Paul Kirth 294f3ce5dd
Reapply "[llvm][IR] Extend BranchWeightMetadata to track provenance o… (#95281)
…f weights" #95136

Reverts #95060, and relands #86609, with the unintended code generation
changes addressed.

This patch implements the changes to LLVM IR discussed in
https://discourse.llvm.org/t/rfc-update-branch-weights-metadata-to-allow-tracking-branch-weight-origins/75032

In this patch, we add an optional field to MD_prof meatdata nodes for
branch weights, which can be used to distinguish weights added from
llvm.expect* intrinsics from those added via other methods, e.g. from
profiles or inserted by the compiler.

One of the major motivations, is for use with MisExpect diagnostics,
which need to know if branch_weight metadata originates from an
llvm.expect intrinsic. Without that information, we end up checking
branch weights multiple times in the case if ThinLTO + SampleProfiling,
leading to some inaccuracy in how we report MisExpect related
diagnostics to users.

Since we change the format of MD_prof metadata in a fundamental way, we
need to update code handling branch weights in a number of places.

We also update the lang ref for branch weights to reflect the change.
2024-06-12 12:52:28 -07:00

1104 lines
42 KiB
C++

//===- LoopPeel.cpp -------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Loop Peeling Utilities.
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/LoopPeel.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ProfDataUtils.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <optional>
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "loop-peel"
STATISTIC(NumPeeled, "Number of loops peeled");
static cl::opt<unsigned> UnrollPeelCount(
"unroll-peel-count", cl::Hidden,
cl::desc("Set the unroll peeling count, for testing purposes"));
static cl::opt<bool>
UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
cl::desc("Allows loops to be peeled when the dynamic "
"trip count is known to be low."));
static cl::opt<bool>
UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling",
cl::init(false), cl::Hidden,
cl::desc("Allows loop nests to be peeled."));
static cl::opt<unsigned> UnrollPeelMaxCount(
"unroll-peel-max-count", cl::init(7), cl::Hidden,
cl::desc("Max average trip count which will cause loop peeling."));
static cl::opt<unsigned> UnrollForcePeelCount(
"unroll-force-peel-count", cl::init(0), cl::Hidden,
cl::desc("Force a peel count regardless of profiling information."));
static cl::opt<bool> DisableAdvancedPeeling(
"disable-advanced-peeling", cl::init(false), cl::Hidden,
cl::desc(
"Disable advance peeling. Issues for convergent targets (D134803)."));
static const char *PeeledCountMetaData = "llvm.loop.peeled.count";
// Check whether we are capable of peeling this loop.
bool llvm::canPeel(const Loop *L) {
// Make sure the loop is in simplified form
if (!L->isLoopSimplifyForm())
return false;
if (!DisableAdvancedPeeling)
return true;
SmallVector<BasicBlock *, 4> Exits;
L->getUniqueNonLatchExitBlocks(Exits);
// The latch must either be the only exiting block or all non-latch exit
// blocks have either a deopt or unreachable terminator or compose a chain of
// blocks where the last one is either deopt or unreachable terminated. Both
// deopt and unreachable terminators are a strong indication they are not
// taken. Note that this is a profitability check, not a legality check. Also
// note that LoopPeeling currently can only update the branch weights of latch
// blocks and branch weights to blocks with deopt or unreachable do not need
// updating.
return llvm::all_of(Exits, IsBlockFollowedByDeoptOrUnreachable);
}
namespace {
// As a loop is peeled, it may be the case that Phi nodes become
// loop-invariant (ie, known because there is only one choice).
// For example, consider the following function:
// void g(int);
// void binary() {
// int x = 0;
// int y = 0;
// int a = 0;
// for(int i = 0; i <100000; ++i) {
// g(x);
// x = y;
// g(a);
// y = a + 1;
// a = 5;
// }
// }
// Peeling 3 iterations is beneficial because the values for x, y and a
// become known. The IR for this loop looks something like the following:
//
// %i = phi i32 [ 0, %entry ], [ %inc, %if.end ]
// %a = phi i32 [ 0, %entry ], [ 5, %if.end ]
// %y = phi i32 [ 0, %entry ], [ %add, %if.end ]
// %x = phi i32 [ 0, %entry ], [ %y, %if.end ]
// ...
// tail call void @_Z1gi(i32 signext %x)
// tail call void @_Z1gi(i32 signext %a)
// %add = add nuw nsw i32 %a, 1
// %inc = add nuw nsw i32 %i, 1
// %exitcond = icmp eq i32 %inc, 100000
// br i1 %exitcond, label %for.cond.cleanup, label %for.body
//
// The arguments for the calls to g will become known after 3 iterations
// of the loop, because the phi nodes values become known after 3 iterations
// of the loop (ie, they are known on the 4th iteration, so peel 3 iterations).
