llvm-project/flang/lib/Optimizer/CodeGen/TargetRewrite.cpp
Michele Scuttari 2be8af8f0e
[MLIR] Update pass declarations to new autogenerated files
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.

Reviewed By: mehdi_amini, rriddle

Differential Review: https://reviews.llvm.org/D132838
2022-08-30 21:56:31 +02:00

902 lines
39 KiB
C++

//===-- TargetRewrite.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Target rewrite: rewriting of ops to make target-specific lowerings manifest.
// LLVM expects different lowering idioms to be used for distinct target
// triples. These distinctions are handled by this pass.
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/CodeGen/CodeGen.h"
#include "Target.h"
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Support/FIRContext.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
namespace fir {
#define GEN_PASS_DEF_TARGETREWRITEPASS
#include "flang/Optimizer/CodeGen/CGPasses.h.inc"
} // namespace fir
#define DEBUG_TYPE "flang-target-rewrite"
namespace {
/// Fixups for updating a FuncOp's arguments and return values.
struct FixupTy {
enum class Codes {
ArgumentAsLoad,
ArgumentType,
CharPair,
ReturnAsStore,
ReturnType,
Split,
Trailing,
TrailingCharProc
};
FixupTy(Codes code, std::size_t index, std::size_t second = 0)
: code{code}, index{index}, second{second} {}
FixupTy(Codes code, std::size_t index,
std::function<void(mlir::func::FuncOp)> &&finalizer)
: code{code}, index{index}, finalizer{finalizer} {}
FixupTy(Codes code, std::size_t index, std::size_t second,
std::function<void(mlir::func::FuncOp)> &&finalizer)
: code{code}, index{index}, second{second}, finalizer{finalizer} {}
Codes code;
std::size_t index;
std::size_t second{};
llvm::Optional<std::function<void(mlir::func::FuncOp)>> finalizer{};
}; // namespace
/// Target-specific rewriting of the FIR. This is a prerequisite pass to code
/// generation that traverses the FIR and modifies types and operations to a
/// form that is appropriate for the specific target. LLVM IR has specific
/// idioms that are used for distinct target processor and ABI combinations.
class TargetRewrite : public fir::impl::TargetRewritePassBase<TargetRewrite> {
public:
TargetRewrite(const fir::TargetRewriteOptions &options) {
noCharacterConversion = options.noCharacterConversion;
noComplexConversion = options.noComplexConversion;
}
void runOnOperation() override final {
auto &context = getContext();
mlir::OpBuilder rewriter(&context);
auto mod = getModule();
if (!forcedTargetTriple.empty())
fir::setTargetTriple(mod, forcedTargetTriple);
auto specifics = fir::CodeGenSpecifics::get(
mod.getContext(), fir::getTargetTriple(mod), fir::getKindMapping(mod));
setMembers(specifics.get(), &rewriter);
// Perform type conversion on signatures and call sites.
if (mlir::failed(convertTypes(mod))) {
mlir::emitError(mlir::UnknownLoc::get(&context),
"error in converting types to target abi");
signalPassFailure();
}
// Convert ops in target-specific patterns.
mod.walk([&](mlir::Operation *op) {
if (auto call = mlir::dyn_cast<fir::CallOp>(op)) {
if (!hasPortableSignature(call.getFunctionType()))
convertCallOp(call);
} else if (auto dispatch = mlir::dyn_cast<fir::DispatchOp>(op)) {
if (!hasPortableSignature(dispatch.getFunctionType()))
convertCallOp(dispatch);
} else if (auto addr = mlir::dyn_cast<fir::AddrOfOp>(op)) {
if (addr.getType().isa<mlir::FunctionType>() &&
!hasPortableSignature(addr.getType()))
convertAddrOp(addr);
}
});
clearMembers();
}
mlir::ModuleOp getModule() { return getOperation(); }
template <typename A, typename B, typename C>
std::function<mlir::Value(mlir::Operation *)>
rewriteCallComplexResultType(mlir::Location loc, A ty, B &newResTys,
B &newInTys, C &newOpers) {
auto m = specifics->complexReturnType(loc, ty.getElementType());
// Currently targets mandate COMPLEX is a single aggregate or packed
// scalar, including the sret case.
