
if (!IsConstantStructureConstructorComponent(*symRef, expr.value())) {
return false;
}
}
return true;
}
bool operator()(const Component &component) const {
return (*this)(component.base());
}
// Forbid integer division by zero in constants.
template <int KIND>
bool operator()(
const Divide<Type<TypeCategory::Integer, KIND>> &division) const {
using T = Type<TypeCategory::Integer, KIND>;
if (const auto divisor{GetScalarConstantValue<T>(division.right())}) {
return !divisor->IsZero() && (*this)(division.left());
} else {
return false;
}
}
bool operator()(const Constant<SomeDerived> &) const { return true; }
bool operator()(const DescriptorInquiry &x) const {
const Symbol &sym{x.base().GetLastSymbol()};
return INVARIANT && !IsAllocatable(sym) &&
(!IsDummy(sym) ||
(IsIntentIn(sym) && !IsOptional(sym) &&
!sym.attrs().test(semantics::Attr::VALUE)));
}
private:
bool IsConstantStructureConstructorComponent(
const Symbol &, const Expr<SomeType> &) const;
bool IsConstantExprShape(const Shape &) const;
};
template <bool INVARIANT>
bool IsConstantExprHelper<INVARIANT>::IsConstantStructureConstructorComponent(
const Symbol &component, const Expr<SomeType> &expr) const {
if (IsAllocatable(component)) {
return IsNullObjectPointer(expr);
} else if (IsPointer(component)) {
return IsNullPointer(expr) || IsInitialDataTarget(expr) ||
IsInitialProcedureTarget(expr);
} else {
return (*this)(expr);
}
}
template <bool INVARIANT>
bool IsConstantExprHelper<INVARIANT>::operator()(
const ProcedureRef &call) const {
// LBOUND, UBOUND, and SIZE with truly constant DIM= arguments will have
// been rewritten into DescriptorInquiry operations.
if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&call.proc().u)}) {
const characteristics::Procedure &proc{intrinsic->characteristics.value()};
if (intrinsic->name == "kind" ||
intrinsic->name == IntrinsicProcTable::InvalidName ||
call.arguments().empty() || !call.arguments()[0]) {
// kind is always a constant, and we avoid cascading errors by considering
// invalid calls to intrinsics to be constant
return true;
} else if (intrinsic->name == "lbound") {
auto base{ExtractNamedEntity(call.arguments()[0]->UnwrapExpr())};
return base && IsConstantExprShape(GetLBOUNDs(*base));
} else if (intrinsic->name == "ubound") {
auto base{ExtractNamedEntity(call.arguments()[0]->UnwrapExpr())};
return base && IsConstantExprShape(GetUBOUNDs(*base));
} else if (intrinsic->name == "shape" || intrinsic->name == "size") {
auto shape{GetShape(call.arguments()[0]->UnwrapExpr())};
return shape && IsConstantExprShape(*shape);
} else if (proc.IsPure()) {
for (const auto &arg : call.arguments()) {
if (!arg) {
return false;
} else if (const auto *expr{arg->UnwrapExpr()};
!expr || !(*this)(*expr)) {
return false;
}
}
return true;
}
// TODO: STORAGE_SIZE
}
return false;
}
template <bool INVARIANT>
bool IsConstantExprHelper<INVARIANT>::IsConstantExprShape(
const Shape &shape) const {
for (const auto &extent : shape) {
if (!(*this)(extent)) {
return false;
}
}
return true;
}
template <typename A> bool IsConstantExpr(const A &x) {
return IsConstantExprHelper<false>{}(x);
}
template bool IsConstantExpr(const Expr<SomeType> &);
template bool IsConstantExpr(const Expr<SomeInteger> &);
template bool IsConstantExpr(const Expr<SubscriptInteger> &);
template bool IsConstantExpr(const StructureConstructor &);
// IsScopeInvariantExpr()
template <typename A> bool IsScopeInvariantExpr(const A &x) {
return IsConstantExprHelper<true>{}(x);
}
template bool IsScopeInvariantExpr(const Expr<SomeType> &);
template bool IsScopeInvariantExpr(const Expr<SomeInteger> &);
template bool IsScopeInvariantExpr(const Expr<SubscriptInteger> &);
// IsActuallyConstant()
struct IsActuallyConstantHelper {
template <typename A> bool operator()(const A &) { return false; }
template <typename T> bool operator()(const Constant<T> &) { return true; }
template <typename T> bool operator()(const Parentheses<T> &x) {
return (*this)(x.left());
}
template <typename T> bool operator()(const Expr<T> &x) {
return common::visit([=](const auto &y) { return (*this)(y); }, x.u);
}
bool operator()(const Expr<SomeType> &x) {
return common::visit([this](const auto &y) { return (*this)(y); }, x.u);
}
bool operator()(const StructureConstructor &x) {
for (const auto &pair : x) {
const Expr<SomeType> &y{pair.second.value()};
const auto sym{pair.first};
const bool compIsConstant{(*this)(y)};
// If an allocatable component is initialized by a constant,
// the structure constructor is not a constant.
if ((!compIsConstant && !IsNullPointer(y)) ||
(compIsConstant && IsAllocatable(sym))) {
return false;
}
}
return true;
}
template <typename A> bool operator()(const A *x) { return x && (*this)(*x); }
template <typename A> bool operator()(const std::optional<A> &x) {
return x && (*this)(*x);
}
};
template <typename A> bool IsActuallyConstant(const A &x) {
return IsActuallyConstantHelper{}(x);
}
template bool IsActuallyConstant(const Expr<SomeType> &);
template bool IsActuallyConstant(const Expr<SomeInteger> &);
template bool IsActuallyConstant(const Expr<SubscriptInteger> &);
template bool IsActuallyConstant(const std::optional<Expr<SubscriptInteger>> &);
// Object pointer initialization checking predicate IsInitialDataTarget().