// The first iteration has g(0), g(0); the second has g(0), g(5); the
// third has g(1), g(5) and the fourth (and all subsequent) have g(6), g(5).
// Now consider the phi nodes:
// %a is a phi with constants so it is determined after iteration 1.
// %y is a phi based on a constant and %a so it is determined on
// the iteration after %a is determined, so iteration 2.
// %x is a phi based on a constant and %y so it is determined on
// the iteration after %y, so iteration 3.
// %i is based on itself (and is an induction variable) so it is
// never determined.
// This means that peeling off 3 iterations will result in being able to
// remove the phi nodes for %a, %y, and %x. The arguments for the
// corresponding calls to g are determined and the code for computing
// x, y, and a can be removed.
//
// The PhiAnalyzer class calculates how many times a loop should be
// peeled based on the above analysis of the phi nodes in the loop while
// respecting the maximum specified.
class PhiAnalyzer {
public:
PhiAnalyzer(const Loop &L, unsigned MaxIterations);
// Calculate the sufficient minimum number of iterations of the loop to peel
// such that phi instructions become determined (subject to allowable limits)
std::optional<unsigned> calculateIterationsToPeel();
protected:
using PeelCounter = std::optional<unsigned>;
const PeelCounter Unknown = std::nullopt;
// Add 1 respecting Unknown and return Unknown if result over MaxIterations
PeelCounter addOne(PeelCounter PC) const {
if (PC == Unknown)
return Unknown;
return (*PC + 1 <= MaxIterations) ? PeelCounter{*PC + 1} : Unknown;
}
// Calculate the number of iterations after which the given value
// becomes an invariant.
PeelCounter calculate(const Value &);
const Loop &L;
const unsigned MaxIterations;
// Map of Values to number of iterations to invariance
SmallDenseMap<const Value *, PeelCounter> IterationsToInvariance;
};
PhiAnalyzer::PhiAnalyzer(const Loop &L, unsigned MaxIterations)
: L(L), MaxIterations(MaxIterations) {
assert(canPeel(&L) && "loop is not suitable for peeling");
assert(MaxIterations > 0 && "no peeling is allowed?");
}
// This function calculates the number of iterations after which the value
// becomes an invariant. The pre-calculated values are memorized in a map.
// N.B. This number will be Unknown or <= MaxIterations.
// The function is calculated according to the following definition:
// Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
// F(%x) = G(%y) + 1 (N.B. [MaxIterations | Unknown] + 1 => Unknown)
// G(%y) = 0 if %y is a loop invariant
// G(%y) = G(%BackEdgeValue) if %y is a phi in the header block
// G(%y) = TODO: if %y is an expression based on phis and loop invariants
// The example looks like:
// %x = phi(0, %a) <-- becomes invariant starting from 3rd iteration.
// %y = phi(0, 5)
// %a = %y + 1
// G(%y) = Unknown otherwise (including phi not in header block)
PhiAnalyzer::PeelCounter PhiAnalyzer::calculate(const Value &V) {
// If we already know the answer, take it from the map.
auto I = IterationsToInvariance.find(&V);
if (I != IterationsToInvariance.end())
return I->second;
// Place Unknown to map to avoid infinite recursion. Such
// cycles can never stop on an invariant.
IterationsToInvariance[&V] = Unknown;
if (L.isLoopInvariant(&V))
// Loop invariant so known at start.
return (IterationsToInvariance[&V] = 0);
if (const PHINode *Phi = dyn_cast<PHINode>(&V)) {
if (Phi->getParent() != L.getHeader()) {
// Phi is not in header block so Unknown.
assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
return Unknown;
}
// We need to analyze the input from the back edge and add 1.
Value *Input = Phi->getIncomingValueForBlock(L.getLoopLatch());
PeelCounter Iterations = calculate(*Input);
assert(IterationsToInvariance[Input] == Iterations &&
"unexpected value saved");
return (IterationsToInvariance[Phi] = addOne(Iterations));
}
if (const Instruction *I = dyn_cast<Instruction>(&V)) {
if (isa<CmpInst>(I) || I->isBinaryOp()) {
// Binary instructions get the max of the operands.