assert(m.size() == 1 && "target of complex return not supported");
auto resTy = std::get<mlir::Type>(m[0]);
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(m[0]);
if (attr.isSRet()) {
assert(fir::isa_ref_type(resTy) && "must be a memory reference type");
mlir::Value stack =
rewriter->create<fir::AllocaOp>(loc, fir::dyn_cast_ptrEleTy(resTy));
newInTys.push_back(resTy);
newOpers.push_back(stack);
return [=](mlir::Operation *) -> mlir::Value {
auto memTy = fir::ReferenceType::get(ty);
auto cast = rewriter->create<fir::ConvertOp>(loc, memTy, stack);
return rewriter->create<fir::LoadOp>(loc, cast);
};
}
newResTys.push_back(resTy);
return [=](mlir::Operation *call) -> mlir::Value {
auto mem = rewriter->create<fir::AllocaOp>(loc, resTy);
rewriter->create<fir::StoreOp>(loc, call->getResult(0), mem);
auto memTy = fir::ReferenceType::get(ty);
auto cast = rewriter->create<fir::ConvertOp>(loc, memTy, mem);
return rewriter->create<fir::LoadOp>(loc, cast);
};
}
template <typename A, typename B, typename C>
void rewriteCallComplexInputType(A ty, mlir::Value oper, B &newInTys,
C &newOpers) {
auto *ctx = ty.getContext();
mlir::Location loc = mlir::UnknownLoc::get(ctx);
if (auto *op = oper.getDefiningOp())
loc = op->getLoc();
auto m = specifics->complexArgumentType(loc, ty.getElementType());
if (m.size() == 1) {
// COMPLEX is a single aggregate
auto resTy = std::get<mlir::Type>(m[0]);
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(m[0]);
auto oldRefTy = fir::ReferenceType::get(ty);
if (attr.isByVal()) {
auto mem = rewriter->create<fir::AllocaOp>(loc, ty);
rewriter->create<fir::StoreOp>(loc, oper, mem);
newOpers.push_back(rewriter->create<fir::ConvertOp>(loc, resTy, mem));
} else {
auto mem = rewriter->create<fir::AllocaOp>(loc, resTy);
auto cast = rewriter->create<fir::ConvertOp>(loc, oldRefTy, mem);
rewriter->create<fir::StoreOp>(loc, oper, cast);
newOpers.push_back(rewriter->create<fir::LoadOp>(loc, mem));
}
newInTys.push_back(resTy);
} else {
assert(m.size() == 2);
// COMPLEX is split into 2 separate arguments
auto iTy = rewriter->getIntegerType(32);
for (auto e : llvm::enumerate(m)) {
auto &tup = e.value();
auto ty = std::get<mlir::Type>(tup);
auto index = e.index();
auto idx = rewriter->getIntegerAttr(iTy, index);
auto val = rewriter->create<fir::ExtractValueOp>(
loc, ty, oper, rewriter->getArrayAttr(idx));
newInTys.push_back(ty);
newOpers.push_back(val);
}
}
}
// Convert fir.call and fir.dispatch Ops.
template <typename A>
void convertCallOp(A callOp) {
auto fnTy = callOp.getFunctionType();
auto loc = callOp.getLoc();
rewriter->setInsertionPoint(callOp);
llvm::SmallVector<mlir::Type> newResTys;
llvm::SmallVector<mlir::Type> newInTys;
llvm::SmallVector<mlir::Value> newOpers;
// If the call is indirect, the first argument must still be the function
// to call.
int dropFront = 0;
if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
if (!callOp.getCallee()) {
newInTys.push_back(fnTy.getInput(0));
newOpers.push_back(callOp.getOperand(0));
dropFront = 1;
}
}
// Determine the rewrite function, `wrap`, for the result value.
llvm::Optional<std::function<mlir::Value(mlir::Operation *)>> wrap;
if (fnTy.getResults().size() == 1) {
mlir::Type ty = fnTy.getResult(0);
llvm::TypeSwitch<mlir::Type>(ty)
.template Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
wrap = rewriteCallComplexResultType(loc, cmplx, newResTys, newInTys,
newOpers);
})
.template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
wrap = rewriteCallComplexResultType(loc, cmplx, newResTys, newInTys,
newOpers);
})
.Default([&](mlir::Type ty) { newResTys.push_back(ty); });
} else if (fnTy.getResults().size() > 1) {
TODO(loc, "multiple results not supported yet");
}
llvm::SmallVector<mlir::Type> trailingInTys;
llvm::SmallVector<mlir::Value> trailingOpers;
for (auto e : llvm::enumerate(
llvm::zip(fnTy.getInputs().drop_front(dropFront),
callOp.getOperands().drop_front(dropFront)))) {
mlir::Type ty = std::get<0>(e.value());
mlir::Value oper = std::get<1>(e.value());
unsigned index = e.index();
llvm::TypeSwitch<mlir::Type>(ty)
.template Case<fir::BoxCharType>([&](fir::BoxCharType boxTy) {
bool sret;
if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
sret = callOp.getCallee() &&
functionArgIsSRet(
index, getModule().lookupSymbol<mlir::func::FuncOp>(
*callOp.getCallee()));
} else {
// TODO: dispatch case; how do we put arguments on a call?