// This code determines whether an expression is allowable as the static
// data address used to initialize a pointer with "=> x". See C765.
class IsInitialDataTargetHelper
: public AllTraverse<IsInitialDataTargetHelper, true> {
public:
using Base = AllTraverse<IsInitialDataTargetHelper, true>;
using Base::operator();
explicit IsInitialDataTargetHelper(parser::ContextualMessages *m)
: Base{*this}, messages_{m} {}
bool emittedMessage() const { return emittedMessage_; }
bool operator()(const BOZLiteralConstant &) const { return false; }
bool operator()(const NullPointer &) const { return true; }
template <typename T> bool operator()(const Constant<T> &) const {
return false;
}
bool operator()(const semantics::Symbol &symbol) {
// This function checks only base symbols, not components.
const Symbol &ultimate{symbol.GetUltimate()};
if (const auto *assoc{
ultimate.detailsIf<semantics::AssocEntityDetails>()}) {
if (const auto &expr{assoc->expr()}) {
if (IsVariable(*expr)) {
return (*this)(*expr);
} else if (messages_) {
messages_->Say(
"An initial data target may not be an associated expression ('%s')"_err_en_US,
ultimate.name());
emittedMessage_ = true;
}
}
return false;
} else if (!CheckVarOrComponent(ultimate)) {
return false;
} else if (!ultimate.attrs().test(semantics::Attr::TARGET)) {
if (messages_) {
messages_->Say(
"An initial data target may not be a reference to an object '%s' that lacks the TARGET attribute"_err_en_US,
ultimate.name());
emittedMessage_ = true;
}
return false;
} else if (!IsSaved(ultimate)) {
if (messages_) {
messages_->Say(
"An initial data target may not be a reference to an object '%s' that lacks the SAVE attribute"_err_en_US,
ultimate.name());
emittedMessage_ = true;
}
return false;
} else {
return true;
}
}
bool operator()(const StaticDataObject &) const { return false; }
bool operator()(const TypeParamInquiry &) const { return false; }
bool operator()(const Triplet &x) const {
return IsConstantExpr(x.lower()) && IsConstantExpr(x.upper()) &&
IsConstantExpr(x.stride());
}
bool operator()(const Subscript &x) const {
return common::visit(common::visitors{
[&](const Triplet &t) { return (*this)(t); },
[&](const auto &y) {
return y.value().Rank() == 0 &&
IsConstantExpr(y.value());
},
},
x.u);
}
bool operator()(const CoarrayRef &) const { return false; }
bool operator()(const Component &x) {
return CheckVarOrComponent(x.GetLastSymbol()) && (*this)(x.base());
}
bool operator()(const Substring &x) const {
return IsConstantExpr(x.lower()) && IsConstantExpr(x.upper()) &&
(*this)(x.parent());
}
bool operator()(const DescriptorInquiry &) const { return false; }
template <typename T> bool operator()(const ArrayConstructor<T> &) const {
return false;
}
bool operator()(const StructureConstructor &) const { return false; }
template <typename D, typename R, typename... O>
bool operator()(const Operation<D, R, O...> &) const {
return false;
}
template <typename T> bool operator()(const Parentheses<T> &x) const {
return (*this)(x.left());
}
bool operator()(const ProcedureRef &x) const {
if (const SpecificIntrinsic * intrinsic{x.proc().GetSpecificIntrinsic()}) {
return intrinsic->characteristics.value().attrs.test(
characteristics::Procedure::Attr::NullPointer);
}
return false;
}
bool operator()(const Relational<SomeType> &) const { return false; }
private:
bool CheckVarOrComponent(const semantics::Symbol &symbol) {
const Symbol &ultimate{symbol.GetUltimate()};
const char *unacceptable{nullptr};
if (ultimate.Corank() > 0) {
unacceptable = "a coarray";
} else if (IsAllocatable(ultimate)) {
unacceptable = "an ALLOCATABLE";
} else if (IsPointer(ultimate)) {
unacceptable = "a POINTER";
} else {
return true;
}
if (messages_) {
messages_->Say(
"An initial data target may not be a reference to %s '%s'"_err_en_US,
unacceptable, ultimate.name());
emittedMessage_ = true;
}
return false;
}
parser::ContextualMessages *messages_;
bool emittedMessage_{false};
};
bool IsInitialDataTarget(
const Expr<SomeType> &x, parser::ContextualMessages *messages) {
IsInitialDataTargetHelper helper{messages};
bool result{helper(x)};
if (!result && messages && !helper.emittedMessage()) {
messages->Say(
"An initial data target must be a designator with constant subscripts"_err_en_US);
}
return result;
}
bool IsInitialProcedureTarget(const semantics::Symbol &symbol) {
const auto &ultimate{symbol.GetUltimate()};
return common::visit(
common::visitors{
[&](const semantics::SubprogramDetails &subp) {
return !subp.isDummy() && !subp.stmtFunction() &&
symbol.owner().kind() != semantics::Scope::Kind::MainProgram &&
symbol.owner().kind() != semantics::Scope::Kind::Subprogram;
},
[](const semantics::SubprogramNameDetails &x) {
return x.kind() != semantics::SubprogramKind::Internal;
},
[&](const semantics::ProcEntityDetails &proc) {
return !semantics::IsPointer(ultimate) && !proc.isDummy();
},
[](const auto &) { return false; },
},
ultimate.details());
}
bool IsInitialProcedureTarget(const ProcedureDesignator &proc) {
if (const auto *intrin{proc.GetSpecificIntrinsic()}) {
return !intrin->isRestrictedSpecific;
} else if (proc.GetComponent()) {
return false;
} else {
return IsInitialProcedureTarget(DEREF(proc.GetSymbol()));
}
}
bool IsInitialProcedureTarget(const Expr<SomeType> &expr) {
if (const auto *proc{std::get_if<ProcedureDesignator>(&expr.u)}) {
return IsInitialProcedureTarget(*proc);
} else {
return IsNullProcedurePointer(expr);
}
}
// Converts, folds, and then checks type, rank, and shape of an
// initialization expression for a named constant, a non-pointer
// variable static initialization, a component default initializer,
// a type parameter default value, or instantiated type parameter value.