PeelCounter LHS = calculate(*I->getOperand(0));
if (LHS == Unknown)
return Unknown;
PeelCounter RHS = calculate(*I->getOperand(1));
if (RHS == Unknown)
return Unknown;
return (IterationsToInvariance[I] = {std::max(*LHS, *RHS)});
}
if (I->isCast())
// Cast instructions get the value of the operand.
return (IterationsToInvariance[I] = calculate(*I->getOperand(0)));
}
// TODO: handle more expressions
// Everything else is Unknown.
assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
return Unknown;
}
std::optional<unsigned> PhiAnalyzer::calculateIterationsToPeel() {
unsigned Iterations = 0;
for (auto &PHI : L.getHeader()->phis()) {
PeelCounter ToInvariance = calculate(PHI);
if (ToInvariance != Unknown) {
assert(*ToInvariance <= MaxIterations && "bad result in phi analysis");
Iterations = std::max(Iterations, *ToInvariance);
if (Iterations == MaxIterations)
break;
}
}
assert((Iterations <= MaxIterations) && "bad result in phi analysis");
return Iterations ? std::optional<unsigned>(Iterations) : std::nullopt;
}
} // unnamed namespace
// Try to find any invariant memory reads that will become dereferenceable in
// the remainder loop after peeling. The load must also be used (transitively)
// by an exit condition. Returns the number of iterations to peel off (at the
// moment either 0 or 1).
static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L,
DominatorTree &DT,
AssumptionCache *AC) {
// Skip loops with a single exiting block, because there should be no benefit
// for the heuristic below.
if (L.getExitingBlock())
return 0;
// All non-latch exit blocks must have an UnreachableInst terminator.
// Otherwise the heuristic below may not be profitable.
SmallVector<BasicBlock *, 4> Exits;
L.getUniqueNonLatchExitBlocks(Exits);
if (any_of(Exits, [](const BasicBlock *BB) {
return !isa<UnreachableInst>(BB->getTerminator());
}))
return 0;
// Now look for invariant loads that dominate the latch and are not known to
// be dereferenceable. If there are such loads and no writes, they will become
// dereferenceable in the loop if the first iteration is peeled off. Also
// collect the set of instructions controlled by such loads. Only peel if an
// exit condition uses (transitively) such a load.
BasicBlock *Header = L.getHeader();
BasicBlock *Latch = L.getLoopLatch();
SmallPtrSet<Value *, 8> LoadUsers;
const DataLayout &DL = L.getHeader()->getModule()->getDataLayout();
for (BasicBlock *BB : L.blocks()) {
for (Instruction &I : *BB) {
if (I.mayWriteToMemory())
return 0;
auto Iter = LoadUsers.find(&I);
if (Iter != LoadUsers.end()) {
for (Value *U : I.users())
LoadUsers.insert(U);
}
// Do not look for reads in the header; they can already be hoisted
// without peeling.
if (BB == Header)
continue;
if (auto *LI = dyn_cast<LoadInst>(&I)) {
Value *Ptr = LI->getPointerOperand();
if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) &&
!isDereferenceablePointer(Ptr, LI->getType(), DL, LI, AC, &DT))
for (Value *U : I.users())
LoadUsers.insert(U);
}
}
}
SmallVector<BasicBlock *> ExitingBlocks;
L.getExitingBlocks(ExitingBlocks);
if (any_of(ExitingBlocks, [&LoadUsers](BasicBlock *Exiting) {
return LoadUsers.contains(Exiting->getTerminator());
}))
return 1;
return 0;
}
// Return the number of iterations to peel off that make conditions in the
// body true/false. For example, if we peel 2 iterations off the loop below,
// the condition i < 2 can be evaluated at compile time.
// for (i = 0; i < n; i++)
// if (i < 2)
// ..
// else
// ..
// }
static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
ScalarEvolution &SE) {
assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
unsigned DesiredPeelCount = 0;
// Do not peel the entire loop.
const SCEV *BE = SE.getConstantMaxBackedgeTakenCount(&L);
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(BE))
MaxPeelCount =
std::min((unsigned)SC->getAPInt().getLimitedValue() - 1, MaxPeelCount);
// Increase PeelCount while (IterVal Pred BoundSCEV) condition is satisfied;
// return true if inversed condition become known before reaching the
// MaxPeelCount limit.
auto PeelWhilePredicateIsKnown =
[&](unsigned &PeelCount, const SCEV *&IterVal, const SCEV *BoundSCEV,
const SCEV *Step, ICmpInst::Predicate Pred) {
while (PeelCount < MaxPeelCount &&
SE.isKnownPredicate(Pred, IterVal, BoundSCEV)) {
IterVal = SE.getAddExpr(IterVal, Step);
++PeelCount;
}
return SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
BoundSCEV);
};
const unsigned MaxDepth = 4;
std::function<void(Value *, unsigned)> ComputePeelCount =
[&](Value *Condition, unsigned Depth) -> void {
if (!Condition->getType()->isIntegerTy() || Depth >= MaxDepth)
return;
Value *LeftVal, *RightVal;
if (match(Condition, m_And(m_Value(LeftVal), m_Value(RightVal))) ||
match(Condition, m_Or(m_Value(LeftVal), m_Value(RightVal)))) {
ComputePeelCount(LeftVal, Depth + 1);
ComputePeelCount(RightVal, Depth + 1);
return;
}
CmpInst::Predicate Pred;
if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
return;
const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
const SCEV *RightSCEV = SE.getSCEV(RightVal);
// Do not consider predicates that are known to be true or false
// independently of the loop iteration.
