llvm-project/flang-rt/lib/runtime/descriptor-io.cpp
Peter Klausler 2bf3ccabfa
[flang] Restructure runtime to avoid recursion (relanding) (#143993)
Recursion, both direct and indirect, prevents accurate stack size
calculation at link time for GPU device code. Restructure these
recursive (often mutually so) routines in the Fortran runtime with new
implementations based on an iterative work queue with
suspendable/resumable work tickets: Assign, Initialize, initializeClone,
Finalize, and Destroy.

Default derived type I/O is also recursive, but already disabled. It can
be added to this new framework later if the overall approach succeeds.

Note that derived type FINAL subroutine calls, defined assignments, and
defined I/O procedures all perform callbacks into user code, which may
well reenter the runtime library. This kind of recursion is not handled
by this change, although it may be possible to do so in the future using
thread-local work queues.

(Relanding this patch after reverting initial attempt due to some test
failures that needed some time to analyze and fix.)

Fixes https://github.com/llvm/llvm-project/issues/142481.
2025-06-16 14:37:01 -07:00

807 lines
29 KiB
C++

//===-- lib/runtime/descriptor-io.cpp ---------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "descriptor-io.h"
#include "edit-input.h"
#include "edit-output.h"
#include "unit.h"
#include "flang-rt/runtime/descriptor.h"
#include "flang-rt/runtime/io-stmt.h"
#include "flang-rt/runtime/namelist.h"
#include "flang-rt/runtime/terminator.h"
#include "flang-rt/runtime/type-info.h"
#include "flang-rt/runtime/work-queue.h"
#include "flang/Common/optional.h"
#include "flang/Common/restorer.h"
#include "flang/Common/uint128.h"
#include "flang/Runtime/cpp-type.h"
#include "flang/Runtime/freestanding-tools.h"
// Implementation of I/O data list item transfers based on descriptors.
// (All I/O items come through here so that the code is exercised for test;
// some scalar I/O data transfer APIs could be changed to bypass their use
// of descriptors in the future for better efficiency.)
namespace Fortran::runtime::io::descr {
RT_OFFLOAD_API_GROUP_BEGIN
template <typename A>
inline RT_API_ATTRS A &ExtractElement(IoStatementState &io,
const Descriptor &descriptor, const SubscriptValue subscripts[]) {
A *p{descriptor.Element<A>(subscripts)};
if (!p) {
io.GetIoErrorHandler().Crash("Bad address for I/O item -- null base "
"address or subscripts out of range");
}
return *p;
}
// Defined formatted I/O (maybe)
static RT_API_ATTRS Fortran::common::optional<bool> DefinedFormattedIo(
IoStatementState &io, const Descriptor &descriptor,
const typeInfo::DerivedType &derived,
const typeInfo::SpecialBinding &special,
const SubscriptValue subscripts[]) {
Fortran::common::optional<DataEdit> peek{
io.GetNextDataEdit(0 /*to peek at it*/)};
if (peek &&
(peek->descriptor == DataEdit::DefinedDerivedType ||
peek->descriptor == DataEdit::ListDirected)) {
// Defined formatting
IoErrorHandler &handler{io.GetIoErrorHandler()};
DataEdit edit{*io.GetNextDataEdit(1)}; // now consume it; no repeats
RUNTIME_CHECK(handler, edit.descriptor == peek->descriptor);
char ioType[2 + edit.maxIoTypeChars];
auto ioTypeLen{std::size_t{2} /*"DT"*/ + edit.ioTypeChars};
if (edit.descriptor == DataEdit::DefinedDerivedType) {
ioType[0] = 'D';
ioType[1] = 'T';
std::memcpy(ioType + 2, edit.ioType, edit.ioTypeChars);
} else {
runtime::strcpy(
ioType, io.mutableModes().inNamelist ? "NAMELIST" : "LISTDIRECTED");
ioTypeLen = runtime::strlen(ioType);
}
StaticDescriptor<1, true> vListStatDesc;
Descriptor &vListDesc{vListStatDesc.descriptor()};
vListDesc.Establish(TypeCategory::Integer, sizeof(int), nullptr, 1);
vListDesc.set_base_addr(edit.vList);
vListDesc.GetDimension(0).SetBounds(1, edit.vListEntries);
vListDesc.GetDimension(0).SetByteStride(
static_cast<SubscriptValue>(sizeof(int)));
ExternalFileUnit *actualExternal{io.GetExternalFileUnit()};
ExternalFileUnit *external{actualExternal};
if (!external) {
// Create a new unit to service defined I/O for an
// internal I/O parent.