std::optional<Expr<SomeType>> NonPointerInitializationExpr(const Symbol &symbol,
Expr<SomeType> &&x, FoldingContext &context,
const semantics::Scope *instantiation) {
CHECK(!IsPointer(symbol));
if (auto symTS{
characteristics::TypeAndShape::Characterize(symbol, context)}) {
auto xType{x.GetType()};
auto converted{ConvertToType(symTS->type(), Expr<SomeType>{x})};
if (!converted &&
symbol.owner().context().IsEnabled(
common::LanguageFeature::LogicalIntegerAssignment)) {
converted = DataConstantConversionExtension(context, symTS->type(), x);
if (converted &&
symbol.owner().context().ShouldWarn(
common::LanguageFeature::LogicalIntegerAssignment)) {
context.messages().Say(
"nonstandard usage: initialization of %s with %s"_port_en_US,
symTS->type().AsFortran(), x.GetType().value().AsFortran());
}
}
if (converted) {
auto folded{Fold(context, std::move(*converted))};
if (IsActuallyConstant(folded)) {
int symRank{symTS->Rank()};
if (IsImpliedShape(symbol)) {
if (folded.Rank() == symRank) {
return ArrayConstantBoundChanger{
std::move(*AsConstantExtents(
context, GetRawLowerBounds(context, NamedEntity{symbol})))}
.ChangeLbounds(std::move(folded));
} else {
context.messages().Say(
"Implied-shape parameter '%s' has rank %d but its initializer has rank %d"_err_en_US,
symbol.name(), symRank, folded.Rank());
}
} else if (auto extents{AsConstantExtents(context, symTS->shape())}) {
if (folded.Rank() == 0 && symRank == 0) {
// symbol and constant are both scalars
return {std::move(folded)};
} else if (folded.Rank() == 0 && symRank > 0) {
// expand the scalar constant to an array
return ScalarConstantExpander{std::move(*extents),
AsConstantExtents(
context, GetRawLowerBounds(context, NamedEntity{symbol}))}
.Expand(std::move(folded));
} else if (auto resultShape{GetShape(context, folded)}) {
CHECK(symTS->shape()); // Assumed-ranks cannot be initialized.
if (CheckConformance(context.messages(), *symTS->shape(),
*resultShape, CheckConformanceFlags::None,
"initialized object", "initialization expression")
.value_or(false /*fail if not known now to conform*/)) {
// make a constant array with adjusted lower bounds
return ArrayConstantBoundChanger{
std::move(*AsConstantExtents(context,
GetRawLowerBounds(context, NamedEntity{symbol})))}
.ChangeLbounds(std::move(folded));
}
}
} else if (IsNamedConstant(symbol)) {
if (IsExplicitShape(symbol)) {
context.messages().Say(
"Named constant '%s' array must have constant shape"_err_en_US,
symbol.name());
} else {
// Declaration checking handles other cases
}
} else {
context.messages().Say(
"Shape of initialized object '%s' must be constant"_err_en_US,
symbol.name());
}
} else if (IsErrorExpr(folded)) {
} else if (IsLenTypeParameter(symbol)) {
return {std::move(folded)};
} else if (IsKindTypeParameter(symbol)) {
if (instantiation) {
context.messages().Say(
"Value of kind type parameter '%s' (%s) must be a scalar INTEGER constant"_err_en_US,
symbol.name(), folded.AsFortran());
} else {
return {std::move(folded)};
}
} else if (IsNamedConstant(symbol)) {
if (symbol.name() == "numeric_storage_size" &&
symbol.owner().IsModule() &&
DEREF(symbol.owner().symbol()).name() == "iso_fortran_env") {
// Very special case: numeric_storage_size is not folded until
// it read from the iso_fortran_env module file, as its value
// depends on compilation options.