if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV))
return;
// Check if we have a condition with one AddRec and one non AddRec
// expression. Normalize LeftSCEV to be the AddRec.
if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
if (isa<SCEVAddRecExpr>(RightSCEV)) {
std::swap(LeftSCEV, RightSCEV);
Pred = ICmpInst::getSwappedPredicate(Pred);
} else
return;
}
const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
// Avoid huge SCEV computations in the loop below, make sure we only
// consider AddRecs of the loop we are trying to peel.
if (!LeftAR->isAffine() || LeftAR->getLoop() != &L)
return;
if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) &&
!SE.getMonotonicPredicateType(LeftAR, Pred))
return;
// Check if extending the current DesiredPeelCount lets us evaluate Pred
// or !Pred in the loop body statically.
unsigned NewPeelCount = DesiredPeelCount;
const SCEV *IterVal = LeftAR->evaluateAtIteration(
SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
// If the original condition is not known, get the negated predicate
// (which holds on the else branch) and check if it is known. This allows
// us to peel of iterations that make the original condition false.
if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
Pred = ICmpInst::getInversePredicate(Pred);
const SCEV *Step = LeftAR->getStepRecurrence(SE);
if (!PeelWhilePredicateIsKnown(NewPeelCount, IterVal, RightSCEV, Step,
Pred))
return;
// However, for equality comparisons, that isn't always sufficient to
// eliminate the comparsion in loop body, we may need to peel one more
// iteration. See if that makes !Pred become unknown again.
const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step);
if (ICmpInst::isEquality(Pred) &&
!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal,
RightSCEV) &&
!SE.isKnownPredicate(Pred, IterVal, RightSCEV) &&
SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) {
if (NewPeelCount >= MaxPeelCount)
return; // Need to peel one more iteration, but can't. Give up.
++NewPeelCount; // Great!
}
DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount);
};
auto ComputePeelCountMinMax = [&](MinMaxIntrinsic *MinMax) {
if (!MinMax->getType()->isIntegerTy())
return;
Value *LHS = MinMax->getLHS(), *RHS = MinMax->getRHS();
const SCEV *BoundSCEV, *IterSCEV;
if (L.isLoopInvariant(LHS)) {
BoundSCEV = SE.getSCEV(LHS);
IterSCEV = SE.getSCEV(RHS);
} else if (L.isLoopInvariant(RHS)) {
BoundSCEV = SE.getSCEV(RHS);
IterSCEV = SE.getSCEV(LHS);
} else
return;
const auto *AddRec = dyn_cast<SCEVAddRecExpr>(IterSCEV);
// For simplicity, we support only affine recurrences.
if (!AddRec || !AddRec->isAffine() || AddRec->getLoop() != &L)
return;
const SCEV *Step = AddRec->getStepRecurrence(SE);
bool IsSigned = MinMax->isSigned();
// To minimize number of peeled iterations, we use strict relational
// predicates here.
ICmpInst::Predicate Pred;
if (SE.isKnownPositive(Step))
Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
else if (SE.isKnownNegative(Step))
Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
else
return;
// Check that AddRec is not wrapping.
if (!(IsSigned ? AddRec->hasNoSignedWrap() : AddRec->hasNoUnsignedWrap()))
return;
unsigned NewPeelCount = DesiredPeelCount;
const SCEV *IterVal = AddRec->evaluateAtIteration(
SE.getConstant(AddRec->getType(), NewPeelCount), SE);
if (!PeelWhilePredicateIsKnown(NewPeelCount, IterVal, BoundSCEV, Step,
Pred))
return;
DesiredPeelCount = NewPeelCount;
};
for (BasicBlock *BB : L.blocks()) {
for (Instruction &I : *BB) {
if (SelectInst *SI = dyn_cast<SelectInst>(&I))
ComputePeelCount(SI->getCondition(), 0);
if (MinMaxIntrinsic *MinMax = dyn_cast<MinMaxIntrinsic>(&I))
ComputePeelCountMinMax(MinMax);
}
auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
if (!BI || BI->isUnconditional())
continue;
// Ignore loop exit condition.
if (L.getLoopLatch() == BB)
continue;
ComputePeelCount(BI->getCondition(), 0);
}
return DesiredPeelCount;
}
/// This "heuristic" exactly matches implicit behavior which used to exist
/// inside getLoopEstimatedTripCount. It was added here to keep an
/// improvement inside that API from causing peeling to become more aggressive.