// We cannot put both an sret and the dispatch object first.
sret = false;
TODO(loc, "dispatch + sret not supported yet");
}
auto m = specifics->boxcharArgumentType(boxTy.getEleTy(), sret);
auto unbox = rewriter->create<fir::UnboxCharOp>(
loc, std::get<mlir::Type>(m[0]), std::get<mlir::Type>(m[1]),
oper);
// unboxed CHARACTER arguments
for (auto e : llvm::enumerate(m)) {
unsigned idx = e.index();
auto attr =
std::get<fir::CodeGenSpecifics::Attributes>(e.value());
auto argTy = std::get<mlir::Type>(e.value());
if (attr.isAppend()) {
trailingInTys.push_back(argTy);
trailingOpers.push_back(unbox.getResult(idx));
} else {
newInTys.push_back(argTy);
newOpers.push_back(unbox.getResult(idx));
}
}
})
.template Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
rewriteCallComplexInputType(cmplx, oper, newInTys, newOpers);
})
.template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
rewriteCallComplexInputType(cmplx, oper, newInTys, newOpers);
})
.template Case<mlir::TupleType>([&](mlir::TupleType tuple) {
if (fir::isCharacterProcedureTuple(tuple)) {
mlir::ModuleOp module = getModule();
if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
if (callOp.getCallee()) {
llvm::StringRef charProcAttr =
fir::getCharacterProcedureDummyAttrName();
// The charProcAttr attribute is only used as a safety to
// confirm that this is a dummy procedure and should be split.
// It cannot be used to match because attributes are not
// available in case of indirect calls.
auto funcOp = module.lookupSymbol<mlir::func::FuncOp>(
*callOp.getCallee());
if (funcOp &&
!funcOp.template getArgAttrOfType<mlir::UnitAttr>(
index, charProcAttr))
mlir::emitError(loc, "tuple argument will be split even "
"though it does not have the `" +
charProcAttr + "` attribute");
}
}
mlir::Type funcPointerType = tuple.getType(0);
mlir::Type lenType = tuple.getType(1);
fir::KindMapping kindMap = fir::getKindMapping(module);
fir::FirOpBuilder builder(*rewriter, kindMap);
auto [funcPointer, len] =
fir::factory::extractCharacterProcedureTuple(builder, loc,
oper);
newInTys.push_back(funcPointerType);
newOpers.push_back(funcPointer);
trailingInTys.push_back(lenType);
trailingOpers.push_back(len);
} else {
newInTys.push_back(tuple);
newOpers.push_back(oper);
}
})
.Default([&](mlir::Type ty) {
newInTys.push_back(ty);
newOpers.push_back(oper);
});
}
newInTys.insert(newInTys.end(), trailingInTys.begin(), trailingInTys.end());
newOpers.insert(newOpers.end(), trailingOpers.begin(), trailingOpers.end());
if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
fir::CallOp newCall;
if (callOp.getCallee()) {
newCall =
rewriter->create<A>(loc, *callOp.getCallee(), newResTys, newOpers);
} else {
// Force new type on the input operand.
newOpers[0].setType(mlir::FunctionType::get(
callOp.getContext(),
mlir::TypeRange{newInTys}.drop_front(dropFront), newResTys));
newCall = rewriter->create<A>(loc, newResTys, newOpers);
}
LLVM_DEBUG(llvm::dbgs() << "replacing call with " << newCall << '\n');
if (wrap)
replaceOp(callOp, (*wrap)(newCall.getOperation()));
else
replaceOp(callOp, newCall.getResults());
} else {
// A is fir::DispatchOp
TODO(loc, "dispatch not implemented");
}
}
// Result type fixup for fir::ComplexType and mlir::ComplexType
template <typename A, typename B>
void lowerComplexSignatureRes(mlir::Location loc, A cmplx, B &newResTys,
B &newInTys) {
if (noComplexConversion) {
newResTys.push_back(cmplx);
} else {
for (auto &tup :
specifics->complexReturnType(loc, cmplx.getElementType())) {
auto argTy = std::get<mlir::Type>(tup);
if (std::get<fir::CodeGenSpecifics::Attributes>(tup).isSRet())
newInTys.push_back(argTy);
else
newResTys.push_back(argTy);
}
}
}
// Argument type fixup for fir::ComplexType and mlir::ComplexType
template <typename A, typename B>
void lowerComplexSignatureArg(mlir::Location loc, A cmplx, B &newInTys) {
if (noComplexConversion)
newInTys.push_back(cmplx);
else
for (auto &tup :
specifics->complexArgumentType(loc, cmplx.getElementType()))
newInTys.push_back(std::get<mlir::Type>(tup));
}
/// Taking the address of a function. Modify the signature as needed.