external = &ExternalFileUnit::NewUnit(handler, true);
}
ChildIo &child{external->PushChildIo(io)};
// Child formatted I/O is nonadvancing by definition (F'2018 12.6.2.4).
auto restorer{common::ScopedSet(io.mutableModes().nonAdvancing, true)};
int unit{external->unitNumber()};
int ioStat{IostatOk};
char ioMsg[100];
Fortran::common::optional<std::int64_t> startPos;
if (edit.descriptor == DataEdit::DefinedDerivedType &&
special.which() == typeInfo::SpecialBinding::Which::ReadFormatted) {
// DT is an edit descriptor so everything that the child
// I/O subroutine reads counts towards READ(SIZE=).
startPos = io.InquirePos();
}
const auto *bindings{
derived.binding().OffsetElement<const typeInfo::Binding>()};
if (special.IsArgDescriptor(0)) {
// "dtv" argument is "class(t)", pass a descriptor
auto *p{special.GetProc<void (*)(const Descriptor &, int &, char *,
const Descriptor &, int &, char *, std::size_t, std::size_t)>(
bindings)};
StaticDescriptor<1, true, 10 /*?*/> elementStatDesc;
Descriptor &elementDesc{elementStatDesc.descriptor()};
elementDesc.Establish(
derived, nullptr, 0, nullptr, CFI_attribute_pointer);
elementDesc.set_base_addr(descriptor.Element<char>(subscripts));
p(elementDesc, unit, ioType, vListDesc, ioStat, ioMsg, ioTypeLen,
sizeof ioMsg);
} else {
// "dtv" argument is "type(t)", pass a raw pointer
auto *p{special.GetProc<void (*)(const void *, int &, char *,
const Descriptor &, int &, char *, std::size_t, std::size_t)>(
bindings)};
p(descriptor.Element<char>(subscripts), unit, ioType, vListDesc, ioStat,
ioMsg, ioTypeLen, sizeof ioMsg);
}
handler.Forward(ioStat, ioMsg, sizeof ioMsg);
external->PopChildIo(child);
if (!actualExternal) {
// Close unit created for internal I/O above.
auto *closing{external->LookUpForClose(external->unitNumber())};
RUNTIME_CHECK(handler, external == closing);
external->DestroyClosed();
}
if (startPos) {
io.GotChar(io.InquirePos() - *startPos);
}
return handler.GetIoStat() == IostatOk;
} else {
// There's a defined I/O subroutine, but there's a FORMAT present and
// it does not have a DT data edit descriptor, so apply default formatting
// to the components of the derived type as usual.
return Fortran::common::nullopt;
}
}
// Defined unformatted I/O
static RT_API_ATTRS bool DefinedUnformattedIo(IoStatementState &io,
const Descriptor &descriptor, const typeInfo::DerivedType &derived,
const typeInfo::SpecialBinding &special) {
// Unformatted I/O must have an external unit (or child thereof).
IoErrorHandler &handler{io.GetIoErrorHandler()};
ExternalFileUnit *external{io.GetExternalFileUnit()};
if (!external) { // INQUIRE(IOLENGTH=)
handler.SignalError(IostatNonExternalDefinedUnformattedIo);
return false;
}
ChildIo &child{external->PushChildIo(io)};
int unit{external->unitNumber()};
int ioStat{IostatOk};
char ioMsg[100];
std::size_t numElements{descriptor.Elements()};
SubscriptValue subscripts[maxRank];
descriptor.GetLowerBounds(subscripts);
const auto *bindings{
derived.binding().OffsetElement<const typeInfo::Binding>()};
if (special.IsArgDescriptor(0)) {
// "dtv" argument is "class(t)", pass a descriptor
auto *p{special.GetProc<void (*)(
const Descriptor &, int &, int &, char *, std::size_t)>(bindings)};
StaticDescriptor<1, true, 10 /*?*/> elementStatDesc;
Descriptor &elementDesc{elementStatDesc.descriptor()};
elementDesc.Establish(derived, nullptr, 0, nullptr, CFI_attribute_pointer);
for (; numElements-- > 0; descriptor.IncrementSubscripts(subscripts)) {
elementDesc.set_base_addr(descriptor.Element<char>(subscripts));
p(elementDesc, unit, ioStat, ioMsg, sizeof ioMsg);
if (ioStat != IostatOk) {
break;
}
}
} else {
// "dtv" argument is "type(t)", pass a raw pointer
auto *p{special
.GetProc<void (*)(const void *, int &, int &, char *, std::size_t)>(
bindings)};
for (; numElements-- > 0; descriptor.IncrementSubscripts(subscripts)) {
p(descriptor.Element<char>(subscripts), unit, ioStat, ioMsg,
sizeof ioMsg);
if (ioStat != IostatOk) {
break;
}
}
}
handler.Forward(ioStat, ioMsg, sizeof ioMsg);
external->PopChildIo(child);
return handler.GetIoStat() == IostatOk;
}
// Per-category descriptor-based I/O templates
// TODO (perhaps as a nontrivial but small starter project): implement
// automatic repetition counts, like "10*3.14159", for list-directed and
// NAMELIST array output.