/// This should probably be removed.
static bool violatesLegacyMultiExitLoopCheck(Loop *L) {
BasicBlock *Latch = L->getLoopLatch();
if (!Latch)
return true;
BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
return true;
assert((LatchBR->getSuccessor(0) == L->getHeader() ||
LatchBR->getSuccessor(1) == L->getHeader()) &&
"At least one edge out of the latch must go to the header");
SmallVector<BasicBlock *, 4> ExitBlocks;
L->getUniqueNonLatchExitBlocks(ExitBlocks);
return any_of(ExitBlocks, [](const BasicBlock *EB) {
return !EB->getTerminatingDeoptimizeCall();
});
}
// Return the number of iterations we want to peel off.
void llvm::computePeelCount(Loop *L, unsigned LoopSize,
TargetTransformInfo::PeelingPreferences &PP,
unsigned TripCount, DominatorTree &DT,
ScalarEvolution &SE, AssumptionCache *AC,
unsigned Threshold) {
assert(LoopSize > 0 && "Zero loop size is not allowed!");
// Save the PP.PeelCount value set by the target in
// TTI.getPeelingPreferences or by the flag -unroll-peel-count.
unsigned TargetPeelCount = PP.PeelCount;
PP.PeelCount = 0;
if (!canPeel(L))
return;
// Only try to peel innermost loops by default.
// The constraint can be relaxed by the target in TTI.getPeelingPreferences
// or by the flag -unroll-allow-loop-nests-peeling.
if (!PP.AllowLoopNestsPeeling && !L->isInnermost())
return;
// If the user provided a peel count, use that.
bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
if (UserPeelCount) {
LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
<< " iterations.\n");
PP.PeelCount = UnrollForcePeelCount;
PP.PeelProfiledIterations = true;
return;
}
// Skip peeling if it's disabled.
if (!PP.AllowPeeling)
return;
// Check that we can peel at least one iteration.
if (2 * LoopSize > Threshold)
return;
unsigned AlreadyPeeled = 0;
if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
AlreadyPeeled = *Peeled;
// Stop if we already peeled off the maximum number of iterations.
if (AlreadyPeeled >= UnrollPeelMaxCount)
return;
// Pay respect to limitations implied by loop size and the max peel count.
unsigned MaxPeelCount = UnrollPeelMaxCount;
MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1);
// Start the max computation with the PP.PeelCount value set by the target
// in TTI.getPeelingPreferences or by the flag -unroll-peel-count.
unsigned DesiredPeelCount = TargetPeelCount;
// Here we try to get rid of Phis which become invariants after 1, 2, ..., N
// iterations of the loop. For this we compute the number for iterations after
// which every Phi is guaranteed to become an invariant, and try to peel the
// maximum number of iterations among these values, thus turning all those
// Phis into invariants.
if (MaxPeelCount > DesiredPeelCount) {
// Check how many iterations are useful for resolving Phis
auto NumPeels = PhiAnalyzer(*L, MaxPeelCount).calculateIterationsToPeel();
if (NumPeels)
DesiredPeelCount = std::max(DesiredPeelCount, *NumPeels);
}
DesiredPeelCount = std::max(DesiredPeelCount,
countToEliminateCompares(*L, MaxPeelCount, SE));
if (DesiredPeelCount == 0)
DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT, AC);
if (DesiredPeelCount > 0) {
DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
// Consider max peel count limitation.
assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
<< " iteration(s) to turn"
<< " some Phis into invariants.\n");
PP.PeelCount = DesiredPeelCount;
PP.PeelProfiledIterations = false;
return;
}
}
// Bail if we know the statically calculated trip count.
// In this case we rather prefer partial unrolling.
if (TripCount)
return;
// Do not apply profile base peeling if it is disabled.
if (!PP.PeelProfiledIterations)
return;
// If we don't know the trip count, but have reason to believe the average
// trip count is low, peeling should be beneficial, since we will usually
// hit the peeled section.
// We only do this in the presence of profile information, since otherwise
// our estimates of the trip count are not reliable enough.
if (L->getHeader()->getParent()->hasProfileData()) {
if (violatesLegacyMultiExitLoopCheck(L))
return;
std::optional<unsigned> EstimatedTripCount = getLoopEstimatedTripCount(L);
if (!EstimatedTripCount)
return;
LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is "
<< *EstimatedTripCount << "\n");
if (*EstimatedTripCount) {
if (*EstimatedTripCount + AlreadyPeeled <= MaxPeelCount) {
unsigned PeelCount = *EstimatedTripCount;
LLVM_DEBUG(dbgs() << "Peeling first " << PeelCount << " iterations.\n");
PP.PeelCount = PeelCount;
return;
}
LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
LLVM_DEBUG(dbgs() << "Loop cost: " << LoopSize << "\n");
LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n");
LLVM_DEBUG(dbgs() << "Max peel count by cost: "
<< (Threshold / LoopSize - 1) << "\n");
}
}
}
struct WeightInfo {
// Weights for current iteration.
SmallVector<uint32_t> Weights;
// Weights to subtract after each iteration.
const SmallVector<uint32_t> SubWeights;
};
/// Update the branch weights of an exiting block of a peeled-off loop
/// iteration.