return {std::move(folded)};
}
context.messages().Say(
"Value of named constant '%s' (%s) cannot be computed as a constant value"_err_en_US,
symbol.name(), folded.AsFortran());
} else {
context.messages().Say(
"Initialization expression for '%s' (%s) cannot be computed as a constant value"_err_en_US,
symbol.name(), x.AsFortran());
}
} else if (xType) {
context.messages().Say(
"Initialization expression cannot be converted to declared type of '%s' from %s"_err_en_US,
symbol.name(), xType->AsFortran());
} else {
context.messages().Say(
"Initialization expression cannot be converted to declared type of '%s'"_err_en_US,
symbol.name());
}
}
return std::nullopt;
}
// Specification expression validation (10.1.11(2), C1010)
class CheckSpecificationExprHelper
: public AnyTraverse<CheckSpecificationExprHelper,
std::optional<std::string>> {
public:
using Result = std::optional<std::string>;
using Base = AnyTraverse<CheckSpecificationExprHelper, Result>;
explicit CheckSpecificationExprHelper(const semantics::Scope &s,
FoldingContext &context, bool forElementalFunctionResult)
: Base{*this}, scope_{s}, context_{context},
forElementalFunctionResult_{forElementalFunctionResult} {}
using Base::operator();
Result operator()(const CoarrayRef &) const { return "coindexed reference"; }
Result operator()(const semantics::Symbol &symbol) const {
const auto &ultimate{symbol.GetUltimate()};
if (const auto *assoc{
ultimate.detailsIf<semantics::AssocEntityDetails>()}) {
return (*this)(assoc->expr());
} else if (semantics::IsNamedConstant(ultimate) ||
ultimate.owner().IsModule() || ultimate.owner().IsSubmodule()) {
return std::nullopt;
} else if (scope_.IsDerivedType() &&
IsVariableName(ultimate)) { // C750, C754
return "derived type component or type parameter value not allowed to "
"reference variable '"s +
ultimate.name().ToString() + "'";
} else if (IsDummy(ultimate)) {
if (!inInquiry_ && forElementalFunctionResult_) {
return "dependence on value of dummy argument '"s +
ultimate.name().ToString() + "'";
} else if (ultimate.attrs().test(semantics::Attr::OPTIONAL)) {
return "reference to OPTIONAL dummy argument '"s +
ultimate.name().ToString() + "'";
} else if (!inInquiry_ &&
ultimate.attrs().test(semantics::Attr::INTENT_OUT)) {
return "reference to INTENT(OUT) dummy argument '"s +
ultimate.name().ToString() + "'";
} else if (ultimate.has<semantics::ObjectEntityDetails>()) {
return std::nullopt;
} else {
return "dummy procedure argument";
}
} else if (&symbol.owner() != &scope_ || &ultimate.owner() != &scope_) {
return std::nullopt; // host association is in play
} else if (semantics::IsSaved(ultimate) &&
semantics::IsInitialized(ultimate) &&
context_.languageFeatures().IsEnabled(
common::LanguageFeature::SavedLocalInSpecExpr)) {
if (!scope_.IsModuleFile() &&
context_.languageFeatures().ShouldWarn(
common::LanguageFeature::SavedLocalInSpecExpr)) {
context_.messages().Say(
"specification expression refers to local object '%s' (initialized and saved)"_port_en_US,
ultimate.name().ToString());
}
return std::nullopt;
} else if (const auto *object{
ultimate.detailsIf<semantics::ObjectEntityDetails>()}) {
if (object->commonBlock()) {
return std::nullopt;
}
}
if (inInquiry_) {
return std::nullopt;
} else {
return "reference to local entity '"s + ultimate.name().ToString() + "'";
}
}
Result operator()(const Component &x) const {
// Don't look at the component symbol.
return (*this)(x.base());
}
Result operator()(const ArrayRef &x) const {
if (auto result{(*this)(x.base())}) {
return result;
}
// The subscripts don't get special protection for being in a
// specification inquiry context;
auto restorer{common::ScopedSet(inInquiry_, false)};
return (*this)(x.subscript());
}
Result operator()(const Substring &x) const {
if (auto result{(*this)(x.parent())}) {
return result;
}
// The bounds don't get special protection for being in a
// specification inquiry context;
auto restorer{common::ScopedSet(inInquiry_, false)};
if (auto result{(*this)(x.lower())}) {
return result;
}
return (*this)(x.upper());
}
Result operator()(const DescriptorInquiry &x) const {
// Many uses of SIZE(), LBOUND(), &c. that are valid in specification
// expressions will have been converted to expressions over descriptor
// inquiries by Fold().