template <int KIND, Direction DIR>
inline RT_API_ATTRS bool FormattedIntegerIO(IoStatementState &io,
const Descriptor &descriptor, [[maybe_unused]] bool isSigned) {
std::size_t numElements{descriptor.Elements()};
SubscriptValue subscripts[maxRank];
descriptor.GetLowerBounds(subscripts);
using IntType = CppTypeFor<common::TypeCategory::Integer, KIND>;
bool anyInput{false};
for (std::size_t j{0}; j < numElements; ++j) {
if (auto edit{io.GetNextDataEdit()}) {
IntType &x{ExtractElement<IntType>(io, descriptor, subscripts)};
if constexpr (DIR == Direction::Output) {
if (!EditIntegerOutput<KIND>(io, *edit, x, isSigned)) {
return false;
}
} else if (edit->descriptor != DataEdit::ListDirectedNullValue) {
if (EditIntegerInput(
io, *edit, reinterpret_cast<void *>(&x), KIND, isSigned)) {
anyInput = true;
} else {
return anyInput && edit->IsNamelist();
}
}
if (!descriptor.IncrementSubscripts(subscripts) && j + 1 < numElements) {
io.GetIoErrorHandler().Crash(
"FormattedIntegerIO: subscripts out of bounds");
}
} else {
return false;
}
}
return true;
}
template <int KIND, Direction DIR>
inline RT_API_ATTRS bool FormattedRealIO(
IoStatementState &io, const Descriptor &descriptor) {
std::size_t numElements{descriptor.Elements()};
SubscriptValue subscripts[maxRank];
descriptor.GetLowerBounds(subscripts);
using RawType = typename RealOutputEditing<KIND>::BinaryFloatingPoint;
bool anyInput{false};
for (std::size_t j{0}; j < numElements; ++j) {
if (auto edit{io.GetNextDataEdit()}) {
RawType &x{ExtractElement<RawType>(io, descriptor, subscripts)};
if constexpr (DIR == Direction::Output) {
if (!RealOutputEditing<KIND>{io, x}.Edit(*edit)) {
return false;
}
} else if (edit->descriptor != DataEdit::ListDirectedNullValue) {
if (EditRealInput<KIND>(io, *edit, reinterpret_cast<void *>(&x))) {
anyInput = true;
} else {
return anyInput && edit->IsNamelist();
}
}
if (!descriptor.IncrementSubscripts(subscripts) && j + 1 < numElements) {
io.GetIoErrorHandler().Crash(
"FormattedRealIO: subscripts out of bounds");
}
} else {
return false;
}
}
return true;
}
template <int KIND, Direction DIR>
inline RT_API_ATTRS bool FormattedComplexIO(
IoStatementState &io, const Descriptor &descriptor) {
std::size_t numElements{descriptor.Elements()};
SubscriptValue subscripts[maxRank];
descriptor.GetLowerBounds(subscripts);
bool isListOutput{
io.get_if<ListDirectedStatementState<Direction::Output>>() != nullptr};
using RawType = typename RealOutputEditing<KIND>::BinaryFloatingPoint;
bool anyInput{false};
for (std::size_t j{0}; j < numElements; ++j) {
RawType *x{&ExtractElement<RawType>(io, descriptor, subscripts)};
if (isListOutput) {
DataEdit rEdit, iEdit;
rEdit.descriptor = DataEdit::ListDirectedRealPart;
iEdit.descriptor = DataEdit::ListDirectedImaginaryPart;
rEdit.modes = iEdit.modes = io.mutableModes();
if (!RealOutputEditing<KIND>{io, x[0]}.Edit(rEdit) ||
!RealOutputEditing<KIND>{io, x[1]}.Edit(iEdit)) {
return false;
}
} else {
for (int k{0}; k < 2; ++k, ++x) {
auto edit{io.GetNextDataEdit()};
if (!edit) {
return false;
} else if constexpr (DIR == Direction::Output) {
if (!RealOutputEditing<KIND>{io, *x}.Edit(*edit)) {
return false;
}
} else if (edit->descriptor == DataEdit::ListDirectedNullValue) {
break;
} else if (EditRealInput<KIND>(
io, *edit, reinterpret_cast<void *>(x))) {
anyInput = true;
} else {