/// Let F is a weight of the edge to continue (fallthrough) into the loop.
/// Let E is a weight of the edge to an exit.
/// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
/// go to exit.
/// Then, Estimated ExitCount = F / E.
/// For I-th (counting from 0) peeled off iteration we set the weights for
/// the peeled exit as (EC - I, 1). It gives us reasonable distribution,
/// The probability to go to exit 1/(EC-I) increases. At the same time
/// the estimated exit count in the remainder loop reduces by I.
/// To avoid dealing with division rounding we can just multiple both part
/// of weights to E and use weight as (F - I * E, E).
static void updateBranchWeights(Instruction *Term, WeightInfo &Info) {
setBranchWeights(*Term, Info.Weights, /*IsExpected=*/false);
for (auto [Idx, SubWeight] : enumerate(Info.SubWeights))
if (SubWeight != 0)
// Don't set the probability of taking the edge from latch to loop header
// to less than 1:1 ratio (meaning Weight should not be lower than
// SubWeight), as this could significantly reduce the loop's hotness,
// which would be incorrect in the case of underestimating the trip count.
Info.Weights[Idx] =
Info.Weights[Idx] > SubWeight
? std::max(Info.Weights[Idx] - SubWeight, SubWeight)
: SubWeight;
}
/// Initialize the weights for all exiting blocks.
static void initBranchWeights(DenseMap<Instruction *, WeightInfo> &WeightInfos,
Loop *L) {
SmallVector<BasicBlock *> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
for (BasicBlock *ExitingBlock : ExitingBlocks) {
Instruction *Term = ExitingBlock->getTerminator();
SmallVector<uint32_t> Weights;
if (!extractBranchWeights(*Term, Weights))
continue;
// See the comment on updateBranchWeights() for an explanation of what we
// do here.
uint32_t FallThroughWeights = 0;
uint32_t ExitWeights = 0;
for (auto [Succ, Weight] : zip(successors(Term), Weights)) {
if (L->contains(Succ))
FallThroughWeights += Weight;
else
ExitWeights += Weight;
}
// Don't try to update weights for degenerate case.
if (FallThroughWeights == 0)
continue;
SmallVector<uint32_t> SubWeights;
for (auto [Succ, Weight] : zip(successors(Term), Weights)) {
if (!L->contains(Succ)) {
// Exit weights stay the same.
SubWeights.push_back(0);
continue;
}
// Subtract exit weights on each iteration, distributed across all
// fallthrough edges.
double W = (double)Weight / (double)FallThroughWeights;
SubWeights.push_back((uint32_t)(ExitWeights * W));
}
WeightInfos.insert({Term, {std::move(Weights), std::move(SubWeights)}});
}
}
/// Clones the body of the loop L, putting it between \p InsertTop and \p
/// InsertBot.
/// \param IterNumber The serial number of the iteration currently being
/// peeled off.
/// \param ExitEdges The exit edges of the original loop.
/// \param[out] NewBlocks A list of the blocks in the newly created clone
/// \param[out] VMap The value map between the loop and the new clone.
/// \param LoopBlocks A helper for DFS-traversal of the loop.
/// \param LVMap A value-map that maps instructions from the original loop to
/// instructions in the last peeled-off iteration.
static void cloneLoopBlocks(
Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges,
SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes,
ScalarEvolution &SE) {
BasicBlock *Header = L->getHeader();
BasicBlock *Latch = L->getLoopLatch();
BasicBlock *PreHeader = L->getLoopPreheader();
Function *F = Header->getParent();
LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
Loop *ParentLoop = L->getParentLoop();
// For each block in the original loop, create a new copy,
// and update the value map with the newly created values.
for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
NewBlocks.push_back(NewBB);
// If an original block is an immediate child of the loop L, its copy
// is a child of a ParentLoop after peeling. If a block is a child of
// a nested loop, it is handled in the cloneLoop() call below.
if (ParentLoop && LI->getLoopFor(*BB) == L)
ParentLoop->addBasicBlockToLoop(NewBB, *LI);
VMap[*BB] = NewBB;
// If dominator tree is available, insert nodes to represent cloned blocks.
if (DT) {
if (Header == *BB)
DT->addNewBlock(NewBB, InsertTop);
else {
DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
// VMap must contain entry for IDom, as the iteration order is RPO.
DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
}
}
}
{
// Identify what other metadata depends on the cloned version. After
// cloning, replace the metadata with the corrected version for both
// memory instructions and noalias intrinsics.
std::string Ext = (Twine("Peel") + Twine(IterNumber)).str();
cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
Header->getContext(), Ext);
}
// Recursively create the new Loop objects for nested loops, if any,
// to preserve LoopInfo.
for (Loop *ChildLoop : *L) {
cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr);
}
// Hook-up the control flow for the newly inserted blocks.
