
Implement the detection of authentication instructions whose results can be inspected by an attacker to know whether authentication succeeded. As the properties of output registers of authentication instructions are inspected, add a second set of analysis-related classes to iterate over the instructions in reverse order.
1636 lines
60 KiB
C++
1636 lines
60 KiB
C++
//===- bolt/Passes/PAuthGadgetScanner.cpp ---------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a pass that looks for any AArch64 return instructions
|
|
// that may not be protected by PAuth authentication instructions when needed.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "bolt/Passes/PAuthGadgetScanner.h"
|
|
#include "bolt/Core/ParallelUtilities.h"
|
|
#include "bolt/Passes/DataflowAnalysis.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include <memory>
|
|
|
|
#define DEBUG_TYPE "bolt-pauth-scanner"
|
|
|
|
namespace llvm {
|
|
namespace bolt {
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const MCInstInBBReference &Ref) {
|
|
OS << "MCInstBBRef<";
|
|
if (Ref.BB == nullptr)
|
|
OS << "BB:(null)";
|
|
else
|
|
OS << "BB:" << Ref.BB->getName() << ":" << Ref.BBIndex;
|
|
OS << ">";
|
|
return OS;
|
|
}
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const MCInstInBFReference &Ref) {
|
|
OS << "MCInstBFRef<";
|
|
if (Ref.BF == nullptr)
|
|
OS << "BF:(null)";
|
|
else
|
|
OS << "BF:" << Ref.BF->getPrintName() << ":" << Ref.getOffset();
|
|
OS << ">";
|
|
return OS;
|
|
}
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const MCInstReference &Ref) {
|
|
switch (Ref.ParentKind) {
|
|
case MCInstReference::BasicBlockParent:
|
|
OS << Ref.U.BBRef;
|
|
return OS;
|
|
case MCInstReference::FunctionParent:
|
|
OS << Ref.U.BFRef;
|
|
return OS;
|
|
}
|
|
llvm_unreachable("");
|
|
}
|
|
|
|
namespace PAuthGadgetScanner {
|
|
|
|
[[maybe_unused]] static void traceInst(const BinaryContext &BC, StringRef Label,
|
|
const MCInst &MI) {
|
|
dbgs() << " " << Label << ": ";
|
|
BC.printInstruction(dbgs(), MI);
|
|
}
|
|
|
|
[[maybe_unused]] static void traceReg(const BinaryContext &BC, StringRef Label,
|
|
MCPhysReg Reg) {
|
|
dbgs() << " " << Label << ": ";
|
|
if (Reg == BC.MIB->getNoRegister())
|
|
dbgs() << "(none)";
|
|
else
|
|
dbgs() << BC.MRI->getName(Reg);
|
|
dbgs() << "\n";
|
|
}
|
|
|
|
[[maybe_unused]] static void traceRegMask(const BinaryContext &BC,
|
|
StringRef Label, BitVector Mask) {
|
|
dbgs() << " " << Label << ": ";
|
|
RegStatePrinter(BC).print(dbgs(), Mask);
|
|
dbgs() << "\n";
|
|
}
|
|
|
|
// This class represents mapping from a set of arbitrary physical registers to
|
|
// consecutive array indexes.
|
|
class TrackedRegisters {
|
|
static constexpr uint16_t NoIndex = -1;
|
|
const std::vector<MCPhysReg> Registers;
|
|
std::vector<uint16_t> RegToIndexMapping;
|
|
|
|
static size_t getMappingSize(ArrayRef<MCPhysReg> RegsToTrack) {
|
|
if (RegsToTrack.empty())
|
|
return 0;
|
|
return 1 + *llvm::max_element(RegsToTrack);
|
|
}
|
|
|
|
public:
|
|
TrackedRegisters(ArrayRef<MCPhysReg> RegsToTrack)
|
|
: Registers(RegsToTrack),
|
|
RegToIndexMapping(getMappingSize(RegsToTrack), NoIndex) {
|
|
for (unsigned I = 0; I < RegsToTrack.size(); ++I)
|
|
RegToIndexMapping[RegsToTrack[I]] = I;
|
|
}
|
|
|
|
ArrayRef<MCPhysReg> getRegisters() const { return Registers; }
|
|
|
|
size_t getNumTrackedRegisters() const { return Registers.size(); }
|
|
|
|
bool empty() const { return Registers.empty(); }
|
|
|
|
bool isTracked(MCPhysReg Reg) const {
|
|
bool IsTracked = (unsigned)Reg < RegToIndexMapping.size() &&
|
|
RegToIndexMapping[Reg] != NoIndex;
|
|
assert(IsTracked == llvm::is_contained(Registers, Reg));
|
|
return IsTracked;
|
|
}
|
|
|
|
unsigned getIndex(MCPhysReg Reg) const {
|
|
assert(isTracked(Reg) && "Register is not tracked");
|
|
return RegToIndexMapping[Reg];
|
|
}
|
|
};
|
|
|
|
// The security property that is checked is:
|
|
// When a register is used as the address to jump to in a return instruction,
|
|
// that register must be safe-to-dereference. It must either
|
|
// (a) be safe-to-dereference at function entry and never be changed within this
|
|
// function, i.e. have the same value as when the function started, or
|
|
// (b) the last write to the register must be by an authentication instruction.
|
|
|
|
// This property is checked by using dataflow analysis to keep track of which
|
|
// registers have been written (def-ed), since last authenticated. For pac-ret,
|
|
// any return instruction using a register which is not safe-to-dereference is
|
|
// a gadget to be reported. For PAuthABI, probably at least any indirect control
|
|
// flow using such a register should be reported.
|
|
|
|
// Furthermore, when producing a diagnostic for a found non-pac-ret protected
|
|
// return, the analysis also lists the last instructions that wrote to the
|
|
// register used in the return instruction.
|
|
// The total set of registers used in return instructions in a given function is
|
|
// small. It almost always is just `X30`.
|
|
// In order to reduce the memory consumption of storing this additional state
|
|
// during the dataflow analysis, this is computed by running the dataflow
|
|
// analysis twice:
|
|
// 1. In the first run, the dataflow analysis only keeps track of the security
|
|
// property: i.e. which registers have been overwritten since the last
|
|
// time they've been authenticated.
|
|
// 2. If the first run finds any return instructions using a register last
|
|
// written by a non-authenticating instruction, the dataflow analysis will
|
|
// be run a second time. The first run will return which registers are used
|
|
// in the gadgets to be reported. This information is used in the second run
|
|
// to also track which instructions last wrote to those registers.
|
|
|
|
typedef SmallPtrSet<const MCInst *, 4> SetOfRelatedInsts;
|
|
|
|
/// A state representing which registers are safe to use by an instruction
|
|
/// at a given program point.
|
|
///
|
|
/// To simplify reasoning, let's stick with the following approach:
|
|
/// * when state is updated by the data-flow analysis, the sub-, super- and
|
|
/// overlapping registers are marked as needed
|
|
/// * when the particular instruction is checked if it represents a gadget,
|
|
/// the specific bit of BitVector should be usable to answer this.
|
|
///
|
|
/// For example, on AArch64:
|
|
/// * An AUTIZA X0 instruction marks both X0 and W0 (as well as W0_HI) as
|
|
/// safe-to-dereference. It does not change the state of X0_X1, for example,
|
|
/// as super-registers partially retain their old, unsafe values.
|
|
/// * LDR X1, [X0] marks as unsafe both X1 itself and anything it overlaps
|
|
/// with: W1, W1_HI, X0_X1 and so on.
|
|
/// * RET (which is implicitly RET X30) is a protected return if and only if
|
|
/// X30 is safe-to-dereference - the state computed for sub- and
|
|
/// super-registers is not inspected.
|
|
struct SrcState {
|
|
/// A BitVector containing the registers that are either authenticated
|
|
/// (assuming failed authentication is permitted to produce an invalid
|
|
/// address, provided it generates an error on memory access) or whose
|
|
/// value is known not to be attacker-controlled under Pointer Authentication
|
|
/// threat model. The registers in this set are either
|
|
/// * not clobbered since being authenticated, or
|
|
/// * trusted at function entry and were not clobbered yet, or
|
|
/// * contain a safely materialized address.
|
|
BitVector SafeToDerefRegs;
|
|
/// A BitVector containing the registers that are either authenticated
|
|
/// *successfully* or whose value is known not to be attacker-controlled
|
|
/// under Pointer Authentication threat model.
|
|
/// The registers in this set are either
|
|
/// * authenticated and then checked to be authenticated successfully
|
|
/// (and not clobbered since then), or
|
|
/// * trusted at function entry and were not clobbered yet, or
|
|
/// * contain a safely materialized address.
|
|
BitVector TrustedRegs;
|
|
/// A vector of sets, only used in the second data flow run.
|
|
/// Each element in the vector represents one of the registers for which we
|
|
/// track the set of last instructions that wrote to this register. For
|
|
/// pac-ret analysis, the expectation is that almost all return instructions
|
|
/// only use register `X30`, and therefore, this vector will probably have
|
|
/// length 1 in the second run.
|
|
std::vector<SetOfRelatedInsts> LastInstWritingReg;
|
|
|
|
/// Construct an empty state.
|
|
SrcState() {}
|
|
|
|
SrcState(unsigned NumRegs, unsigned NumRegsToTrack)
|
|
: SafeToDerefRegs(NumRegs), TrustedRegs(NumRegs),
|
|
LastInstWritingReg(NumRegsToTrack) {}
|
|
|
|
SrcState &merge(const SrcState &StateIn) {
|
|
if (StateIn.empty())
|
|
return *this;
|
|
if (empty())
|
|
return (*this = StateIn);
|
|
|
|
SafeToDerefRegs &= StateIn.SafeToDerefRegs;
|
|
TrustedRegs &= StateIn.TrustedRegs;
|
|
for (unsigned I = 0; I < LastInstWritingReg.size(); ++I)
|
|
for (const MCInst *J : StateIn.LastInstWritingReg[I])
|
|
LastInstWritingReg[I].insert(J);
|
|
return *this;
|
|
}
|
|
|
|
/// Returns true if this object does not store state of any registers -
|
|
/// neither safe, nor unsafe ones.