return anyInput && edit->IsNamelist();
}
}
}
if (!descriptor.IncrementSubscripts(subscripts) && j + 1 < numElements) {
io.GetIoErrorHandler().Crash(
"FormattedComplexIO: subscripts out of bounds");
}
}
return true;
}
template <typename A, Direction DIR>
inline RT_API_ATTRS bool FormattedCharacterIO(
IoStatementState &io, const Descriptor &descriptor) {
std::size_t numElements{descriptor.Elements()};
SubscriptValue subscripts[maxRank];
descriptor.GetLowerBounds(subscripts);
std::size_t length{descriptor.ElementBytes() / sizeof(A)};
auto *listOutput{io.get_if<ListDirectedStatementState<Direction::Output>>()};
bool anyInput{false};
for (std::size_t j{0}; j < numElements; ++j) {
A *x{&ExtractElement<A>(io, descriptor, subscripts)};
if (listOutput) {
if (!ListDirectedCharacterOutput(io, *listOutput, x, length)) {
return false;
}
} else if (auto edit{io.GetNextDataEdit()}) {
if constexpr (DIR == Direction::Output) {
if (!EditCharacterOutput(io, *edit, x, length)) {
return false;
}
} else { // input
if (edit->descriptor != DataEdit::ListDirectedNullValue) {
if (EditCharacterInput(io, *edit, x, length)) {
anyInput = true;
} else {
return anyInput && edit->IsNamelist();
}
}
}
} else {
return false;
}
if (!descriptor.IncrementSubscripts(subscripts) && j + 1 < numElements) {
io.GetIoErrorHandler().Crash(
"FormattedCharacterIO: subscripts out of bounds");
}
}
return true;
}
template <int KIND, Direction DIR>
inline RT_API_ATTRS bool FormattedLogicalIO(
IoStatementState &io, const Descriptor &descriptor) {
std::size_t numElements{descriptor.Elements()};
SubscriptValue subscripts[maxRank];
descriptor.GetLowerBounds(subscripts);
auto *listOutput{io.get_if<ListDirectedStatementState<Direction::Output>>()};
using IntType = CppTypeFor<TypeCategory::Integer, KIND>;
bool anyInput{false};
for (std::size_t j{0}; j < numElements; ++j) {
IntType &x{ExtractElement<IntType>(io, descriptor, subscripts)};
if (listOutput) {
if (!ListDirectedLogicalOutput(io, *listOutput, x != 0)) {
return false;
}
} else if (auto edit{io.GetNextDataEdit()}) {
if constexpr (DIR == Direction::Output) {
if (!EditLogicalOutput(io, *edit, x != 0)) {
return false;
}
} else {
if (edit->descriptor != DataEdit::ListDirectedNullValue) {
bool truth{};
if (EditLogicalInput(io, *edit, truth)) {
x = truth;
anyInput = true;
} else {
return anyInput && edit->IsNamelist();
}
}
}
} else {
return false;
}
if (!descriptor.IncrementSubscripts(subscripts) && j + 1 < numElements) {
io.GetIoErrorHandler().Crash(
"FormattedLogicalIO: subscripts out of bounds");
}
}
return true;
}
template <Direction DIR>
RT_API_ATTRS int DerivedIoTicket<DIR>::Continue(WorkQueue &workQueue) {
while (!IsComplete()) {
if (component_->genre() == typeInfo::Component::Genre::Data) {
// Create a descriptor for the component
Descriptor &compDesc{componentDescriptor_.descriptor()};
component_->CreatePointerDescriptor(
compDesc, instance_, io_.GetIoErrorHandler(), subscripts_);
Advance();
if (int status{workQueue.BeginDescriptorIo<DIR>(
io_, compDesc, table_, anyIoTookPlace_)};
status != StatOk) {
return status;
}
} else {
// Component is itself a descriptor
char *pointer{
instance_.Element<char>(subscripts_) + component_->offset()};
const Descriptor &compDesc{
*reinterpret_cast<const Descriptor *>(pointer)};
Advance();
if (compDesc.IsAllocated()) {
if (int status{workQueue.BeginDescriptorIo<DIR>(