void convertAddrOp(fir::AddrOfOp addrOp) {
rewriter->setInsertionPoint(addrOp);
auto addrTy = addrOp.getType().cast<mlir::FunctionType>();
llvm::SmallVector<mlir::Type> newResTys;
llvm::SmallVector<mlir::Type> newInTys;
auto loc = addrOp.getLoc();
for (mlir::Type ty : addrTy.getResults()) {
llvm::TypeSwitch<mlir::Type>(ty)
.Case<fir::ComplexType>([&](fir::ComplexType ty) {
lowerComplexSignatureRes(loc, ty, newResTys, newInTys);
})
.Case<mlir::ComplexType>([&](mlir::ComplexType ty) {
lowerComplexSignatureRes(loc, ty, newResTys, newInTys);
})
.Default([&](mlir::Type ty) { newResTys.push_back(ty); });
}
llvm::SmallVector<mlir::Type> trailingInTys;
for (mlir::Type ty : addrTy.getInputs()) {
llvm::TypeSwitch<mlir::Type>(ty)
.Case<fir::BoxCharType>([&](auto box) {
if (noCharacterConversion) {
newInTys.push_back(box);
} else {
for (auto &tup : specifics->boxcharArgumentType(box.getEleTy())) {
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
auto argTy = std::get<mlir::Type>(tup);
llvm::SmallVector<mlir::Type> &vec =
attr.isAppend() ? trailingInTys : newInTys;
vec.push_back(argTy);
}
}
})
.Case<fir::ComplexType>([&](fir::ComplexType ty) {
lowerComplexSignatureArg(loc, ty, newInTys);
})
.Case<mlir::ComplexType>([&](mlir::ComplexType ty) {
lowerComplexSignatureArg(loc, ty, newInTys);
})
.Case<mlir::TupleType>([&](mlir::TupleType tuple) {
if (fir::isCharacterProcedureTuple(tuple)) {
newInTys.push_back(tuple.getType(0));
trailingInTys.push_back(tuple.getType(1));
} else {
newInTys.push_back(ty);
}
})
.Default([&](mlir::Type ty) { newInTys.push_back(ty); });
}
// append trailing input types
newInTys.insert(newInTys.end(), trailingInTys.begin(), trailingInTys.end());
// replace this op with a new one with the updated signature
auto newTy = rewriter->getFunctionType(newInTys, newResTys);
auto newOp = rewriter->create<fir::AddrOfOp>(addrOp.getLoc(), newTy,
addrOp.getSymbol());
replaceOp(addrOp, newOp.getResult());
}
/// Convert the type signatures on all the functions present in the module.
/// As the type signature is being changed, this must also update the
/// function itself to use any new arguments, etc.
mlir::LogicalResult convertTypes(mlir::ModuleOp mod) {
for (auto fn : mod.getOps<mlir::func::FuncOp>())
convertSignature(fn);
return mlir::success();
}
/// If the signature does not need any special target-specific conversions,
/// then it is considered portable for any target, and this function will
/// return `true`. Otherwise, the signature is not portable and `false` is
/// returned.
bool hasPortableSignature(mlir::Type signature) {
assert(signature.isa<mlir::FunctionType>());
auto func = signature.dyn_cast<mlir::FunctionType>();
for (auto ty : func.getResults())
if ((ty.isa<fir::BoxCharType>() && !noCharacterConversion) ||
(fir::isa_complex(ty) && !noComplexConversion)) {
LLVM_DEBUG(llvm::dbgs() << "rewrite " << signature << " for target\n");
return false;
}
for (auto ty : func.getInputs())
if (((ty.isa<fir::BoxCharType>() || fir::isCharacterProcedureTuple(ty)) &&
!noCharacterConversion) ||
(fir::isa_complex(ty) && !noComplexConversion)) {
LLVM_DEBUG(llvm::dbgs() << "rewrite " << signature << " for target\n");
return false;
}
return true;
}
/// Determine if the signature has host associations. The host association
/// argument may need special target specific rewriting.