// The new header is hooked up directly to the "top", which is either
// the original loop preheader (for the first iteration) or the previous
// iteration's exiting block (for every other iteration)
InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
// Similarly, for the latch:
// The original exiting edge is still hooked up to the loop exit.
// The backedge now goes to the "bottom", which is either the loop's real
// header (for the last peeled iteration) or the copied header of the next
// iteration (for every other iteration)
BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
auto *LatchTerm = cast<Instruction>(NewLatch->getTerminator());
for (unsigned idx = 0, e = LatchTerm->getNumSuccessors(); idx < e; ++idx)
if (LatchTerm->getSuccessor(idx) == Header) {
LatchTerm->setSuccessor(idx, InsertBot);
break;
}
if (DT)
DT->changeImmediateDominator(InsertBot, NewLatch);
// The new copy of the loop body starts with a bunch of PHI nodes
// that pick an incoming value from either the preheader, or the previous
// loop iteration. Since this copy is no longer part of the loop, we
// resolve this statically:
// For the first iteration, we use the value from the preheader directly.
// For any other iteration, we replace the phi with the value generated by
// the immediately preceding clone of the loop body (which represents
// the previous iteration).
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
if (IterNumber == 0) {
VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
} else {
Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
if (LatchInst && L->contains(LatchInst))
VMap[&*I] = LVMap[LatchInst];
else
VMap[&*I] = LatchVal;
}
NewPHI->eraseFromParent();
}
// Fix up the outgoing values - we need to add a value for the iteration
// we've just created. Note that this must happen *after* the incoming
// values are adjusted, since the value going out of the latch may also be
// a value coming into the header.
for (auto Edge : ExitEdges)
for (PHINode &PHI : Edge.second->phis()) {
Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
if (LatchInst && L->contains(LatchInst))
LatchVal = VMap[LatchVal];
PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
SE.forgetValue(&PHI);
}
// LastValueMap is updated with the values for the current loop
// which are used the next time this function is called.
for (auto KV : VMap)
LVMap[KV.first] = KV.second;
}
TargetTransformInfo::PeelingPreferences
llvm::gatherPeelingPreferences(Loop *L, ScalarEvolution &SE,
const TargetTransformInfo &TTI,
std::optional<bool> UserAllowPeeling,
std::optional<bool> UserAllowProfileBasedPeeling,
bool UnrollingSpecficValues) {
TargetTransformInfo::PeelingPreferences PP;
// Set the default values.
PP.PeelCount = 0;
PP.AllowPeeling = true;
PP.AllowLoopNestsPeeling = false;
PP.PeelProfiledIterations = true;
// Get the target specifc values.
TTI.getPeelingPreferences(L, SE, PP);
// User specified values using cl::opt.
if (UnrollingSpecficValues) {
if (UnrollPeelCount.getNumOccurrences() > 0)
PP.PeelCount = UnrollPeelCount;
if (UnrollAllowPeeling.getNumOccurrences() > 0)
PP.AllowPeeling = UnrollAllowPeeling;
if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0)
PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling;
}
// User specifed values provided by argument.
if (UserAllowPeeling)
PP.AllowPeeling = *UserAllowPeeling;
if (UserAllowProfileBasedPeeling)
PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
return PP;
}
/// Peel off the first \p PeelCount iterations of loop \p L.
///
/// Note that this does not peel them off as a single straight-line block.
/// Rather, each iteration is peeled off separately, and needs to check the
/// exit condition.
/// For loops that dynamically execute \p PeelCount iterations or less
/// this provides a benefit, since the peeled off iterations, which account
/// for the bulk of dynamic execution, can be further simplified by scalar
/// optimizations.
bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC,
bool PreserveLCSSA, ValueToValueMapTy &LVMap) {
assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
LoopBlocksDFS LoopBlocks(L);
LoopBlocks.perform(LI);
BasicBlock *Header = L->getHeader();
BasicBlock *PreHeader = L->getLoopPreheader();
BasicBlock *Latch = L->getLoopLatch();
SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
L->getExitEdges(ExitEdges);
// Remember dominators of blocks we might reach through exits to change them
// later. Immediate dominator of such block might change, because we add more
// routes which can lead to the exit: we can reach it from the peeled
// iterations too.
DenseMap<BasicBlock *, BasicBlock *> NonLoopBlocksIDom;
for (auto *BB : L->blocks()) {
auto *BBDomNode = DT.getNode(BB);
SmallVector<BasicBlock *, 16> ChildrenToUpdate;
for (auto *ChildDomNode : BBDomNode->children()) {
auto *ChildBB = ChildDomNode->getBlock();
if (!L->contains(ChildBB))
ChildrenToUpdate.push_back(ChildBB);
}
// The new idom of the block will be the nearest common dominator
// of all copies of the previous idom. This is equivalent to the
// nearest common dominator of the previous idom and the first latch,
// which dominates all copies of the previous idom.