io_, compDesc, table_, anyIoTookPlace_)};
status != StatOk) {
return status;
}
}
}
}
return StatOk;
}
template RT_API_ATTRS int DerivedIoTicket<Direction::Output>::Continue(
WorkQueue &);
template RT_API_ATTRS int DerivedIoTicket<Direction::Input>::Continue(
WorkQueue &);
template <Direction DIR>
RT_API_ATTRS int DescriptorIoTicket<DIR>::Begin(WorkQueue &workQueue) {
IoErrorHandler &handler{io_.GetIoErrorHandler()};
if (handler.InError()) {
return handler.GetIoStat();
}
if (!io_.get_if<IoDirectionState<DIR>>()) {
handler.Crash("DescriptorIO() called for wrong I/O direction");
return handler.GetIoStat();
}
if constexpr (DIR == Direction::Input) {
if (!io_.BeginReadingRecord()) {
return StatOk;
}
}
if (!io_.get_if<FormattedIoStatementState<DIR>>()) {
// Unformatted I/O
IoErrorHandler &handler{io_.GetIoErrorHandler()};
const DescriptorAddendum *addendum{instance_.Addendum()};
if (const typeInfo::DerivedType *type{
addendum ? addendum->derivedType() : nullptr}) {
// derived type unformatted I/O
if (table_) {
if (const auto *definedIo{table_->Find(*type,
DIR == Direction::Input
? common::DefinedIo::ReadUnformatted
: common::DefinedIo::WriteUnformatted)}) {
if (definedIo->subroutine) {
typeInfo::SpecialBinding special{DIR == Direction::Input
? typeInfo::SpecialBinding::Which::ReadUnformatted
: typeInfo::SpecialBinding::Which::WriteUnformatted,
definedIo->subroutine, definedIo->isDtvArgPolymorphic, false,
false};
if (DefinedUnformattedIo(io_, instance_, *type, special)) {
anyIoTookPlace_ = true;
return StatOk;
}
} else {
int status{workQueue.BeginDerivedIo<DIR>(
io_, instance_, *type, table_, anyIoTookPlace_)};
return status == StatContinue ? StatOk : status; // done here
}
}
}
if (const typeInfo::SpecialBinding *special{
type->FindSpecialBinding(DIR == Direction::Input
? typeInfo::SpecialBinding::Which::ReadUnformatted
: typeInfo::SpecialBinding::Which::WriteUnformatted)}) {
if (!table_ || !table_->ignoreNonTbpEntries || special->IsTypeBound()) {
// defined derived type unformatted I/O
if (DefinedUnformattedIo(io_, instance_, *type, *special)) {
anyIoTookPlace_ = true;
return StatOk;
} else {
return IostatEnd;
}
}
}
// Default derived type unformatted I/O
// TODO: If no component at any level has defined READ or WRITE
// (as appropriate), the elements are contiguous, and no byte swapping
// is active, do a block transfer via the code below.
int status{workQueue.BeginDerivedIo<DIR>(
io_, instance_, *type, table_, anyIoTookPlace_)};
return status == StatContinue ? StatOk : status; // done here
} else {
// intrinsic type unformatted I/O
auto *externalUnf{io_.get_if<ExternalUnformattedIoStatementState<DIR>>()};
ChildUnformattedIoStatementState<DIR> *childUnf{nullptr};
InquireIOLengthState *inq{nullptr};
bool swapEndianness{false};
if (externalUnf) {
swapEndianness = externalUnf->unit().swapEndianness();
} else {
childUnf = io_.get_if<ChildUnformattedIoStatementState<DIR>>();
if (!childUnf) {
inq = DIR == Direction::Output ? io_.get_if<InquireIOLengthState>()
: nullptr;
RUNTIME_CHECK(handler, inq != nullptr);
}
}
std::size_t elementBytes{instance_.ElementBytes()};
std::size_t swappingBytes{elementBytes};
if (auto maybeCatAndKind{instance_.type().GetCategoryAndKind()}) {
// Byte swapping units can be smaller than elements, namely
// for COMPLEX and CHARACTER.