static bool hasHostAssociations(mlir::func::FuncOp func) {
std::size_t end = func.getFunctionType().getInputs().size();
for (std::size_t i = 0; i < end; ++i)
if (func.getArgAttrOfType<mlir::UnitAttr>(i, fir::getHostAssocAttrName()))
return true;
return false;
}
/// Rewrite the signatures and body of the `FuncOp`s in the module for
/// the immediately subsequent target code gen.
void convertSignature(mlir::func::FuncOp func) {
auto funcTy = func.getFunctionType().cast<mlir::FunctionType>();
if (hasPortableSignature(funcTy) && !hasHostAssociations(func))
return;
llvm::SmallVector<mlir::Type> newResTys;
llvm::SmallVector<mlir::Type> newInTys;
llvm::SmallVector<std::pair<unsigned, mlir::NamedAttribute>> savedAttrs;
llvm::SmallVector<std::pair<unsigned, mlir::NamedAttribute>> extraAttrs;
llvm::SmallVector<FixupTy> fixups;
// Save argument attributes in case there is a shift so we can replace them
// correctly.
for (auto e : llvm::enumerate(funcTy.getInputs())) {
unsigned index = e.index();
llvm::ArrayRef<mlir::NamedAttribute> attrs = func.getArgAttrs(index);
for (mlir::NamedAttribute attr : attrs) {
savedAttrs.push_back({index, attr});
}
}
// Convert return value(s)
for (auto ty : funcTy.getResults())
llvm::TypeSwitch<mlir::Type>(ty)
.Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
if (noComplexConversion)
newResTys.push_back(cmplx);
else
doComplexReturn(func, cmplx, newResTys, newInTys, fixups);
})
.Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
if (noComplexConversion)
newResTys.push_back(cmplx);
else
doComplexReturn(func, cmplx, newResTys, newInTys, fixups);
})
.Default([&](mlir::Type ty) { newResTys.push_back(ty); });
// Saved potential shift in argument. Handling of result can add arguments
// at the beginning of the function signature.
unsigned argumentShift = newInTys.size();
// Convert arguments
llvm::SmallVector<mlir::Type> trailingTys;
for (auto e : llvm::enumerate(funcTy.getInputs())) {
auto ty = e.value();
unsigned index = e.index();
llvm::TypeSwitch<mlir::Type>(ty)
.Case<fir::BoxCharType>([&](fir::BoxCharType boxTy) {
if (noCharacterConversion) {
newInTys.push_back(boxTy);
} else {
// Convert a CHARACTER argument type. This can involve separating
// the pointer and the LEN into two arguments and moving the LEN
// argument to the end of the arg list.
bool sret = functionArgIsSRet(index, func);
for (auto e : llvm::enumerate(specifics->boxcharArgumentType(
boxTy.getEleTy(), sret))) {
auto &tup = e.value();
auto index = e.index();
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
auto argTy = std::get<mlir::Type>(tup);
if (attr.isAppend()) {
trailingTys.push_back(argTy);
} else {
if (sret) {
fixups.emplace_back(FixupTy::Codes::CharPair,
newInTys.size(), index);
} else {
fixups.emplace_back(FixupTy::Codes::Trailing,
newInTys.size(), trailingTys.size());
}
newInTys.push_back(argTy);
}
}
}
})
.Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
if (noComplexConversion)
newInTys.push_back(cmplx);
else
doComplexArg(func, cmplx, newInTys, fixups);
})
.Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
if (noComplexConversion)
newInTys.push_back(cmplx);
else
doComplexArg(func, cmplx, newInTys, fixups);
})
.Case<mlir::TupleType>([&](mlir::TupleType tuple) {
if (fir::isCharacterProcedureTuple(tuple)) {
fixups.emplace_back(FixupTy::Codes::TrailingCharProc,
newInTys.size(), trailingTys.size());
newInTys.push_back(tuple.getType(0));
trailingTys.push_back(tuple.getType(1));
} else {
newInTys.push_back(ty);
}
})
.Default([&](mlir::Type ty) { newInTys.push_back(ty); });
if (func.getArgAttrOfType<mlir::UnitAttr>(index,
fir::getHostAssocAttrName())) {
extraAttrs.push_back(
{newInTys.size() - 1,
rewriter->getNamedAttr("llvm.nest", rewriter->getUnitAttr())});
}
}
if (!func.empty()) {
// If the function has a body, then apply the fixups to the arguments and
// return ops as required. These fixups are done in place.