BasicBlock *NewIDom = DT.findNearestCommonDominator(BB, Latch);
for (auto *ChildBB : ChildrenToUpdate)
NonLoopBlocksIDom[ChildBB] = NewIDom;
}
Function *F = Header->getParent();
// Set up all the necessary basic blocks. It is convenient to split the
// preheader into 3 parts - two blocks to anchor the peeled copy of the loop
// body, and a new preheader for the "real" loop.
// Peeling the first iteration transforms.
//
// PreHeader:
// ...
// Header:
// LoopBody
// If (cond) goto Header
// Exit:
//
// into
//
// InsertTop:
// LoopBody
// If (!cond) goto Exit
// InsertBot:
// NewPreHeader:
// ...
// Header:
// LoopBody
// If (cond) goto Header
// Exit:
//
// Each following iteration will split the current bottom anchor in two,
// and put the new copy of the loop body between these two blocks. That is,
// after peeling another iteration from the example above, we'll split
// InsertBot, and get:
//
// InsertTop:
// LoopBody
// If (!cond) goto Exit
// InsertBot:
// LoopBody
// If (!cond) goto Exit
// InsertBot.next:
// NewPreHeader:
// ...
// Header:
// LoopBody
// If (cond) goto Header
// Exit:
BasicBlock *InsertTop = SplitEdge(PreHeader, Header, &DT, LI);
BasicBlock *InsertBot =
SplitBlock(InsertTop, InsertTop->getTerminator(), &DT, LI);
BasicBlock *NewPreHeader =
SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
InsertTop->setName(Header->getName() + ".peel.begin");
InsertBot->setName(Header->getName() + ".peel.next");
NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
Instruction *LatchTerm =
cast<Instruction>(cast<BasicBlock>(Latch)->getTerminator());
// If we have branch weight information, we'll want to update it for the
// newly created branches.
DenseMap<Instruction *, WeightInfo> Weights;
initBranchWeights(Weights, L);
// Identify what noalias metadata is inside the loop: if it is inside the
// loop, the associated metadata must be cloned for each iteration.
SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
// For each peeled-off iteration, make a copy of the loop.
for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
SmallVector<BasicBlock *, 8> NewBlocks;
ValueToValueMapTy VMap;
cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
LoopBlocks, VMap, LVMap, &DT, LI,
LoopLocalNoAliasDeclScopes, *SE);
// Remap to use values from the current iteration instead of the
// previous one.
remapInstructionsInBlocks(NewBlocks, VMap);
// Update IDoms of the blocks reachable through exits.
if (Iter == 0)
for (auto BBIDom : NonLoopBlocksIDom)
DT.changeImmediateDominator(BBIDom.first,
cast<BasicBlock>(LVMap[BBIDom.second]));
#ifdef EXPENSIVE_CHECKS
assert(DT.verify(DominatorTree::VerificationLevel::Fast));
#endif
for (auto &[Term, Info] : Weights) {
auto *TermCopy = cast<Instruction>(VMap[Term]);
updateBranchWeights(TermCopy, Info);
}
// Remove Loop metadata from the latch branch instruction
// because it is not the Loop's latch branch anymore.
auto *LatchTermCopy = cast<Instruction>(VMap[LatchTerm]);
LatchTermCopy->setMetadata(LLVMContext::MD_loop, nullptr);
InsertTop = InsertBot;
InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
InsertBot->setName(Header->getName() + ".peel.next");
F->splice(InsertTop->getIterator(), F, NewBlocks[0]->getIterator(),
F->end());
}
// Now adjust the phi nodes in the loop header to get their initial values
// from the last peeled-off iteration instead of the preheader.
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
PHINode *PHI = cast<PHINode>(I);
Value *NewVal = PHI->getIncomingValueForBlock(Latch);
Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
if (LatchInst && L->contains(LatchInst))
NewVal = LVMap[LatchInst];
PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
}
for (const auto &[Term, Info] : Weights) {
setBranchWeights(*Term, Info.Weights, /*IsExpected=*/false);
}
// Update Metadata for count of peeled off iterations.
unsigned AlreadyPeeled = 0;
if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
AlreadyPeeled = *Peeled;
addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);
if (Loop *ParentLoop = L->getParentLoop())
L = ParentLoop;
// We modified the loop, update SE.
SE->forgetTopmostLoop(L);
SE->forgetBlockAndLoopDispositions();
#ifdef EXPENSIVE_CHECKS
// Finally DomtTree must be correct.
assert(DT.verify(DominatorTree::VerificationLevel::Fast));
#endif
// FIXME: Incrementally update loop-simplify
simplifyLoop(L, &DT, LI, SE, AC, nullptr, PreserveLCSSA);
NumPeeled++;
return true;
}