// Catch REAL, ALLOCATABLE :: X(:); REAL :: Y(SIZE(X))
if (IsPermissibleInquiry(
x.base().GetFirstSymbol(), x.base().GetLastSymbol(), x.field())) {
auto restorer{common::ScopedSet(inInquiry_, true)};
return (*this)(x.base());
} else if (IsConstantExpr(x)) {
return std::nullopt;
} else {
return "non-constant descriptor inquiry not allowed for local object";
}
}
Result operator()(const TypeParamInquiry &inq) const {
if (scope_.IsDerivedType()) {
if (!IsConstantExpr(inq) &&
inq.base() /* X%T, not local T */) { // C750, C754
return "non-constant reference to a type parameter inquiry not allowed "
"for derived type components or type parameter values";
}
} else if (inq.base() &&
IsInquiryAlwaysPermissible(inq.base()->GetFirstSymbol())) {
auto restorer{common::ScopedSet(inInquiry_, true)};
return (*this)(inq.base());
} else if (!IsConstantExpr(inq)) {
return "non-constant type parameter inquiry not allowed for local object";
}
return std::nullopt;
}
Result operator()(const ProcedureRef &x) const {
bool inInquiry{false};
if (const auto *symbol{x.proc().GetSymbol()}) {
const Symbol &ultimate{symbol->GetUltimate()};
if (!semantics::IsPureProcedure(ultimate)) {
return "reference to impure function '"s + ultimate.name().ToString() +
"'";
}
if (semantics::IsStmtFunction(ultimate)) {
return "reference to statement function '"s +
ultimate.name().ToString() + "'";
}
if (scope_.IsDerivedType()) { // C750, C754
return "reference to function '"s + ultimate.name().ToString() +
"' not allowed for derived type components or type parameter"
" values";
}
if (auto procChars{characteristics::Procedure::Characterize(
x.proc(), context_, /*emitError=*/true)}) {
const auto iter{std::find_if(procChars->dummyArguments.begin(),
procChars->dummyArguments.end(),
[](const characteristics::DummyArgument &dummy) {
return std::holds_alternative<characteristics::DummyProcedure>(
dummy.u);
})};
if (iter != procChars->dummyArguments.end() &&
ultimate.name().ToString() != "__builtin_c_funloc") {
return "reference to function '"s + ultimate.name().ToString() +
"' with dummy procedure argument '" + iter->name + '\'';
}
}
// References to internal functions are caught in expression semantics.
// TODO: other checks for standard module procedures
} else { // intrinsic
const SpecificIntrinsic &intrin{DEREF(x.proc().GetSpecificIntrinsic())};
inInquiry = context_.intrinsics().GetIntrinsicClass(intrin.name) ==
IntrinsicClass::inquiryFunction;
if (scope_.IsDerivedType()) { // C750, C754
if ((context_.intrinsics().IsIntrinsic(intrin.name) &&
badIntrinsicsForComponents_.find(intrin.name) !=
badIntrinsicsForComponents_.end())) {
return "reference to intrinsic '"s + intrin.name +
"' not allowed for derived type components or type parameter"
" values";
}
if (inInquiry && !IsConstantExpr(x)) {
return "non-constant reference to inquiry intrinsic '"s +
intrin.name +
"' not allowed for derived type components or type"
" parameter values";
}
}
// Type-determined inquiries (DIGITS, HUGE, &c.) will have already been
// folded and won't arrive here. Inquiries that are represented with
// DescriptorInquiry operations (LBOUND) are checked elsewhere. If a
// call that makes it to here satisfies the requirements of a constant
// expression (as Fortran defines it), it's fine.
if (IsConstantExpr(x)) {
return std::nullopt;
}
if (intrin.name == "present") {
return std::nullopt; // always ok
}
// Catch CHARACTER(:), ALLOCATABLE :: X; CHARACTER(LEN(X)) :: Y
if (inInquiry && x.arguments().size() >= 1) {
if (const auto &arg{x.arguments().at(0)}) {
if (auto dataRef{ExtractDataRef(*arg, true, true)}) {
if (intrin.name == "allocated" || intrin.name == "associated" ||
intrin.name == "is_contiguous") { // ok
} else if (intrin.name == "len" &&
IsPermissibleInquiry(dataRef->GetFirstSymbol(),
dataRef->GetLastSymbol(),
DescriptorInquiry::Field::Len)) { // ok
} else if (intrin.name == "lbound" &&
IsPermissibleInquiry(dataRef->GetFirstSymbol(),
dataRef->GetLastSymbol(),
DescriptorInquiry::Field::LowerBound)) { // ok
} else if ((intrin.name == "shape" || intrin.name == "size" ||
intrin.name == "sizeof" ||
intrin.name == "storage_size" ||
intrin.name == "ubound") &&
IsPermissibleInquiry(dataRef->GetFirstSymbol(),
dataRef->GetLastSymbol(),
DescriptorInquiry::Field::Extent)) { // ok
} else {
return "non-constant inquiry function '"s + intrin.name +
"' not allowed for local object";
}
}
}
}
}
auto restorer{common::ScopedSet(inInquiry_, inInquiry)};
return (*this)(x.arguments());
}
private:
const semantics::Scope &scope_;
FoldingContext &context_;
// Contextual information: this flag is true when in an argument to
// an inquiry intrinsic like SIZE().
mutable bool inInquiry_{false};
bool forElementalFunctionResult_{false}; // F'2023 C15121
const std::set<std::string> badIntrinsicsForComponents_{
"allocated", "associated", "extends_type_of", "present", "same_type_as"};
bool IsInquiryAlwaysPermissible(const semantics::Symbol &) const;
bool IsPermissibleInquiry(const semantics::Symbol &firstSymbol,
const semantics::Symbol &lastSymbol,
DescriptorInquiry::Field field) const;
};
bool CheckSpecificationExprHelper::IsInquiryAlwaysPermissible(
const semantics::Symbol &symbol) const {
if (&symbol.owner() != &scope_ || symbol.has<semantics::UseDetails>() ||
symbol.owner().kind() == semantics::Scope::Kind::Module ||
semantics::FindCommonBlockContaining(symbol) ||
symbol.has<semantics::HostAssocDetails>()) {
return true; // it's nonlocal
} else if (semantics::IsDummy(symbol) && !forElementalFunctionResult_) {
return true;
} else {
return false;
}
}
bool CheckSpecificationExprHelper::IsPermissibleInquiry(
const semantics::Symbol &firstSymbol, const semantics::Symbol &lastSymbol,
DescriptorInquiry::Field field) const {
if (IsInquiryAlwaysPermissible(firstSymbol)) {
return true;
}
// Inquiries on local objects may not access a deferred bound or length.