auto loc = func.getLoc();
const auto fixupSize = fixups.size();
const auto oldArgTys = func.getFunctionType().getInputs();
int offset = 0;
for (std::remove_const_t<decltype(fixupSize)> i = 0; i < fixupSize; ++i) {
const auto &fixup = fixups[i];
switch (fixup.code) {
case FixupTy::Codes::ArgumentAsLoad: {
// Argument was pass-by-value, but is now pass-by-reference and
// possibly with a different element type.
auto newArg = func.front().insertArgument(fixup.index,
newInTys[fixup.index], loc);
rewriter->setInsertionPointToStart(&func.front());
auto oldArgTy =
fir::ReferenceType::get(oldArgTys[fixup.index - offset]);
auto cast = rewriter->create<fir::ConvertOp>(loc, oldArgTy, newArg);
auto load = rewriter->create<fir::LoadOp>(loc, cast);
func.getArgument(fixup.index + 1).replaceAllUsesWith(load);
func.front().eraseArgument(fixup.index + 1);
} break;
case FixupTy::Codes::ArgumentType: {
// Argument is pass-by-value, but its type has likely been modified to
// suit the target ABI convention.
auto newArg = func.front().insertArgument(fixup.index,
newInTys[fixup.index], loc);
rewriter->setInsertionPointToStart(&func.front());
auto mem =
rewriter->create<fir::AllocaOp>(loc, newInTys[fixup.index]);
rewriter->create<fir::StoreOp>(loc, newArg, mem);
auto oldArgTy =
fir::ReferenceType::get(oldArgTys[fixup.index - offset]);
auto cast = rewriter->create<fir::ConvertOp>(loc, oldArgTy, mem);
mlir::Value load = rewriter->create<fir::LoadOp>(loc, cast);
func.getArgument(fixup.index + 1).replaceAllUsesWith(load);
func.front().eraseArgument(fixup.index + 1);
LLVM_DEBUG(llvm::dbgs()
<< "old argument: " << oldArgTy.getEleTy()
<< ", repl: " << load << ", new argument: "
<< func.getArgument(fixup.index).getType() << '\n');
} break;
case FixupTy::Codes::CharPair: {
// The FIR boxchar argument has been split into a pair of distinct
// arguments that are in juxtaposition to each other.
auto newArg = func.front().insertArgument(fixup.index,
newInTys[fixup.index], loc);
if (fixup.second == 1) {
rewriter->setInsertionPointToStart(&func.front());
auto boxTy = oldArgTys[fixup.index - offset - fixup.second];
auto box = rewriter->create<fir::EmboxCharOp>(
loc, boxTy, func.front().getArgument(fixup.index - 1), newArg);
func.getArgument(fixup.index + 1).replaceAllUsesWith(box);
func.front().eraseArgument(fixup.index + 1);
offset++;
}
} break;
case FixupTy::Codes::ReturnAsStore: {
// The value being returned is now being returned in memory (callee
// stack space) through a hidden reference argument.
auto newArg = func.front().insertArgument(fixup.index,
newInTys[fixup.index], loc);
offset++;
func.walk([&](mlir::func::ReturnOp ret) {
rewriter->setInsertionPoint(ret);
auto oldOper = ret.getOperand(0);
auto oldOperTy = fir::ReferenceType::get(oldOper.getType());
auto cast =
rewriter->create<fir::ConvertOp>(loc, oldOperTy, newArg);
rewriter->create<fir::StoreOp>(loc, oldOper, cast);
rewriter->create<mlir::func::ReturnOp>(loc);
ret.erase();
});
} break;
case FixupTy::Codes::ReturnType: {
// The function is still returning a value, but its type has likely
// changed to suit the target ABI convention.
func.walk([&](mlir::func::ReturnOp ret) {
rewriter->setInsertionPoint(ret);
auto oldOper = ret.getOperand(0);
auto oldOperTy = fir::ReferenceType::get(oldOper.getType());
auto mem =
rewriter->create<fir::AllocaOp>(loc, newResTys[fixup.index]);
auto cast = rewriter->create<fir::ConvertOp>(loc, oldOperTy, mem);
rewriter->create<fir::StoreOp>(loc, oldOper, cast);
mlir::Value load = rewriter->create<fir::LoadOp>(loc, mem);
rewriter->create<mlir::func::ReturnOp>(loc, load);
ret.erase();
});
} break;
case FixupTy::Codes::Split: {
// The FIR argument has been split into a pair of distinct arguments
// that are in juxtaposition to each other. (For COMPLEX value.)