|
|
bool empty() const { return SafeToDerefRegs.empty(); }
|
|
|
|
bool operator==(const SrcState &RHS) const {
|
|
return SafeToDerefRegs == RHS.SafeToDerefRegs &&
|
|
TrustedRegs == RHS.TrustedRegs &&
|
|
LastInstWritingReg == RHS.LastInstWritingReg;
|
|
}
|
|
bool operator!=(const SrcState &RHS) const { return !((*this) == RHS); }
|
|
};
|
|
|
|
static void printInstsShort(raw_ostream &OS,
|
|
ArrayRef<SetOfRelatedInsts> Insts) {
|
|
OS << "Insts: ";
|
|
for (unsigned I = 0; I < Insts.size(); ++I) {
|
|
auto &Set = Insts[I];
|
|
OS << "[" << I << "](";
|
|
for (const MCInst *MCInstP : Set)
|
|
OS << MCInstP << " ";
|
|
OS << ")";
|
|
}
|
|
}
|
|
|
|
static raw_ostream &operator<<(raw_ostream &OS, const SrcState &S) {
|
|
OS << "src-state<";
|
|
if (S.empty()) {
|
|
OS << "empty";
|
|
} else {
|
|
OS << "SafeToDerefRegs: " << S.SafeToDerefRegs << ", ";
|
|
OS << "TrustedRegs: " << S.TrustedRegs << ", ";
|
|
printInstsShort(OS, S.LastInstWritingReg);
|
|
}
|
|
OS << ">";
|
|
return OS;
|
|
}
|
|
|
|
class SrcStatePrinter {
|
|
public:
|
|
void print(raw_ostream &OS, const SrcState &State) const;
|
|
explicit SrcStatePrinter(const BinaryContext &BC) : BC(BC) {}
|
|
|
|
private:
|
|
const BinaryContext &BC;
|
|
};
|
|
|
|
void SrcStatePrinter::print(raw_ostream &OS, const SrcState &S) const {
|
|
RegStatePrinter RegStatePrinter(BC);
|
|
OS << "src-state<";
|
|
if (S.empty()) {
|
|
assert(S.SafeToDerefRegs.empty());
|
|
assert(S.TrustedRegs.empty());
|
|
assert(S.LastInstWritingReg.empty());
|
|
OS << "empty";
|
|
} else {
|
|
OS << "SafeToDerefRegs: ";
|
|
RegStatePrinter.print(OS, S.SafeToDerefRegs);
|
|
OS << ", TrustedRegs: ";
|
|
RegStatePrinter.print(OS, S.TrustedRegs);
|
|
OS << ", ";
|
|
printInstsShort(OS, S.LastInstWritingReg);
|
|
}
|
|
OS << ">";
|
|
}
|
|
|
|
/// Computes which registers are safe to be used by control flow and signing
|
|
/// instructions.
|
|
///
|
|
/// This is the base class for two implementations: a dataflow-based analysis
|
|
/// which is intended to be used for most functions and a simplified CFG-unaware
|
|
/// version for functions without reconstructed CFG.
|
|
class SrcSafetyAnalysis {
|
|
public:
|
|
SrcSafetyAnalysis(BinaryFunction &BF, ArrayRef<MCPhysReg> RegsToTrackInstsFor)
|
|
: BC(BF.getBinaryContext()), NumRegs(BC.MRI->getNumRegs()),
|
|
RegsToTrackInstsFor(RegsToTrackInstsFor) {}
|
|
|
|
virtual ~SrcSafetyAnalysis() {}
|
|
|
|
static std::shared_ptr<SrcSafetyAnalysis>
|
|
create(BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId,
|
|
ArrayRef<MCPhysReg> RegsToTrackInstsFor);
|
|
|
|
virtual void run() = 0;
|
|
virtual const SrcState &getStateBefore(const MCInst &Inst) const = 0;
|
|
|
|
protected:
|
|
BinaryContext &BC;
|
|
const unsigned NumRegs;
|
|
/// RegToTrackInstsFor is the set of registers for which the dataflow analysis
|
|
/// must compute which the last set of instructions writing to it are.
|
|
const TrackedRegisters RegsToTrackInstsFor;
|
|
/// Stores information about the detected instruction sequences emitted to
|
|
/// check an authenticated pointer. Specifically, if such sequence is detected
|
|
/// in a basic block, it maps the last instruction of that basic block to
|
|
/// (CheckedRegister, FirstInstOfTheSequence) pair, see the description of
|
|
/// MCPlusBuilder::getAuthCheckedReg(BB) method.
|
|
///
|
|
/// As the detection of such sequences requires iterating over the adjacent
|
|
/// instructions, it should be done before calling computeNext(), which
|
|
/// operates on separate instructions.
|
|
DenseMap<const MCInst *, std::pair<MCPhysReg, const MCInst *>>
|
|
CheckerSequenceInfo;
|
|
|
|
SetOfRelatedInsts &lastWritingInsts(SrcState &S, MCPhysReg Reg) const {
|
|
unsigned Index = RegsToTrackInstsFor.getIndex(Reg);
|
|
return S.LastInstWritingReg[Index];
|
|
}
|
|
const SetOfRelatedInsts &lastWritingInsts(const SrcState &S,
|
|
MCPhysReg Reg) const {
|
|
unsigned Index = RegsToTrackInstsFor.getIndex(Reg);
|
|
return S.LastInstWritingReg[Index];
|
|
}
|
|
|
|
SrcState createEntryState() {
|
|
SrcState S(NumRegs, RegsToTrackInstsFor.getNumTrackedRegisters());
|
|
for (MCPhysReg Reg : BC.MIB->getTrustedLiveInRegs())
|
|
S.TrustedRegs |= BC.MIB->getAliases(Reg, /*OnlySmaller=*/true);
|
|
S.SafeToDerefRegs = S.TrustedRegs;
|
|
return S;
|
|
}
|
|
|
|
BitVector getClobberedRegs(const MCInst &Point) const {
|
|
BitVector Clobbered(NumRegs);
|
|
// Assume a call can clobber all registers, including callee-saved
|
|
// registers. There's a good chance that callee-saved registers will be
|
|
// saved on the stack at some point during execution of the callee.
|
|
// Therefore they should also be considered as potentially modified by an
|
|
// attacker/written to.
|
|
// Also, not all functions may respect the AAPCS ABI rules about
|
|
// caller/callee-saved registers.
|
|
if (BC.MIB->isCall(Point))
|
|
Clobbered.set();
|
|
else
|
|
BC.MIB->getClobberedRegs(Point, Clobbered);
|
|
return Clobbered;
|
|
}
|
|
|
|
// Returns all registers that can be treated as if they are written by an
|
|
// authentication instruction.
|
|
SmallVector<MCPhysReg> getRegsMadeSafeToDeref(const MCInst &Point,
|
|
const SrcState &Cur) const {
|
|
SmallVector<MCPhysReg> Regs;
|
|
|
|
// A signed pointer can be authenticated, or
|
|
bool Dummy = false;
|
|
if (auto AutReg = BC.MIB->getWrittenAuthenticatedReg(Point, Dummy))
|
|
Regs.push_back(*AutReg);
|
|
|
|
// ... a safe address can be materialized, or
|
|
if (auto NewAddrReg = BC.MIB->getMaterializedAddressRegForPtrAuth(Point))
|
|
Regs.push_back(*NewAddrReg);
|
|
|
|
// ... an address can be updated in a safe manner, producing the result
|
|
// which is as trusted as the input address.
|
|
if (auto DstAndSrc = BC.MIB->analyzeAddressArithmeticsForPtrAuth(Point)) {
|
|
if (Cur.SafeToDerefRegs[DstAndSrc->second])
|
|
Regs.push_back(DstAndSrc->first);
|
|
}
|
|
|
|
return Regs;
|
|
}
|
|
|
|
// Returns all registers made trusted by this instruction.
|
|
SmallVector<MCPhysReg> getRegsMadeTrusted(const MCInst &Point,
|
|
const SrcState &Cur) const {
|
|
SmallVector<MCPhysReg> Regs;
|
|
|
|
// An authenticated pointer can be checked, or
|
|
std::optional<MCPhysReg> CheckedReg =
|
|
BC.MIB->getAuthCheckedReg(Point, /*MayOverwrite=*/false);
|
|
if (CheckedReg && Cur.SafeToDerefRegs[*CheckedReg])
|
|
Regs.push_back(*CheckedReg);
|
|
|
|
// ... a pointer can be authenticated by an instruction that always checks
|
|
// the pointer, or
|
|
bool IsChecked = false;
|
|
std::optional<MCPhysReg> AutReg =
|
|
BC.MIB->getWrittenAuthenticatedReg(Point, IsChecked);
|
|
if (AutReg && IsChecked)
|
|
Regs.push_back(*AutReg);
|
|
|
|
if (CheckerSequenceInfo.contains(&Point)) {
|
|
MCPhysReg CheckedReg;
|
|
const MCInst *FirstCheckerInst;
|
|
std::tie(CheckedReg, FirstCheckerInst) = CheckerSequenceInfo.at(&Point);
|
|
|
|
// FirstCheckerInst should belong to the same basic block (see the
|
|
// assertion in DataflowSrcSafetyAnalysis::run()), meaning it was
|
|
// deterministically processed a few steps before this instruction.