// (This code used to be a switch, but it proved impossible to write it
// thus without running afoul of bogus warnings from different C++
// compilers.)
if (field == DescriptorInquiry::Field::Rank) {
return true; // always known
}
const auto *object{lastSymbol.detailsIf<semantics::ObjectEntityDetails>()};
if (field == DescriptorInquiry::Field::LowerBound ||
field == DescriptorInquiry::Field::Extent ||
field == DescriptorInquiry::Field::Stride) {
return object && !object->shape().CanBeDeferredShape();
}
if (field == DescriptorInquiry::Field::Len) {
return object && object->type() &&
object->type()->category() == semantics::DeclTypeSpec::Character &&
!object->type()->characterTypeSpec().length().isDeferred();
}
return false;
}
template <typename A>
void CheckSpecificationExpr(const A &x, const semantics::Scope &scope,
FoldingContext &context, bool forElementalFunctionResult) {
CheckSpecificationExprHelper helper{
scope, context, forElementalFunctionResult};
if (auto why{helper(x)}) {
context.messages().Say("Invalid specification expression%s: %s"_err_en_US,
forElementalFunctionResult ? " for elemental function result" : "",
*why);
}
}
template void CheckSpecificationExpr(const Expr<SomeType> &,
const semantics::Scope &, FoldingContext &,
bool forElementalFunctionResult);
template void CheckSpecificationExpr(const Expr<SomeInteger> &,
const semantics::Scope &, FoldingContext &,
bool forElementalFunctionResult);
template void CheckSpecificationExpr(const Expr<SubscriptInteger> &,
const semantics::Scope &, FoldingContext &,
bool forElementalFunctionResult);
template void CheckSpecificationExpr(const std::optional<Expr<SomeType>> &,
const semantics::Scope &, FoldingContext &,
bool forElementalFunctionResult);
template void CheckSpecificationExpr(const std::optional<Expr<SomeInteger>> &,
const semantics::Scope &, FoldingContext &,
bool forElementalFunctionResult);
template void CheckSpecificationExpr(
const std::optional<Expr<SubscriptInteger>> &, const semantics::Scope &,
FoldingContext &, bool forElementalFunctionResult);
// IsContiguous() -- 9.5.4
class IsContiguousHelper
: public AnyTraverse<IsContiguousHelper, std::optional<bool>> {
public:
using Result = std::optional<bool>; // tri-state
using Base = AnyTraverse<IsContiguousHelper, Result>;
explicit IsContiguousHelper(FoldingContext &c) : Base{*this}, context_{c} {}
using Base::operator();
template <typename T> Result operator()(const Constant<T> &) const {
return true;
}
Result operator()(const StaticDataObject &) const { return true; }
Result operator()(const semantics::Symbol &symbol) const {
const auto &ultimate{symbol.GetUltimate()};
if (ultimate.attrs().test(semantics::Attr::CONTIGUOUS)) {
return true;
} else if (!IsVariable(symbol)) {
return true;
} else if (ultimate.Rank() == 0) {
// Extension: accept scalars as a degenerate case of
// simple contiguity to allow their use in contexts like
// data targets in pointer assignments with remapping.
return true;
} else if (const auto *details{
ultimate.detailsIf<semantics::AssocEntityDetails>()}) {
// RANK(*) associating entity is contiguous.
if (details->IsAssumedSize()) {
return true;
} else {
return Base::operator()(ultimate); // use expr
}
} else if (semantics::IsPointer(ultimate) ||
semantics::IsAssumedShape(ultimate) || IsAssumedRank(ultimate)) {
return std::nullopt;
} else if (ultimate.has<semantics::ObjectEntityDetails>()) {
return true;
} else {
return Base::operator()(ultimate);
}
}
Result operator()(const ArrayRef &x) const {
if (x.Rank() == 0) {
return true; // scalars considered contiguous
}
int subscriptRank{0};
auto baseLbounds{GetLBOUNDs(context_, x.base())};
auto baseUbounds{GetUBOUNDs(context_, x.base())};
auto subscripts{CheckSubscripts(
x.subscript(), subscriptRank, &baseLbounds, &baseUbounds)};
if (!subscripts.value_or(false)) {
return subscripts; // subscripts not known to be contiguous
} else if (subscriptRank > 0) {
// a(1)%b(:,:) is contiguous if and only if a(1)%b is contiguous.
return (*this)(x.base());
} else {
// a(:)%b(1,1) is (probably) not contiguous.
return std::nullopt;
}
}
Result operator()(const CoarrayRef &x) const {
int rank{0};
return CheckSubscripts(x.subscript(), rank).has_value();
}
Result operator()(const Component &x) const {
if (x.base().Rank() == 0) {
return (*this)(x.GetLastSymbol());
} else {
if (Result baseIsContiguous{(*this)(x.base())}) {
if (!*baseIsContiguous) {
return false;
}
// TODO could be true if base contiguous and this is only component, or
// if base has only one element?