auto newArg = func.front().insertArgument(fixup.index,
newInTys[fixup.index], loc);
if (fixup.second == 1) {
rewriter->setInsertionPointToStart(&func.front());
auto cplxTy = oldArgTys[fixup.index - offset - fixup.second];
auto undef = rewriter->create<fir::UndefOp>(loc, cplxTy);
auto iTy = rewriter->getIntegerType(32);
auto zero = rewriter->getIntegerAttr(iTy, 0);
auto one = rewriter->getIntegerAttr(iTy, 1);
auto cplx1 = rewriter->create<fir::InsertValueOp>(
loc, cplxTy, undef, func.front().getArgument(fixup.index - 1),
rewriter->getArrayAttr(zero));
auto cplx = rewriter->create<fir::InsertValueOp>(
loc, cplxTy, cplx1, newArg, rewriter->getArrayAttr(one));
func.getArgument(fixup.index + 1).replaceAllUsesWith(cplx);
func.front().eraseArgument(fixup.index + 1);
offset++;
}
} break;
case FixupTy::Codes::Trailing: {
// The FIR argument has been split into a pair of distinct arguments.
// The first part of the pair appears in the original argument
// position. The second part of the pair is appended after all the
// original arguments. (Boxchar arguments.)
auto newBufArg = func.front().insertArgument(
fixup.index, newInTys[fixup.index], loc);
auto newLenArg =
func.front().addArgument(trailingTys[fixup.second], loc);
auto boxTy = oldArgTys[fixup.index - offset];
rewriter->setInsertionPointToStart(&func.front());
auto box = rewriter->create<fir::EmboxCharOp>(loc, boxTy, newBufArg,
newLenArg);
func.getArgument(fixup.index + 1).replaceAllUsesWith(box);
func.front().eraseArgument(fixup.index + 1);
} break;
case FixupTy::Codes::TrailingCharProc: {
// The FIR character procedure argument tuple must be split into a
// pair of distinct arguments. The first part of the pair appears in
// the original argument position. The second part of the pair is
// appended after all the original arguments.
auto newProcPointerArg = func.front().insertArgument(
fixup.index, newInTys[fixup.index], loc);
auto newLenArg =
func.front().addArgument(trailingTys[fixup.second], loc);
auto tupleType = oldArgTys[fixup.index - offset];
rewriter->setInsertionPointToStart(&func.front());
fir::KindMapping kindMap = fir::getKindMapping(getModule());
fir::FirOpBuilder builder(*rewriter, kindMap);
auto tuple = fir::factory::createCharacterProcedureTuple(
builder, loc, tupleType, newProcPointerArg, newLenArg);
func.getArgument(fixup.index + 1).replaceAllUsesWith(tuple);
func.front().eraseArgument(fixup.index + 1);
} break;
}
}
}
// Set the new type and finalize the arguments, etc.
newInTys.insert(newInTys.end(), trailingTys.begin(), trailingTys.end());
auto newFuncTy =
mlir::FunctionType::get(func.getContext(), newInTys, newResTys);
LLVM_DEBUG(llvm::dbgs() << "new func: " << newFuncTy << '\n');
func.setType(newFuncTy);
for (std::pair<unsigned, mlir::NamedAttribute> extraAttr : extraAttrs)
func.setArgAttr(extraAttr.first, extraAttr.second.getName(),
extraAttr.second.getValue());
// Replace attributes to the correct argument if there was an argument shift
// to the right.
if (argumentShift > 0) {
for (std::pair<unsigned, mlir::NamedAttribute> savedAttr : savedAttrs) {
func.removeArgAttr(savedAttr.first, savedAttr.second.getName());
func.setArgAttr(savedAttr.first + argumentShift,
savedAttr.second.getName(),
savedAttr.second.getValue());
}
}
for (auto &fixup : fixups)
if (fixup.finalizer)
(*fixup.finalizer)(func);
}
inline bool functionArgIsSRet(unsigned index, mlir::func::FuncOp func) {
if (auto attr = func.getArgAttrOfType<mlir::TypeAttr>(index, "llvm.sret"))
return true;
return false;
}
/// Convert a complex return value. This can involve converting the return
/// value to a "hidden" first argument or packing the complex into a wide
/// GPR.