|
|
const SrcState &StateBeforeChecker = getStateBefore(*FirstCheckerInst);
|
|
if (StateBeforeChecker.SafeToDerefRegs[CheckedReg])
|
|
Regs.push_back(CheckedReg);
|
|
}
|
|
|
|
// ... a safe address can be materialized, or
|
|
if (auto NewAddrReg = BC.MIB->getMaterializedAddressRegForPtrAuth(Point))
|
|
Regs.push_back(*NewAddrReg);
|
|
|
|
// ... an address can be updated in a safe manner, producing the result
|
|
// which is as trusted as the input address.
|
|
if (auto DstAndSrc = BC.MIB->analyzeAddressArithmeticsForPtrAuth(Point)) {
|
|
if (Cur.TrustedRegs[DstAndSrc->second])
|
|
Regs.push_back(DstAndSrc->first);
|
|
}
|
|
|
|
return Regs;
|
|
}
|
|
|
|
SrcState computeNext(const MCInst &Point, const SrcState &Cur) {
|
|
SrcStatePrinter P(BC);
|
|
LLVM_DEBUG({
|
|
dbgs() << " SrcSafetyAnalysis::ComputeNext(";
|
|
BC.InstPrinter->printInst(&Point, 0, "", *BC.STI, dbgs());
|
|
dbgs() << ", ";
|
|
P.print(dbgs(), Cur);
|
|
dbgs() << ")\n";
|
|
});
|
|
|
|
// If this instruction is reachable, a non-empty state will be propagated
|
|
// to it from the entry basic block sooner or later. Until then, it is both
|
|
// more efficient and easier to reason about to skip computeNext().
|
|
if (Cur.empty()) {
|
|
LLVM_DEBUG(
|
|
{ dbgs() << "Skipping computeNext(Point, Cur) as Cur is empty.\n"; });
|
|
return SrcState();
|
|
}
|
|
|
|
// First, compute various properties of the instruction, taking the state
|
|
// before its execution into account, if necessary.
|
|
|
|
BitVector Clobbered = getClobberedRegs(Point);
|
|
SmallVector<MCPhysReg> NewSafeToDerefRegs =
|
|
getRegsMadeSafeToDeref(Point, Cur);
|
|
SmallVector<MCPhysReg> NewTrustedRegs = getRegsMadeTrusted(Point, Cur);
|
|
|
|
// Ideally, being trusted is a strictly stronger property than being
|
|
// safe-to-dereference. To simplify the computation of Next state, enforce
|
|
// this for NewSafeToDerefRegs and NewTrustedRegs. Additionally, this
|
|
// fixes the properly for "cumulative" register states in tricky cases
|
|
// like the following:
|
|
//
|
|
// ; LR is safe to dereference here
|
|
// mov x16, x30 ; start of the sequence, LR is s-t-d right before
|
|
// xpaclri ; clobbers LR, LR is not safe anymore
|
|
// cmp x30, x16
|
|
// b.eq 1f ; end of the sequence: LR is marked as trusted
|
|
// brk 0x1234
|
|
// 1:
|
|
// ; at this point LR would be marked as trusted,
|
|
// ; but not safe-to-dereference
|
|
//
|
|
for (auto TrustedReg : NewTrustedRegs) {
|
|
if (!is_contained(NewSafeToDerefRegs, TrustedReg))
|
|
NewSafeToDerefRegs.push_back(TrustedReg);
|
|
}
|
|
|
|
// Then, compute the state after this instruction is executed.
|
|
SrcState Next = Cur;
|
|
|
|
Next.SafeToDerefRegs.reset(Clobbered);
|
|
Next.TrustedRegs.reset(Clobbered);
|
|
// Keep track of this instruction if it writes to any of the registers we
|
|
// need to track that for:
|
|
for (MCPhysReg Reg : RegsToTrackInstsFor.getRegisters())
|
|
if (Clobbered[Reg])
|
|
lastWritingInsts(Next, Reg) = {&Point};
|
|
|
|
// After accounting for clobbered registers in general, override the state
|
|
// according to authentication and other *special cases* of clobbering.
|
|
|
|
// The sub-registers are also safe-to-dereference now, but not their
|
|
// super-registers (as they retain untrusted register units).
|
|
BitVector NewSafeSubregs(NumRegs);
|
|
for (MCPhysReg SafeReg : NewSafeToDerefRegs)
|
|
NewSafeSubregs |= BC.MIB->getAliases(SafeReg, /*OnlySmaller=*/true);
|
|
for (MCPhysReg Reg : NewSafeSubregs.set_bits()) {
|
|
Next.SafeToDerefRegs.set(Reg);
|
|
if (RegsToTrackInstsFor.isTracked(Reg))
|
|
lastWritingInsts(Next, Reg).clear();
|
|
}
|
|
|
|
// Process new trusted registers.
|
|
for (MCPhysReg TrustedReg : NewTrustedRegs)
|
|
Next.TrustedRegs |= BC.MIB->getAliases(TrustedReg, /*OnlySmaller=*/true);
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << " .. result: (";
|
|
P.print(dbgs(), Next);
|
|
dbgs() << ")\n";
|
|
});
|
|
|
|
return Next;
|
|
}
|
|
|
|
public:
|
|
std::vector<MCInstReference>
|
|
getLastClobberingInsts(const MCInst &Inst, BinaryFunction &BF,
|
|
MCPhysReg ClobberedReg) const {
|
|
const SrcState &S = getStateBefore(Inst);
|
|
|
|
std::vector<MCInstReference> Result;
|
|
for (const MCInst *Inst : lastWritingInsts(S, ClobberedReg)) {
|
|
MCInstReference Ref = MCInstReference::get(Inst, BF);
|
|
assert(Ref && "Expected Inst to be found");
|
|
Result.push_back(Ref);
|
|
}
|
|
return Result;
|
|
}
|
|
};
|
|
|
|
class DataflowSrcSafetyAnalysis
|
|
: public SrcSafetyAnalysis,
|
|
public DataflowAnalysis<DataflowSrcSafetyAnalysis, SrcState,
|
|
/*Backward=*/false, SrcStatePrinter> {
|
|
using DFParent = DataflowAnalysis<DataflowSrcSafetyAnalysis, SrcState, false,
|
|
SrcStatePrinter>;
|
|
friend DFParent;
|
|
|
|
using SrcSafetyAnalysis::BC;
|
|
using SrcSafetyAnalysis::computeNext;
|
|
|
|
public:
|
|
DataflowSrcSafetyAnalysis(BinaryFunction &BF,
|
|
MCPlusBuilder::AllocatorIdTy AllocId,
|
|
ArrayRef<MCPhysReg> RegsToTrackInstsFor)
|
|
: SrcSafetyAnalysis(BF, RegsToTrackInstsFor), DFParent(BF, AllocId) {}
|
|
|
|
const SrcState &getStateBefore(const MCInst &Inst) const override {
|
|
return DFParent::getStateBefore(Inst).get();
|
|
}
|
|
|
|
void run() override {
|
|
for (BinaryBasicBlock &BB : Func) {
|
|
if (auto CheckerInfo = BC.MIB->getAuthCheckedReg(BB)) {
|
|
MCPhysReg CheckedReg = CheckerInfo->first;
|
|
MCInst &FirstInst = *CheckerInfo->second;
|
|
MCInst &LastInst = *BB.getLastNonPseudoInstr();
|
|
LLVM_DEBUG({
|
|
dbgs() << "Found pointer checking sequence in " << BB.getName()
|
|
<< ":\n";
|
|
traceReg(BC, "Checked register", CheckedReg);
|
|
traceInst(BC, "First instruction", FirstInst);
|
|
traceInst(BC, "Last instruction", LastInst);
|
|
});
|
|
(void)CheckedReg;
|
|
(void)FirstInst;
|
|
assert(llvm::any_of(BB, [&](MCInst &I) { return &I == &FirstInst; }) &&
|
|
"Data-flow analysis expects the checker not to cross BBs");
|
|
CheckerSequenceInfo[&LastInst] = *CheckerInfo;
|
|
}
|
|
}
|
|
DFParent::run();
|
|
}
|
|
|
|
protected:
|
|
void preflight() {}
|
|
|
|
SrcState getStartingStateAtBB(const BinaryBasicBlock &BB) {
|
|
if (BB.isEntryPoint())
|
|
return createEntryState();
|
|
|
|
return SrcState();
|
|
}
|
|
|
|
SrcState getStartingStateAtPoint(const MCInst &Point) { return SrcState(); }
|
|
|
|
void doConfluence(SrcState &StateOut, const SrcState &StateIn) {
|
|
SrcStatePrinter P(BC);
|
|
LLVM_DEBUG({
|
|
dbgs() << " DataflowSrcSafetyAnalysis::Confluence(\n";
|
|
dbgs() << " State 1: ";
|
|
P.print(dbgs(), StateOut);
|
|
dbgs() << "\n";
|
|
dbgs() << " State 2: ";
|
|
P.print(dbgs(), StateIn);
|
|
dbgs() << ")\n";
|
|
});
|
|
|
|
StateOut.merge(StateIn);
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << " merged state: ";
|
|
P.print(dbgs(), StateOut);
|
|
dbgs() << "\n";
|
|
});
|
|
}
|
|
|
|
StringRef getAnnotationName() const { return "DataflowSrcSafetyAnalysis"; }
|
|
};
|
|
|
|
/// A helper base class for implementing a simplified counterpart of a dataflow
|
|
/// analysis for functions without CFG information.