}
return std::nullopt;
}
}
Result operator()(const ComplexPart &x) const {
return x.complex().Rank() == 0;
}
Result operator()(const Substring &) const { return std::nullopt; }
Result operator()(const ProcedureRef &x) const {
if (auto chars{characteristics::Procedure::Characterize(
x.proc(), context_, /*emitError=*/true)}) {
if (chars->functionResult) {
const auto &result{*chars->functionResult};
if (!result.IsProcedurePointer()) {
if (result.attrs.test(
characteristics::FunctionResult::Attr::Contiguous)) {
return true;
}
if (!result.attrs.test(
characteristics::FunctionResult::Attr::Pointer)) {
return true;
}
if (const auto *type{result.GetTypeAndShape()};
type && type->Rank() == 0) {
return true; // pointer to scalar
}
// Must be non-CONTIGUOUS pointer to array
}
}
}
return std::nullopt;
}
Result operator()(const NullPointer &) const { return true; }
private:
// Returns "true" for a provably empty or simply contiguous array section;
// return "false" for a provably nonempty discontiguous section or for use
// of a vector subscript.
std::optional<bool> CheckSubscripts(const std::vector<Subscript> &subscript,
int &rank, const Shape *baseLbounds = nullptr,
const Shape *baseUbounds = nullptr) const {
bool anyTriplet{false};
rank = 0;
// Detect any provably empty dimension in this array section, which would
// render the whole section empty and therefore vacuously contiguous.
std::optional<bool> result;
bool mayBeEmpty{false};
auto dims{subscript.size()};
std::vector<bool> knownPartialSlice(dims, false);
for (auto j{dims}; j-- > 0;) {
std::optional<ConstantSubscript> dimLbound;
std::optional<ConstantSubscript> dimUbound;
std::optional<ConstantSubscript> dimExtent;
if (baseLbounds && j < baseLbounds->size()) {
if (const auto &lb{baseLbounds->at(j)}) {
dimLbound = ToInt64(Fold(context_, Expr<SubscriptInteger>{*lb}));
}
}
if (baseUbounds && j < baseUbounds->size()) {
if (const auto &ub{baseUbounds->at(j)}) {
dimUbound = ToInt64(Fold(context_, Expr<SubscriptInteger>{*ub}));
}
}
if (dimLbound && dimUbound) {
if (*dimLbound <= *dimUbound) {
dimExtent = *dimUbound - *dimLbound + 1;
} else {
// This is an empty dimension.
result = true;
dimExtent = 0;
}
}
if (const auto *triplet{std::get_if<Triplet>(&subscript[j].u)}) {
++rank;
if (auto stride{ToInt64(triplet->stride())}) {
const Expr<SubscriptInteger> *lowerBound{triplet->GetLower()};
const Expr<SubscriptInteger> *upperBound{triplet->GetUpper()};
std::optional<ConstantSubscript> lowerVal{lowerBound
? ToInt64(Fold(context_, Expr<SubscriptInteger>{*lowerBound}))
: dimLbound};
std::optional<ConstantSubscript> upperVal{upperBound
? ToInt64(Fold(context_, Expr<SubscriptInteger>{*upperBound}))
: dimUbound};
if (lowerVal && upperVal) {
if (*lowerVal < *upperVal) {
if (*stride < 0) {
result = true; // empty dimension
} else if (!result && *stride > 1 &&
*lowerVal + *stride <= *upperVal) {
result = false; // discontiguous if not empty
}
} else if (*lowerVal > *upperVal) {
if (*stride > 0) {
result = true; // empty dimension
} else if (!result && *stride < 0 &&
*lowerVal + *stride >= *upperVal) {
result = false; // discontiguous if not empty
}
} else {
mayBeEmpty = true;
}
} else {
mayBeEmpty = true;
}
} else {
mayBeEmpty = true;
}
} else if (subscript[j].Rank() > 0) {
++rank;
if (!result) {
result = false; // vector subscript
}
mayBeEmpty = true;
} else {
// Scalar subscript.
if (dimExtent && *dimExtent > 1) {
knownPartialSlice[j] = true;
}
}
}
if (rank == 0) {
result = true; // scalar
}
if (result) {
return result;
}
// Not provably discontiguous at this point.
// Return "true" if simply contiguous, otherwise nullopt.
for (auto j{subscript.size()}; j-- > 0;) {
if (const auto *triplet{std::get_if<Triplet>(&subscript[j].u)}) {
auto stride{ToInt64(triplet->stride())};
if (!stride || stride != 1) {
return std::nullopt;
} else if (anyTriplet) {
if (triplet->GetLower() || triplet->GetUpper()) {
// all triplets before the last one must be just ":" for
// simple contiguity
return std::nullopt;
}
} else {
anyTriplet = true;
}
++rank;
} else if (anyTriplet) {
// If the section cannot be empty, and this dimension's
// scalar subscript is known not to cover the whole
// dimension, then the array section is provably
// discontiguous.