template <typename A, typename B, typename C>
void doComplexReturn(mlir::func::FuncOp func, A cmplx, B &newResTys,
B &newInTys, C &fixups) {
if (noComplexConversion) {
newResTys.push_back(cmplx);
return;
}
auto m =
specifics->complexReturnType(func.getLoc(), cmplx.getElementType());
assert(m.size() == 1);
auto &tup = m[0];
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
auto argTy = std::get<mlir::Type>(tup);
if (attr.isSRet()) {
unsigned argNo = newInTys.size();
if (auto align = attr.getAlignment())
fixups.emplace_back(
FixupTy::Codes::ReturnAsStore, argNo, [=](mlir::func::FuncOp func) {
auto elemType = fir::dyn_cast_ptrOrBoxEleTy(
func.getFunctionType().getInput(argNo));
func.setArgAttr(argNo, "llvm.sret",
mlir::TypeAttr::get(elemType));
func.setArgAttr(argNo, "llvm.align",
rewriter->getIntegerAttr(
rewriter->getIntegerType(32), align));
});
else
fixups.emplace_back(FixupTy::Codes::ReturnAsStore, argNo,
[=](mlir::func::FuncOp func) {
auto elemType = fir::dyn_cast_ptrOrBoxEleTy(
func.getFunctionType().getInput(argNo));
func.setArgAttr(argNo, "llvm.sret",
mlir::TypeAttr::get(elemType));
});
newInTys.push_back(argTy);
return;
} else {
if (auto align = attr.getAlignment())
fixups.emplace_back(FixupTy::Codes::ReturnType, newResTys.size(),
[=](mlir::func::FuncOp func) {
func.setArgAttr(
newResTys.size(), "llvm.align",
rewriter->getIntegerAttr(
rewriter->getIntegerType(32), align));
});
else
fixups.emplace_back(FixupTy::Codes::ReturnType, newResTys.size());
}
newResTys.push_back(argTy);
}
/// Convert a complex argument value. This can involve storing the value to
/// a temporary memory location or factoring the value into two distinct
/// arguments.
template <typename A, typename B, typename C>
void doComplexArg(mlir::func::FuncOp func, A cmplx, B &newInTys, C &fixups) {
if (noComplexConversion) {
newInTys.push_back(cmplx);
return;
}
auto m =
specifics->complexArgumentType(func.getLoc(), cmplx.getElementType());
const auto fixupCode =
m.size() > 1 ? FixupTy::Codes::Split : FixupTy::Codes::ArgumentType;
for (auto e : llvm::enumerate(m)) {
auto &tup = e.value();
auto index = e.index();
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
auto argTy = std::get<mlir::Type>(tup);
auto argNo = newInTys.size();
if (attr.isByVal()) {
if (auto align = attr.getAlignment())
fixups.emplace_back(
FixupTy::Codes::ArgumentAsLoad, argNo,
[=](mlir::func::FuncOp func) {
auto elemType = fir::dyn_cast_ptrOrBoxEleTy(
func.getFunctionType().getInput(argNo));
func.setArgAttr(argNo, "llvm.byval",
mlir::TypeAttr::get(elemType));
func.setArgAttr(argNo, "llvm.align",
rewriter->getIntegerAttr(
rewriter->getIntegerType(32), align));
});
else
fixups.emplace_back(FixupTy::Codes::ArgumentAsLoad, newInTys.size(),
[=](mlir::func::FuncOp func) {
auto elemType = fir::dyn_cast_ptrOrBoxEleTy(
func.getFunctionType().getInput(argNo));
func.setArgAttr(argNo, "llvm.byval",
mlir::TypeAttr::get(elemType));
});
} else {
if (auto align = attr.getAlignment())
fixups.emplace_back(
fixupCode, argNo, index, [=](mlir::func::FuncOp func) {
func.setArgAttr(argNo, "llvm.align",
rewriter->getIntegerAttr(
rewriter->getIntegerType(32), align));
});
else
fixups.emplace_back(fixupCode, argNo, index);
}
newInTys.push_back(argTy);
}
}
private:
// Replace `op` and remove it.
void replaceOp(mlir::Operation *op, mlir::ValueRange newValues) {
op->replaceAllUsesWith(newValues);
op->dropAllReferences();
op->erase();
}
inline void setMembers(fir::CodeGenSpecifics *s, mlir::OpBuilder *r) {
specifics = s;
rewriter = r;
}
inline void clearMembers() { setMembers(nullptr, nullptr); }
fir::CodeGenSpecifics *specifics = nullptr;
mlir::OpBuilder *rewriter = nullptr;
}; // namespace
} // namespace
std::unique_ptr<mlir::OperationPass<mlir::ModuleOp>>
fir::createFirTargetRewritePass(const fir::TargetRewriteOptions &options) {
return std::make_unique<TargetRewrite>(options);
}