|
|
template <typename StateTy> class CFGUnawareAnalysis {
|
|
BinaryContext &BC;
|
|
BinaryFunction &BF;
|
|
MCPlusBuilder::AllocatorIdTy AllocId;
|
|
unsigned StateAnnotationIndex;
|
|
|
|
void cleanStateAnnotations() {
|
|
for (auto &I : BF.instrs())
|
|
BC.MIB->removeAnnotation(I.second, StateAnnotationIndex);
|
|
}
|
|
|
|
protected:
|
|
CFGUnawareAnalysis(BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId,
|
|
StringRef AnnotationName)
|
|
: BC(BF.getBinaryContext()), BF(BF), AllocId(AllocId) {
|
|
StateAnnotationIndex = BC.MIB->getOrCreateAnnotationIndex(AnnotationName);
|
|
}
|
|
|
|
void setState(MCInst &Inst, const StateTy &S) {
|
|
// Check if we need to remove an old annotation (this is the case if
|
|
// this is the second, detailed run of the analysis).
|
|
if (BC.MIB->hasAnnotation(Inst, StateAnnotationIndex))
|
|
BC.MIB->removeAnnotation(Inst, StateAnnotationIndex);
|
|
// Attach the state.
|
|
BC.MIB->addAnnotation(Inst, StateAnnotationIndex, S, AllocId);
|
|
}
|
|
|
|
const StateTy &getState(const MCInst &Inst) const {
|
|
return BC.MIB->getAnnotationAs<StateTy>(Inst, StateAnnotationIndex);
|
|
}
|
|
|
|
virtual ~CFGUnawareAnalysis() { cleanStateAnnotations(); }
|
|
};
|
|
|
|
// A simplified implementation of DataflowSrcSafetyAnalysis for functions
|
|
// lacking CFG information.
|
|
//
|
|
// Let assume the instructions can only be executed linearly unless there is
|
|
// a label to jump to - this should handle both directly jumping to a location
|
|
// encoded as an immediate operand of a branch instruction, as well as saving a
|
|
// branch destination somewhere and passing it to an indirect branch instruction
|
|
// later, provided no arithmetic is performed on the destination address:
|
|
//
|
|
// ; good: the destination is directly encoded into the branch instruction
|
|
// cbz x0, some_label
|
|
//
|
|
// ; good: the branch destination is first stored and then used as-is
|
|
// adr x1, some_label
|
|
// br x1
|
|
//
|
|
// ; bad: some clever arithmetic is performed manually
|
|
// adr x1, some_label
|
|
// add x1, x1, #4
|
|
// br x1
|
|
// ...
|
|
// some_label:
|
|
// ; pessimistically reset the state as we are unsure where we came from
|
|
// ...
|
|
// ret
|
|
// JTI0:
|
|
// .byte some_label - Ltmp0 ; computing offsets using labels may probably
|
|
// work too, provided enough information is
|
|
// retained by the assembler and linker
|
|
//
|
|
// Then, a function can be split into a number of disjoint contiguous sequences
|
|
// of instructions without labels in between. These sequences can be processed
|
|
// the same way basic blocks are processed by data-flow analysis, assuming
|
|
// pessimistically that all registers are unsafe at the start of each sequence.
|
|
class CFGUnawareSrcSafetyAnalysis : public SrcSafetyAnalysis,
|
|
public CFGUnawareAnalysis<SrcState> {
|
|
using SrcSafetyAnalysis::BC;
|
|
BinaryFunction &BF;
|
|
|
|
/// Creates a state with all registers marked unsafe (not to be confused
|
|
/// with empty state).
|
|
SrcState createUnsafeState() const {
|
|
return SrcState(NumRegs, RegsToTrackInstsFor.getNumTrackedRegisters());
|
|
}
|
|
|
|
public:
|
|
CFGUnawareSrcSafetyAnalysis(BinaryFunction &BF,
|
|
MCPlusBuilder::AllocatorIdTy AllocId,
|
|
ArrayRef<MCPhysReg> RegsToTrackInstsFor)
|
|
: SrcSafetyAnalysis(BF, RegsToTrackInstsFor),
|
|
CFGUnawareAnalysis(BF, AllocId, "CFGUnawareSrcSafetyAnalysis"), BF(BF) {
|
|
}
|
|
|
|
void run() override {
|
|
SrcState S = createEntryState();
|
|
for (auto &I : BF.instrs()) {
|
|
MCInst &Inst = I.second;
|
|
|
|
// If there is a label before this instruction, it is possible that it
|
|
// can be jumped-to, thus conservatively resetting S. As an exception,
|
|
// let's ignore any labels at the beginning of the function, as at least
|
|
// one label is expected there.
|
|
if (BF.hasLabelAt(I.first) && &Inst != &BF.instrs().begin()->second) {
|
|
LLVM_DEBUG({
|
|
traceInst(BC, "Due to label, resetting the state before", Inst);
|
|
});
|
|
S = createUnsafeState();
|
|
}
|
|
|
|
// Attach the state *before* this instruction executes.
|
|
setState(Inst, S);
|
|
|
|
// Compute the state after this instruction executes.
|
|
S = computeNext(Inst, S);
|
|
}
|
|
}
|
|
|
|
const SrcState &getStateBefore(const MCInst &Inst) const override {
|
|
return getState(Inst);
|
|
}
|
|
};
|
|
|
|
std::shared_ptr<SrcSafetyAnalysis>
|
|
SrcSafetyAnalysis::create(BinaryFunction &BF,
|
|
MCPlusBuilder::AllocatorIdTy AllocId,
|
|
ArrayRef<MCPhysReg> RegsToTrackInstsFor) {
|
|
if (BF.hasCFG())
|
|
return std::make_shared<DataflowSrcSafetyAnalysis>(BF, AllocId,
|
|
RegsToTrackInstsFor);
|
|
return std::make_shared<CFGUnawareSrcSafetyAnalysis>(BF, AllocId,
|
|
RegsToTrackInstsFor);
|
|
}
|
|
|
|
/// A state representing which registers are safe to be used as the destination
|
|
/// operand of an authentication instruction.
|
|
///
|
|
/// Similar to SrcState, it is the responsibility of the analysis to take
|
|
/// register aliasing into account.
|
|
///
|
|
/// Depending on the implementation (such as whether FEAT_FPAC is implemented
|
|
/// by an AArch64 CPU or not), it may be possible that an authentication
|
|
/// instruction returns an invalid pointer on failure instead of terminating
|
|
/// the program immediately (assuming the program will crash as soon as that
|
|
/// pointer is dereferenced). Since few bits are usually allocated for the PAC
|
|
/// field (such as less than 16 bits on a typical AArch64 system), an attacker
|
|
/// can try every possible signature and guess the correct one if there is a
|
|
/// gadget that tells whether the particular pointer has a correct signature
|
|
/// (a so called "authentication oracle"). For that reason, it should be
|
|
/// impossible for an attacker to test if a pointer is correctly signed -
|
|
/// either the program should be terminated on authentication failure or
|
|
/// the result of authentication should not be accessible to an attacker.
|
|
///
|
|
/// Considering the instructions in forward order as they are executed, a
|
|
/// restricted set of operations can be allowed on any register containing a
|
|
/// value derived from the result of an authentication instruction until that
|
|
/// value is checked not to contain the result of a failed authentication.
|
|
/// In DstSafetyAnalysis, these rules are adapted, so that the safety property
|
|
/// for a register is computed by iterating the instructions in backward order.
|
|
/// Then the resulting properties are used at authentication instruction sites
|
|
/// to check output registers and report the particular instruction if it writes
|
|
/// to an unsafe register.
|
|
///
|
|
/// Another approach would be to simulate the above rules as-is, iterating over
|
|
/// the instructions in forward direction. To make it possible to report the
|
|
/// particular instructions as oracles, this would probably require tracking
|
|
/// references to these instructions for each register currently containing
|
|
/// sensitive data.
|
|
///
|
|
/// In DstSafetyAnalysis, the source register Xn of an instruction Inst is safe
|
|
/// if at least one of the following is true:
|
|
/// * Inst checks if Xn contains the result of a successful authentication and
|
|
/// terminates the program on failure. Note that Inst can either naturally
|
|
/// dereference Xn (load, branch, return, etc. instructions) or be the first
|
|
/// instruction of an explicit checking sequence.
|
|
/// * Inst performs safe address arithmetic AND both source and result
|
|
/// registers, as well as any temporary registers, must be safe after
|
|
/// execution of Inst (temporaries are not used on AArch64 and thus not
|
|
/// currently supported/allowed).
|
|
/// See MCPlusBuilder::analyzeAddressArithmeticsForPtrAuth for the details.
|
|
/// * Inst fully overwrites Xn with a constant.
|
|
struct DstState {
|
|
/// The set of registers whose values cannot be inspected by an attacker in
|
|
/// a way usable as an authentication oracle. The results of authentication
|
|
/// instructions should only be written to such registers.
|
|
BitVector CannotEscapeUnchecked;
|
|
|
|
/// A vector of sets, only used on the second analysis run.
|
|
/// Each element in this vector represents one of the tracked registers.
|
|
/// For each such register we track the set of first instructions that leak
|
|
/// the authenticated pointer before it was checked. This is intended to
|
|
/// provide clues on which instruction made the particular register unsafe.
|
|
///
|
|
/// Please note that the mapping from MCPhysReg values to indexes in this
|
|
/// vector is provided by RegsToTrackInstsFor field of DstSafetyAnalysis.
|
|
std::vector<SetOfRelatedInsts> FirstInstLeakingReg;
|
|
|
|
/// Constructs an empty state.