return (mayBeEmpty || !knownPartialSlice[j])
? std::nullopt
: std::make_optional(false);
}
}
return true; // simply contiguous
}
FoldingContext &context_;
};
template <typename A>
std::optional<bool> IsContiguous(const A &x, FoldingContext &context) {
return IsContiguousHelper{context}(x);
}
template std::optional<bool> IsContiguous(
const Expr<SomeType> &, FoldingContext &);
template std::optional<bool> IsContiguous(const ArrayRef &, FoldingContext &);
template std::optional<bool> IsContiguous(const Substring &, FoldingContext &);
template std::optional<bool> IsContiguous(const Component &, FoldingContext &);
template std::optional<bool> IsContiguous(
const ComplexPart &, FoldingContext &);
template std::optional<bool> IsContiguous(const CoarrayRef &, FoldingContext &);
template std::optional<bool> IsContiguous(const Symbol &, FoldingContext &);
// IsErrorExpr()
struct IsErrorExprHelper : public AnyTraverse<IsErrorExprHelper, bool> {
using Result = bool;
using Base = AnyTraverse<IsErrorExprHelper, Result>;
IsErrorExprHelper() : Base{*this} {}
using Base::operator();
bool operator()(const SpecificIntrinsic &x) {
return x.name == IntrinsicProcTable::InvalidName;
}
};
template <typename A> bool IsErrorExpr(const A &x) {
return IsErrorExprHelper{}(x);
}
template bool IsErrorExpr(const Expr<SomeType> &);
// C1577
// TODO: Also check C1579 & C1582 here
class StmtFunctionChecker
: public AnyTraverse<StmtFunctionChecker, std::optional<parser::Message>> {
public:
using Result = std::optional<parser::Message>;
using Base = AnyTraverse<StmtFunctionChecker, Result>;
StmtFunctionChecker(const Symbol &sf, FoldingContext &context)
: Base{*this}, sf_{sf}, context_{context} {
if (!context_.languageFeatures().IsEnabled(
common::LanguageFeature::StatementFunctionExtensions)) {
severity_ = parser::Severity::Error;
} else if (context_.languageFeatures().ShouldWarn(
common::LanguageFeature::StatementFunctionExtensions)) {
severity_ = parser::Severity::Portability;
}
}
using Base::operator();
template <typename T> Result operator()(const ArrayConstructor<T> &) const {
if (severity_) {
auto msg{
"Statement function '%s' should not contain an array constructor"_port_en_US};
msg.set_severity(*severity_);
return parser::Message{sf_.name(), std::move(msg), sf_.name()};
} else {
return std::nullopt;
}
}
Result operator()(const StructureConstructor &) const {
if (severity_) {
auto msg{
"Statement function '%s' should not contain a structure constructor"_port_en_US};
msg.set_severity(*severity_);
return parser::Message{sf_.name(), std::move(msg), sf_.name()};
} else {
return std::nullopt;
}
}
Result operator()(const TypeParamInquiry &) const {
if (severity_) {
auto msg{
"Statement function '%s' should not contain a type parameter inquiry"_port_en_US};
msg.set_severity(*severity_);
return parser::Message{sf_.name(), std::move(msg), sf_.name()};
} else {
return std::nullopt;
}
}
Result operator()(const ProcedureDesignator &proc) const {
if (const Symbol * symbol{proc.GetSymbol()}) {
const Symbol &ultimate{symbol->GetUltimate()};
if (const auto *subp{
ultimate.detailsIf<semantics::SubprogramDetails>()}) {
if (subp->stmtFunction() && &ultimate.owner() == &sf_.owner()) {
if (ultimate.name().begin() > sf_.name().begin()) {
return parser::Message{sf_.name(),
"Statement function '%s' may not reference another statement function '%s' that is defined later"_err_en_US,
sf_.name(), ultimate.name()};
}
}
}
if (auto chars{characteristics::Procedure::Characterize(
proc, context_, /*emitError=*/true)}) {
if (!chars->CanBeCalledViaImplicitInterface()) {
if (severity_) {
auto msg{
"Statement function '%s' should not reference function '%s' that requires an explicit interface"_port_en_US};
msg.set_severity(*severity_);
return parser::Message{
sf_.name(), std::move(msg), sf_.name(), symbol->name()};
}
}
}
}
if (proc.Rank() > 0) {
if (severity_) {
auto msg{
"Statement function '%s' should not reference a function that returns an array"_port_en_US};
msg.set_severity(*severity_);
return parser::Message{sf_.name(), std::move(msg), sf_.name()};
}
}
return std::nullopt;
}
Result operator()(const ActualArgument &arg) const {
if (const auto *expr{arg.UnwrapExpr()}) {
if (auto result{(*this)(*expr)}) {
return result;
}
if (expr->Rank() > 0 && !UnwrapWholeSymbolOrComponentDataRef(*expr)) {
if (severity_) {
auto msg{
"Statement function '%s' should not pass an array argument that is not a whole array"_port_en_US};
msg.set_severity(*severity_);
return parser::Message{sf_.name(), std::move(msg), sf_.name()};
}
}
}
return std::nullopt;
}
private:
const Symbol &sf_;
FoldingContext &context_;
std::optional<parser::Severity> severity_;
};
std::optional<parser::Message> CheckStatementFunction(
const Symbol &sf, const Expr<SomeType> &expr, FoldingContext &context) {
return StmtFunctionChecker{sf, context}(expr);
}
} // namespace Fortran::evaluate