|
|
DstState() {}
|
|
|
|
DstState(unsigned NumRegs, unsigned NumRegsToTrack)
|
|
: CannotEscapeUnchecked(NumRegs), FirstInstLeakingReg(NumRegsToTrack) {}
|
|
|
|
DstState &merge(const DstState &StateIn) {
|
|
if (StateIn.empty())
|
|
return *this;
|
|
if (empty())
|
|
return (*this = StateIn);
|
|
|
|
CannotEscapeUnchecked &= StateIn.CannotEscapeUnchecked;
|
|
for (unsigned I = 0; I < FirstInstLeakingReg.size(); ++I)
|
|
for (const MCInst *J : StateIn.FirstInstLeakingReg[I])
|
|
FirstInstLeakingReg[I].insert(J);
|
|
return *this;
|
|
}
|
|
|
|
/// Returns true if this object does not store state of any registers -
|
|
/// neither safe, nor unsafe ones.
|
|
bool empty() const { return CannotEscapeUnchecked.empty(); }
|
|
|
|
bool operator==(const DstState &RHS) const {
|
|
return CannotEscapeUnchecked == RHS.CannotEscapeUnchecked &&
|
|
FirstInstLeakingReg == RHS.FirstInstLeakingReg;
|
|
}
|
|
bool operator!=(const DstState &RHS) const { return !((*this) == RHS); }
|
|
};
|
|
|
|
static raw_ostream &operator<<(raw_ostream &OS, const DstState &S) {
|
|
OS << "dst-state<";
|
|
if (S.empty()) {
|
|
OS << "empty";
|
|
} else {
|
|
OS << "CannotEscapeUnchecked: " << S.CannotEscapeUnchecked << ", ";
|
|
printInstsShort(OS, S.FirstInstLeakingReg);
|
|
}
|
|
OS << ">";
|
|
return OS;
|
|
}
|
|
|
|
class DstStatePrinter {
|
|
public:
|
|
void print(raw_ostream &OS, const DstState &S) const;
|
|
explicit DstStatePrinter(const BinaryContext &BC) : BC(BC) {}
|
|
|
|
private:
|
|
const BinaryContext &BC;
|
|
};
|
|
|
|
void DstStatePrinter::print(raw_ostream &OS, const DstState &S) const {
|
|
RegStatePrinter RegStatePrinter(BC);
|
|
OS << "dst-state<";
|
|
if (S.empty()) {
|
|
assert(S.CannotEscapeUnchecked.empty());
|
|
assert(S.FirstInstLeakingReg.empty());
|
|
OS << "empty";
|
|
} else {
|
|
OS << "CannotEscapeUnchecked: ";
|
|
RegStatePrinter.print(OS, S.CannotEscapeUnchecked);
|
|
OS << ", ";
|
|
printInstsShort(OS, S.FirstInstLeakingReg);
|
|
}
|
|
OS << ">";
|
|
}
|
|
|
|
/// Computes which registers are safe to be written to by auth instructions.
|
|
///
|
|
/// This is the base class for two implementations: a dataflow-based analysis
|
|
/// which is intended to be used for most functions and a simplified CFG-unaware
|
|
/// version for functions without reconstructed CFG.
|
|
class DstSafetyAnalysis {
|
|
public:
|
|
DstSafetyAnalysis(BinaryFunction &BF, ArrayRef<MCPhysReg> RegsToTrackInstsFor)
|
|
: BC(BF.getBinaryContext()), NumRegs(BC.MRI->getNumRegs()),
|
|
RegsToTrackInstsFor(RegsToTrackInstsFor) {}
|
|
|
|
virtual ~DstSafetyAnalysis() {}
|
|
|
|
static std::shared_ptr<DstSafetyAnalysis>
|
|
create(BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId,
|
|
ArrayRef<MCPhysReg> RegsToTrackInstsFor);
|
|
|
|
virtual void run() = 0;
|
|
virtual const DstState &getStateAfter(const MCInst &Inst) const = 0;
|
|
|
|
protected:
|
|
BinaryContext &BC;
|
|
const unsigned NumRegs;
|
|
|
|
const TrackedRegisters RegsToTrackInstsFor;
|
|
|
|
/// Stores information about the detected instruction sequences emitted to
|
|
/// check an authenticated pointer. Specifically, if such sequence is detected
|
|
/// in a basic block, it maps the first instruction of that sequence to the
|
|
/// register being checked.
|
|
///
|
|
/// As the detection of such sequences requires iterating over the adjacent
|
|
/// instructions, it should be done before calling computeNext(), which
|
|
/// operates on separate instructions.
|
|
DenseMap<const MCInst *, MCPhysReg> RegCheckedAt;
|
|
|
|
SetOfRelatedInsts &firstLeakingInsts(DstState &S, MCPhysReg Reg) const {
|
|
unsigned Index = RegsToTrackInstsFor.getIndex(Reg);
|
|
return S.FirstInstLeakingReg[Index];
|
|
}
|
|
const SetOfRelatedInsts &firstLeakingInsts(const DstState &S,
|
|
MCPhysReg Reg) const {
|
|
unsigned Index = RegsToTrackInstsFor.getIndex(Reg);
|
|
return S.FirstInstLeakingReg[Index];
|
|
}
|
|
|
|
/// Creates a state with all registers marked unsafe (not to be confused
|
|
/// with empty state).
|
|
DstState createUnsafeState() {
|
|
return DstState(NumRegs, RegsToTrackInstsFor.getNumTrackedRegisters());
|
|
}
|
|
|
|
/// Returns the set of registers that can be leaked by this instruction.
|
|
/// A register is considered leaked if it has any intersection with any
|
|
/// register read by Inst. This is similar to how the set of clobbered
|
|
/// registers is computed, but taking input operands instead of outputs.
|
|
BitVector getLeakedRegs(const MCInst &Inst) const {
|
|
BitVector Leaked(NumRegs);
|
|
|
|
// Assume a call can read all registers.
|
|
if (BC.MIB->isCall(Inst)) {
|
|
Leaked.set();
|
|
return Leaked;
|
|
}
|
|
|
|
// Compute the set of registers overlapping with any register used by
|
|
// this instruction.
|
|
|
|
const MCInstrDesc &Desc = BC.MII->get(Inst.getOpcode());
|
|
|
|
for (MCPhysReg Reg : Desc.implicit_uses())
|
|
Leaked |= BC.MIB->getAliases(Reg, /*OnlySmaller=*/false);
|
|
|
|
for (const MCOperand &Op : BC.MIB->useOperands(Inst)) {
|
|
if (Op.isReg())
|
|
Leaked |= BC.MIB->getAliases(Op.getReg(), /*OnlySmaller=*/false);
|
|
}
|
|
|
|
return Leaked;
|
|
}
|
|
|
|
SmallVector<MCPhysReg> getRegsMadeProtected(const MCInst &Inst,
|
|
const BitVector &LeakedRegs,
|
|
const DstState &Cur) const {
|
|
SmallVector<MCPhysReg> Regs;
|
|
|
|
// A pointer can be checked, or
|
|
if (auto CheckedReg =
|
|
BC.MIB->getAuthCheckedReg(Inst, /*MayOverwrite=*/true))
|
|
Regs.push_back(*CheckedReg);
|
|
if (RegCheckedAt.contains(&Inst))
|
|
Regs.push_back(RegCheckedAt.at(&Inst));
|
|
|
|
// ... it can be used as a branch target, or
|
|
if (BC.MIB->isIndirectBranch(Inst) || BC.MIB->isIndirectCall(Inst)) {
|
|
bool IsAuthenticated;
|
|
MCPhysReg BranchDestReg =
|
|
BC.MIB->getRegUsedAsIndirectBranchDest(Inst, IsAuthenticated);
|
|
assert(BranchDestReg != BC.MIB->getNoRegister());
|
|
if (!IsAuthenticated)
|
|
Regs.push_back(BranchDestReg);
|
|
}
|
|
|
|
// ... it can be used as a return target, or
|
|
if (BC.MIB->isReturn(Inst)) {
|
|
bool IsAuthenticated = false;
|
|
std::optional<MCPhysReg> RetReg =
|
|
BC.MIB->getRegUsedAsRetDest(Inst, IsAuthenticated);
|
|
if (RetReg && !IsAuthenticated)
|
|
Regs.push_back(*RetReg);
|
|
}
|
|
|
|
// ... an address can be updated in a safe manner, or
|
|
if (auto DstAndSrc = BC.MIB->analyzeAddressArithmeticsForPtrAuth(Inst)) {
|
|
MCPhysReg DstReg, SrcReg;
|
|
std::tie(DstReg, SrcReg) = *DstAndSrc;
|
|
// Note that *all* registers containing the derived values must be safe,
|
|
// both source and destination ones. No temporaries are supported at now.
|
|
if (Cur.CannotEscapeUnchecked[SrcReg] &&
|
|
Cur.CannotEscapeUnchecked[DstReg])
|
|
Regs.push_back(SrcReg);
|
|
}
|
|
|
|
// ... the register can be overwritten in whole with a constant: for that
|
|
// purpose, look for the instructions with no register inputs (neither
|
|
// explicit nor implicit ones) and no side effects (to rule out reading
|
|
// not modelled locations).
|
|
const MCInstrDesc &Desc = BC.MII->get(Inst.getOpcode());
|
|
bool HasExplicitSrcRegs = llvm::any_of(BC.MIB->useOperands(Inst),
|
|
[](auto Op) { return Op.isReg(); });
|
|
if (!Desc.hasUnmodeledSideEffects() && !HasExplicitSrcRegs &&
|
|
Desc.implicit_uses().empty()) {
|
|
for (const MCOperand &Def : BC.MIB->defOperands(Inst))
|
|
Regs.push_back(Def.getReg());
|
|
}
|
|
|
|
return Regs;
|
|
}
|
|
|
|
DstState computeNext(const MCInst &Point, const DstState &Cur) {
|
|
DstStatePrinter P(BC);
|
|
LLVM_DEBUG({
|
|
dbgs() << " DstSafetyAnalysis::ComputeNext(";
|
|
BC.InstPrinter->printInst(&Point, 0, "", *BC.STI, dbgs());
|
|
dbgs() << ", ";
|
|
P.print(dbgs(), Cur);
|
|
dbgs() << ")\n";
|
|
});
|
|
|
|
// If this instruction is reachable by the analysis, a non-empty state will
|
|
// be propagated to it sooner or later. Until then, skip computeNext().
|
|
if (Cur.empty()) {
|
|
LLVM_DEBUG(
|
|
{ dbgs() << "Skipping computeNext(Point, Cur) as Cur is empty.\n"; });
|
|
return DstState();
|
|
}
|
|
|
|
// First, compute various properties of the instruction, taking the state
|
|
// after its execution into account, if necessary.
|
|
|
|
BitVector LeakedRegs = getLeakedRegs(Point);
|
|
SmallVector<MCPhysReg> NewProtectedRegs =
|
|
getRegsMadeProtected(Point, LeakedRegs, Cur);
|
|
|
|
// Then, compute the state before this instruction is executed.
|
|
DstState Next = Cur;
|
|
|
|
Next.CannotEscapeUnchecked.reset(LeakedRegs);
|
|
for (MCPhysReg Reg : RegsToTrackInstsFor.getRegisters()) {
|
|
if (LeakedRegs[Reg])
|
|
firstLeakingInsts(Next, Reg) = {&Point};
|
|
}
|
|
|
|
BitVector NewProtectedSubregs(NumRegs);
|
|
for (MCPhysReg Reg : NewProtectedRegs)
|
|
NewProtectedSubregs |= BC.MIB->getAliases(Reg, /*OnlySmaller=*/true);
|
|
Next.CannotEscapeUnchecked |= NewProtectedSubregs;
|
|
for (MCPhysReg Reg : RegsToTrackInstsFor.getRegisters()) {
|
|
if (NewProtectedSubregs[Reg])
|
|
firstLeakingInsts(Next, Reg).clear();
|
|
}
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << " .. result: (";
|
|
P.print(dbgs(), Next);
|
|
dbgs() << ")\n";
|
|
});
|
|
|
|
return Next;
|
|
}
|
|
|
|
public:
|
|
std::vector<MCInstReference> getLeakingInsts(const MCInst &Inst,
|
|
BinaryFunction &BF,
|
|
MCPhysReg LeakedReg) const {
|
|
const DstState &S = getStateAfter(Inst);
|
|
|
|
std::vector<MCInstReference> Result;
|
|
for (const MCInst *Inst : firstLeakingInsts(S, LeakedReg)) {
|
|
MCInstReference Ref = MCInstReference::get(Inst, BF);
|
|
assert(Ref && "Expected Inst to be found");
|
|
Result.push_back(Ref);
|
|
}
|
|
return Result;
|
|
}
|
|
};
|
|
|
|
class DataflowDstSafetyAnalysis
|
|
: public DstSafetyAnalysis,
|
|
public DataflowAnalysis<DataflowDstSafetyAnalysis, DstState,
|
|
/*Backward=*/true, DstStatePrinter> {
|
|
using DFParent = DataflowAnalysis<DataflowDstSafetyAnalysis, DstState, true,
|
|
DstStatePrinter>;
|
|
friend DFParent;
|
|
|
|
using DstSafetyAnalysis::BC;
|
|
using DstSafetyAnalysis::computeNext;
|
|
|
|
public:
|
|
DataflowDstSafetyAnalysis(BinaryFunction &BF,
|
|
MCPlusBuilder::AllocatorIdTy AllocId,
|
|
ArrayRef<MCPhysReg> RegsToTrackInstsFor)
|
|
: DstSafetyAnalysis(BF, RegsToTrackInstsFor), DFParent(BF, AllocId) {}
|
|
|
|
const DstState &getStateAfter(const MCInst &Inst) const override {
|
|
// The dataflow analysis base class iterates backwards over the
|
|
// instructions, thus "after" vs. "before" difference.
|
|
return DFParent::getStateBefore(Inst).get();
|
|
}
|
|
|
|
void run() override {
|
|
for (BinaryBasicBlock &BB : Func) {
|
|
if (auto CheckerInfo = BC.MIB->getAuthCheckedReg(BB)) {
|
|
LLVM_DEBUG({
|
|
dbgs() << "Found pointer checking sequence in " << BB.getName()
|
|
<< ":\n";
|
|
traceReg(BC, "Checked register", CheckerInfo->first);
|
|
traceInst(BC, "First instruction", *CheckerInfo->second);
|
|
});
|
|
RegCheckedAt[CheckerInfo->second] = CheckerInfo->first;
|
|
}
|
|
}
|
|
DFParent::run();
|
|
}
|
|
|
|
protected:
|
|
void preflight() {}
|
|
|
|
DstState getStartingStateAtBB(const BinaryBasicBlock &BB) {
|
|
// In general, the initial state should be empty, not everything-is-unsafe,
|
|
// to give a chance for some meaningful state to be propagated to BB from
|
|
// an indirectly reachable "exit basic block" ending with a return or tail
|
|
// call instruction.
|
|
//
|
|
// A basic block without any successors, on the other hand, can be
|
|
// pessimistically initialized to everything-is-unsafe: this will naturally
|
|
// handle both return and tail call instructions and is harmless for
|
|
// internal indirect branch instructions (such as computed gotos).
|
|
if (BB.succ_empty())
|
|
return createUnsafeState();
|
|
|
|
return DstState();
|
|
}
|
|
|
|
DstState getStartingStateAtPoint(const MCInst &Point) { return DstState(); }
|
|
|
|
void doConfluence(DstState &StateOut, const DstState &StateIn) {
|
|
DstStatePrinter P(BC);
|
|
LLVM_DEBUG({
|
|
dbgs() << " DataflowDstSafetyAnalysis::Confluence(\n";
|
|
dbgs() << " State 1: ";
|
|
P.print(dbgs(), StateOut);
|
|
dbgs() << "\n";
|
|
dbgs() << " State 2: ";
|
|
P.print(dbgs(), StateIn);
|
|
dbgs() << ")\n";
|
|
});
|
|
|
|
StateOut.merge(StateIn);
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << " merged state: ";
|
|
P.print(dbgs(), StateOut);
|
|
dbgs() << "\n";
|
|
});
|
|
}
|
|
|
|
StringRef getAnnotationName() const { return "DataflowDstSafetyAnalysis"; }
|
|
};
|
|
|
|
class CFGUnawareDstSafetyAnalysis : public DstSafetyAnalysis,
|
|
public CFGUnawareAnalysis<DstState> {
|
|
using DstSafetyAnalysis::BC;
|
|
BinaryFunction &BF;
|
|
|
|
public:
|
|
CFGUnawareDstSafetyAnalysis(BinaryFunction &BF,
|
|
MCPlusBuilder::AllocatorIdTy AllocId,
|
|
ArrayRef<MCPhysReg> RegsToTrackInstsFor)
|
|
: DstSafetyAnalysis(BF, RegsToTrackInstsFor),
|
|
CFGUnawareAnalysis(BF, AllocId, "CFGUnawareDstSafetyAnalysis"), BF(BF) {
|
|
}
|
|
|
|
void run() override {
|
|
DstState S = createUnsafeState();
|
|
for (auto &I : llvm::reverse(BF.instrs())) {
|
|
MCInst &Inst = I.second;
|
|
|
|
// If Inst can change the control flow, we cannot be sure that the next
|
|
// instruction (to be executed in analyzed program) is the one processed
|
|
// on the previous iteration, thus pessimistically reset S before
|
|
// starting to analyze Inst.
|
|
if (BC.MIB->isCall(Inst) || BC.MIB->isBranch(Inst) ||
|
|
BC.MIB->isReturn(Inst)) {
|
|
LLVM_DEBUG({ traceInst(BC, "Control flow instruction", Inst); });
|
|
S = createUnsafeState();
|
|
}
|
|
|
|
// Attach the state *after* this instruction executes.
|
|
setState(Inst, S);
|
|
|
|
// Compute the next state.
|
|
S = computeNext(Inst, S);
|
|
}
|
|
}
|
|
|
|
const DstState &getStateAfter(const MCInst &Inst) const override {
|
|
return getState(Inst);
|
|
}
|
|
};
|
|
|
|
std::shared_ptr<DstSafetyAnalysis>
|
|
DstSafetyAnalysis::create(BinaryFunction &BF,
|
|
MCPlusBuilder::AllocatorIdTy AllocId,
|
|
ArrayRef<MCPhysReg> RegsToTrackInstsFor) {
|
|
if (BF.hasCFG())
|
|
return std::make_shared<DataflowDstSafetyAnalysis>(BF, AllocId,
|
|
RegsToTrackInstsFor);
|
|
return std::make_shared<CFGUnawareDstSafetyAnalysis>(BF, AllocId,
|
|
RegsToTrackInstsFor);
|
|
}
|
|
|
|
// This function could return PartialReport<T>, but currently T is always
|
|
// MCPhysReg, even though it is an implementation detail.
|
|
static PartialReport<MCPhysReg> make_generic_report(MCInstReference Location,
|
|
StringRef Text) {
|
|
auto Report = std::make_shared<GenericDiagnostic>(Location, Text);
|
|
return PartialReport<MCPhysReg>(Report, std::nullopt);
|
|
}
|
|
|
|
template <typename T>
|
|
static PartialReport<T> make_gadget_report(const GadgetKind &Kind,
|
|
MCInstReference Location,
|
|
T RequestedDetails) {
|
|
auto Report = std::make_shared<GadgetDiagnostic>(Kind, Location);
|
|
return PartialReport<T>(Report, RequestedDetails);
|
|
}
|
|
|
|
static std::optional<PartialReport<MCPhysReg>>
|
|
shouldReportReturnGadget(const BinaryContext &BC, const MCInstReference &Inst,
|
|
const SrcState &S) {
|
|
static const GadgetKind RetKind("non-protected ret found");
|
|
if (!BC.MIB->isReturn(Inst))
|
|
return std::nullopt;
|
|
|
|
bool IsAuthenticated = false;
|
|
std::optional<MCPhysReg> RetReg =
|
|
BC.MIB->getRegUsedAsRetDest(Inst, IsAuthenticated);
|
|
if (!RetReg) {
|
|
return make_generic_report(
|
|
Inst, "Warning: pac-ret analysis could not analyze this return "
|
|
"instruction");
|
|
}
|
|
if (IsAuthenticated)
|
|
return std::nullopt;
|
|
|
|
LLVM_DEBUG({
|
|
traceInst(BC, "Found RET inst", Inst);
|
|
traceReg(BC, "RetReg", *RetReg);
|
|
traceRegMask(BC, "SafeToDerefRegs", S.SafeToDerefRegs);
|
|
});
|
|
|
|
if (S.SafeToDerefRegs[*RetReg])
|
|
return std::nullopt;
|
|
|
|
return make_gadget_report(RetKind, Inst, *RetReg);
|
|
}
|
|
|
|
static std::optional<PartialReport<MCPhysReg>>
|
|
shouldReportCallGadget(const BinaryContext &BC, const MCInstReference &Inst,
|
|
const SrcState &S) {
|
|
static const GadgetKind CallKind("non-protected call found");
|
|
if (!BC.MIB->isIndirectCall(Inst) && !BC.MIB->isIndirectBranch(Inst))
|
|
return std::nullopt;
|
|
|
|
bool IsAuthenticated = false;
|
|
MCPhysReg DestReg =
|
|
BC.MIB->getRegUsedAsIndirectBranchDest(Inst, IsAuthenticated);
|
|
if (IsAuthenticated)
|
|
return std::nullopt;
|
|
|
|
assert(DestReg != BC.MIB->getNoRegister() && "Valid register expected");
|
|
LLVM_DEBUG({
|
|
traceInst(BC, "Found call inst", Inst);
|
|
traceReg(BC, "Call destination reg", DestReg);
|
|
traceRegMask(BC, "SafeToDerefRegs", S.SafeToDerefRegs);
|
|
});
|
|
if (S.SafeToDerefRegs[DestReg])
|
|
return std::nullopt;
|
|
|
|
return make_gadget_report(CallKind, Inst, DestReg);
|
|
}
|
|
|
|
static std::optional<PartialReport<MCPhysReg>>
|
|
shouldReportSigningOracle(const BinaryContext &BC, const MCInstReference &Inst,
|
|
const SrcState &S) {
|
|
static const GadgetKind SigningOracleKind("signing oracle found");
|
|
|
|
std::optional<MCPhysReg> SignedReg = BC.MIB->getSignedReg(Inst);
|
|
if (!SignedReg)
|
|
return std::nullopt;
|
|
|
|
LLVM_DEBUG({
|
|
traceInst(BC, "Found sign inst", Inst);
|
|
traceReg(BC, "Signed reg", *SignedReg);
|
|
traceRegMask(BC, "TrustedRegs", S.TrustedRegs);
|
|
});
|
|
if (S.TrustedRegs[*SignedReg])
|
|
return std::nullopt;
|
|
|
|
return make_gadget_report(SigningOracleKind, Inst, *SignedReg);
|
|
}
|
|
|
|
static std::optional<PartialReport<MCPhysReg>>
|
|
shouldReportAuthOracle(const BinaryContext &BC, const MCInstReference &Inst,
|
|
const DstState &S) {
|
|
static const GadgetKind AuthOracleKind("authentication oracle found");
|
|
|
|
bool IsChecked = false;
|
|
std::optional<MCPhysReg> AuthReg =
|
|
BC.MIB->getWrittenAuthenticatedReg(Inst, IsChecked);
|
|
if (!AuthReg || IsChecked)
|
|
return std::nullopt;
|
|
|
|
LLVM_DEBUG({
|
|
traceInst(BC, "Found auth inst", Inst);
|
|
traceReg(BC, "Authenticated reg", *AuthReg);
|
|
});
|
|
|
|
if (S.empty()) {
|
|
LLVM_DEBUG({ dbgs() << " DstState is empty!\n"; });
|
|
return make_generic_report(
|
|
Inst, "Warning: no state computed for an authentication instruction "
|
|
"(possibly unreachable)");
|
|
}
|
|
|
|
LLVM_DEBUG(
|
|
{ traceRegMask(BC, "safe output registers", S.CannotEscapeUnchecked); });
|
|
if (S.CannotEscapeUnchecked[*AuthReg])
|
|
return std::nullopt;
|
|
|
|
return make_gadget_report(AuthOracleKind, Inst, *AuthReg);
|
|
}
|
|
|
|
template <typename T> static void iterateOverInstrs(BinaryFunction &BF, T Fn) {
|
|
if (BF.hasCFG()) {
|
|
for (BinaryBasicBlock &BB : BF)
|
|
for (int64_t I = 0, E = BB.size(); I < E; ++I)
|
|
Fn(MCInstInBBReference(&BB, I));
|
|
} else {
|
|
for (auto I : BF.instrs())
|
|
Fn(MCInstInBFReference(&BF, I.first));
|
|
}
|
|
}
|
|
|
|
static SmallVector<MCPhysReg>
|
|
collectRegsToTrack(ArrayRef<PartialReport<MCPhysReg>> Reports) {
|
|
SmallSet<MCPhysReg, 4> RegsToTrack;
|
|
for (auto Report : Reports)
|
|
if (Report.RequestedDetails)
|
|
RegsToTrack.insert(*Report.RequestedDetails);
|
|
|
|
return SmallVector<MCPhysReg>(RegsToTrack.begin(), RegsToTrack.end());
|
|
}
|
|
|
|
void FunctionAnalysisContext::findUnsafeUses(
|
|
SmallVector<PartialReport<MCPhysReg>> &Reports) {
|
|
auto Analysis = SrcSafetyAnalysis::create(BF, AllocatorId, {});
|
|
LLVM_DEBUG({ dbgs() << "Running src register safety analysis...\n"; });
|
|
Analysis->run();
|
|
LLVM_DEBUG({
|
|
dbgs() << "After src register safety analysis:\n";
|
|
BF.dump();
|
|
});
|
|
|
|
iterateOverInstrs(BF, [&](MCInstReference Inst) {
|
|
const SrcState &S = Analysis->getStateBefore(Inst);
|
|
|
|
// If non-empty state was never propagated from the entry basic block
|
|
// to Inst, assume it to be unreachable and report a warning.
|
|
if (S.empty()) {
|
|
Reports.push_back(
|
|
make_generic_report(Inst, "Warning: unreachable instruction found"));
|
|
return;
|
|
}
|
|
|
|
if (auto Report = shouldReportReturnGadget(BC, Inst, S))
|
|
Reports.push_back(*Report);
|
|
|
|
if (PacRetGadgetsOnly)
|
|
return;
|
|
|
|
if (auto Report = shouldReportCallGadget(BC, Inst, S))
|
|
Reports.push_back(*Report);
|
|
if (auto Report = shouldReportSigningOracle(BC, Inst, S))
|
|
Reports.push_back(*Report);
|
|
});
|
|
}
|
|
|
|
void FunctionAnalysisContext::augmentUnsafeUseReports(
|
|
ArrayRef<PartialReport<MCPhysReg>> Reports) {
|
|
SmallVector<MCPhysReg> RegsToTrack = collectRegsToTrack(Reports);
|
|
// Re-compute the analysis with register tracking.
|
|
auto Analysis = SrcSafetyAnalysis::create(BF, AllocatorId, RegsToTrack);
|
|
LLVM_DEBUG(
|
|
{ dbgs() << "\nRunning detailed src register safety analysis...\n"; });
|
|
Analysis->run();
|
|
LLVM_DEBUG({
|
|
dbgs() << "After detailed src register safety analysis:\n";
|
|
BF.dump();
|
|
});
|
|
|
|
// Augment gadget reports.
|
|
for (auto &Report : Reports) {
|
|
MCInstReference Location = Report.Issue->Location;
|
|
LLVM_DEBUG({ traceInst(BC, "Attaching clobbering info to", Location); });
|
|
assert(Report.RequestedDetails &&
|
|
"Should be removed by handleSimpleReports");
|
|
auto DetailedInfo =
|
|
std::make_shared<ClobberingInfo>(Analysis->getLastClobberingInsts(
|
|
Location, BF, *Report.RequestedDetails));
|
|
Result.Diagnostics.emplace_back(Report.Issue, DetailedInfo);
|
|
}
|
|
}
|
|
|
|
void FunctionAnalysisContext::findUnsafeDefs(
|
|
SmallVector<PartialReport<MCPhysReg>> &Reports) {
|
|
if (PacRetGadgetsOnly)
|
|
return;
|
|
|
|
auto Analysis = DstSafetyAnalysis::create(BF, AllocatorId, {});
|
|
LLVM_DEBUG({ dbgs() << "Running dst register safety analysis...\n"; });
|
|
Analysis->run();
|
|
LLVM_DEBUG({
|
|
dbgs() << "After dst register safety analysis:\n";
|
|
BF.dump();
|
|
});
|
|
|
|
iterateOverInstrs(BF, [&](MCInstReference Inst) {
|
|
const DstState &S = Analysis->getStateAfter(Inst);
|
|
|
|
if (auto Report = shouldReportAuthOracle(BC, Inst, S))
|
|
Reports.push_back(*Report);
|
|
});
|
|
}
|
|
|
|
void FunctionAnalysisContext::augmentUnsafeDefReports(
|
|
ArrayRef<PartialReport<MCPhysReg>> Reports) {
|
|
SmallVector<MCPhysReg> RegsToTrack = collectRegsToTrack(Reports);
|
|
// Re-compute the analysis with register tracking.
|
|
auto Analysis = DstSafetyAnalysis::create(BF, AllocatorId, RegsToTrack);
|
|
LLVM_DEBUG(
|
|
{ dbgs() << "\nRunning detailed dst register safety analysis...\n"; });
|
|
Analysis->run();
|
|
LLVM_DEBUG({
|
|
dbgs() << "After detailed dst register safety analysis:\n";
|
|
BF.dump();
|
|
});
|
|
|
|
// Augment gadget reports.
|
|
for (auto &Report : Reports) {
|
|
MCInstReference Location = Report.Issue->Location;
|
|
LLVM_DEBUG({ traceInst(BC, "Attaching leakage info to", Location); });
|
|
assert(Report.RequestedDetails &&
|
|
"Should be removed by handleSimpleReports");
|
|
auto DetailedInfo = std::make_shared<LeakageInfo>(
|
|
Analysis->getLeakingInsts(Location, BF, *Report.RequestedDetails));
|
|
Result.Diagnostics.emplace_back(Report.Issue, DetailedInfo);
|
|
}
|
|
}
|
|
|
|
void FunctionAnalysisContext::handleSimpleReports(
|
|
SmallVector<PartialReport<MCPhysReg>> &Reports) {
|
|
// Before re-running the detailed analysis, process the reports which do not
|
|
// need any additional details to be attached.
|
|
for (auto &Report : Reports) {
|
|
if (!Report.RequestedDetails)
|
|
Result.Diagnostics.emplace_back(Report.Issue, nullptr);
|
|
}
|
|
llvm::erase_if(Reports, [](const auto &R) { return !R.RequestedDetails; });
|
|
}
|
|
|
|
void FunctionAnalysisContext::run() {
|
|
LLVM_DEBUG({
|
|
dbgs() << "Analyzing function " << BF.getPrintName()
|
|
<< ", AllocatorId = " << AllocatorId << "\n";
|
|
BF.dump();
|
|
});
|
|
|
|
SmallVector<PartialReport<MCPhysReg>> UnsafeUses;
|
|
findUnsafeUses(UnsafeUses);
|
|
handleSimpleReports(UnsafeUses);
|
|
if (!UnsafeUses.empty())
|
|
augmentUnsafeUseReports(UnsafeUses);
|
|
|
|
SmallVector<PartialReport<MCPhysReg>> UnsafeDefs;
|
|
findUnsafeDefs(UnsafeDefs);
|
|
handleSimpleReports(UnsafeDefs);
|
|
if (!UnsafeDefs.empty())
|
|
augmentUnsafeDefReports(UnsafeDefs);
|
|
}
|
|
|
|
void Analysis::runOnFunction(BinaryFunction &BF,
|
|
MCPlusBuilder::AllocatorIdTy AllocatorId) {
|
|
FunctionAnalysisContext FA(BF, AllocatorId, PacRetGadgetsOnly);
|
|
FA.run();
|
|
|
|
const FunctionAnalysisResult &FAR = FA.getResult();
|
|
if (FAR.Diagnostics.empty())
|
|
return;
|
|
|
|
// `runOnFunction` is typically getting called from multiple threads in
|
|
// parallel. Therefore, use a lock to avoid data races when storing the
|
|
// result of the analysis in the `AnalysisResults` map.
|
|
{
|
|
std::lock_guard<std::mutex> Lock(AnalysisResultsMutex);
|
|
AnalysisResults[&BF] = FAR;
|
|
}
|
|
}
|
|
|
|
static void printBB(const BinaryContext &BC, const BinaryBasicBlock *BB,
|
|
size_t StartIndex = 0, size_t EndIndex = -1) {
|
|
if (EndIndex == (size_t)-1)
|
|
EndIndex = BB->size() - 1;
|
|
const BinaryFunction *BF = BB->getFunction();
|
|
for (unsigned I = StartIndex; I <= EndIndex; ++I) {
|
|
// FIXME: this assumes all instructions are 4 bytes in size. This is true
|
|
// for AArch64, but it might be good to extract this function so it can be
|
|
// used elsewhere and for other targets too.
|
|
uint64_t Address = BB->getOffset() + BF->getAddress() + 4 * I;
|
|
const MCInst &Inst = BB->getInstructionAtIndex(I);
|
|
if (BC.MIB->isCFI(Inst))
|
|
continue;
|
|
BC.printInstruction(outs(), Inst, Address, BF);
|
|
}
|
|
}
|
|
|
|
static void reportFoundGadgetInSingleBBSingleRelatedInst(
|
|
raw_ostream &OS, const BinaryContext &BC, const MCInstReference RelatedInst,
|
|
const MCInstReference Location) {
|
|
BinaryBasicBlock *BB = Location.getBasicBlock();
|
|
assert(RelatedInst.ParentKind == MCInstReference::BasicBlockParent);
|
|
assert(Location.ParentKind == MCInstReference::BasicBlockParent);
|
|
MCInstInBBReference RelatedInstBB = RelatedInst.U.BBRef;
|
|
if (BB == RelatedInstBB.BB) {
|
|
OS << " This happens in the following basic block:\n";
|
|
printBB(BC, BB);
|
|
}
|
|
}
|
|
|
|
void Diagnostic::printBasicInfo(raw_ostream &OS, const BinaryContext &BC,
|
|
StringRef IssueKind) const {
|
|
BinaryFunction *BF = Location.getFunction();
|
|
BinaryBasicBlock *BB = Location.getBasicBlock();
|
|
|
|
OS << "\nGS-PAUTH: " << IssueKind;
|
|
OS << " in function " << BF->getPrintName();
|
|
if (BB)
|
|
OS << ", basic block " << BB->getName();
|
|
OS << ", at address " << llvm::format("%x", Location.getAddress()) << "\n";
|
|
OS << " The instruction is ";
|
|
BC.printInstruction(OS, Location, Location.getAddress(), BF);
|
|
}
|
|
|
|
void GadgetDiagnostic::generateReport(raw_ostream &OS,
|
|
const BinaryContext &BC) const {
|
|
printBasicInfo(OS, BC, Kind.getDescription());
|
|
}
|
|
|
|
static void printRelatedInstrs(raw_ostream &OS, const MCInstReference Location,
|
|
ArrayRef<MCInstReference> RelatedInstrs) {
|
|
const BinaryFunction &BF = *Location.getFunction();
|
|
const BinaryContext &BC = BF.getBinaryContext();
|
|
|
|
// Sort by address to ensure output is deterministic.
|
|
SmallVector<MCInstReference> RI(RelatedInstrs);
|
|
llvm::sort(RI, [](const MCInstReference &A, const MCInstReference &B) {
|
|
return A.getAddress() < B.getAddress();
|
|
});
|
|
for (unsigned I = 0; I < RI.size(); ++I) {
|
|
MCInstReference InstRef = RI[I];
|
|
OS << " " << (I + 1) << ". ";
|
|
BC.printInstruction(OS, InstRef, InstRef.getAddress(), &BF);
|
|
};
|
|
if (RelatedInstrs.size() == 1) {
|
|
const MCInstReference RelatedInst = RelatedInstrs[0];
|
|
// Printing the details for the MCInstReference::FunctionParent case
|
|
// is not implemented not to overcomplicate the code, as most functions
|
|
// are expected to have CFG information.
|
|
if (RelatedInst.ParentKind == MCInstReference::BasicBlockParent)
|
|
reportFoundGadgetInSingleBBSingleRelatedInst(OS, BC, RelatedInst,
|
|
Location);
|
|
}
|
|
}
|
|
|
|
void ClobberingInfo::print(raw_ostream &OS,
|
|
const MCInstReference Location) const {
|
|
OS << " The " << ClobberingInstrs.size()
|
|
<< " instructions that write to the affected registers after any "
|
|
"authentication are:\n";
|
|
printRelatedInstrs(OS, Location, ClobberingInstrs);
|
|
}
|
|
|
|
void LeakageInfo::print(raw_ostream &OS, const MCInstReference Location) const {
|
|
OS << " The " << LeakingInstrs.size()
|
|
<< " instructions that leak the affected registers are:\n";
|
|
printRelatedInstrs(OS, Location, LeakingInstrs);
|
|
}
|
|
|
|
void GenericDiagnostic::generateReport(raw_ostream &OS,
|
|
const BinaryContext &BC) const {
|
|
printBasicInfo(OS, BC, Text);
|
|
}
|
|
|
|
Error Analysis::runOnFunctions(BinaryContext &BC) {
|
|
ParallelUtilities::WorkFuncWithAllocTy WorkFun =
|
|
[&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocatorId) {
|
|
runOnFunction(BF, AllocatorId);
|
|
};
|
|
|
|
ParallelUtilities::PredicateTy SkipFunc = [&](const BinaryFunction &BF) {
|
|
return false;
|
|
};
|
|
|
|
ParallelUtilities::runOnEachFunctionWithUniqueAllocId(
|
|
BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun,
|
|
SkipFunc, "PAuthGadgetScanner");
|
|
|
|
for (BinaryFunction *BF : BC.getAllBinaryFunctions()) {
|
|
if (!AnalysisResults.count(BF))
|
|
continue;
|
|
for (const FinalReport &R : AnalysisResults[BF].Diagnostics) {
|
|
R.Issue->generateReport(outs(), BC);
|
|
if (R.Details)
|
|
R.Details->print(outs(), R.Issue->Location);
|
|
}
|
|
}
|
|
return Error::success();
|
|
}
|
|
|
|
} // namespace PAuthGadgetScanner
|
|
} // namespace bolt
|
|
} // namespace llvm
|