if (maybeCatAndKind->first == TypeCategory::Character) {
// swap each character position independently
swappingBytes = maybeCatAndKind->second; // kind
} else if (maybeCatAndKind->first == TypeCategory::Complex) {
// swap real and imaginary components independently
swappingBytes /= 2;
}
}
using CharType =
std::conditional_t<DIR == Direction::Output, const char, char>;
auto Transfer{[=](CharType &x, std::size_t totalBytes) -> bool {
if constexpr (DIR == Direction::Output) {
return externalUnf ? externalUnf->Emit(&x, totalBytes, swappingBytes)
: childUnf ? childUnf->Emit(&x, totalBytes, swappingBytes)
: inq->Emit(&x, totalBytes, swappingBytes);
} else {
return externalUnf
? externalUnf->Receive(&x, totalBytes, swappingBytes)
: childUnf->Receive(&x, totalBytes, swappingBytes);
}
}};
if (!swapEndianness &&
instance_.IsContiguous()) { // contiguous unformatted I/O
char &x{ExtractElement<char>(io_, instance_, subscripts_)};
if (Transfer(x, elements_ * elementBytes)) {
anyIoTookPlace_ = true;
} else {
return IostatEnd;
}
} else { // non-contiguous or byte-swapped intrinsic type unformatted I/O
for (; !IsComplete(); Advance()) {
char &x{ExtractElement<char>(io_, instance_, subscripts_)};
if (Transfer(x, elementBytes)) {
anyIoTookPlace_ = true;
} else {
return IostatEnd;
}
}
}
}
// Unformatted I/O never needs to call Continue().
return StatOk;
}
// Formatted I/O
if (auto catAndKind{instance_.type().GetCategoryAndKind()}) {
TypeCategory cat{catAndKind->first};
int kind{catAndKind->second};
bool any{false};
switch (cat) {
case TypeCategory::Integer:
switch (kind) {
case 1:
any = FormattedIntegerIO<1, DIR>(io_, instance_, true);
break;
case 2:
any = FormattedIntegerIO<2, DIR>(io_, instance_, true);
break;
case 4:
any = FormattedIntegerIO<4, DIR>(io_, instance_, true);
break;
case 8:
any = FormattedIntegerIO<8, DIR>(io_, instance_, true);
break;
case 16:
any = FormattedIntegerIO<16, DIR>(io_, instance_, true);
break;
default:
handler.Crash(
"not yet implemented: INTEGER(KIND=%d) in formatted IO", kind);
return IostatEnd;
}
break;
case TypeCategory::Unsigned:
switch (kind) {
case 1:
any = FormattedIntegerIO<1, DIR>(io_, instance_, false);
break;
case 2:
any = FormattedIntegerIO<2, DIR>(io_, instance_, false);
break;
case 4:
any = FormattedIntegerIO<4, DIR>(io_, instance_, false);
break;
case 8:
any = FormattedIntegerIO<8, DIR>(io_, instance_, false);
break;
case 16:
any = FormattedIntegerIO<16, DIR>(io_, instance_, false);
break;
default:
handler.Crash(
"not yet implemented: UNSIGNED(KIND=%d) in formatted IO", kind);
return IostatEnd;
}
break;
case TypeCategory::Real:
switch (kind) {
case 2:
any = FormattedRealIO<2, DIR>(io_, instance_);
break;
case 3:
any = FormattedRealIO<3, DIR>(io_, instance_);
break;
case 4:
any = FormattedRealIO<4, DIR>(io_, instance_);
break;
case 8:
any = FormattedRealIO<8, DIR>(io_, instance_);
break;
case 10:
any = FormattedRealIO<10, DIR>(io_, instance_);
break;
// TODO: case double/double
case 16:
any = FormattedRealIO<16, DIR>(io_, instance_);
break;
default:
handler.Crash(
"not yet implemented: REAL(KIND=%d) in formatted IO", kind);
return IostatEnd;
}
break;
case TypeCategory::Complex:
switch (kind) {
case 2:
any = FormattedComplexIO<2, DIR>(io_, instance_);
break;
case 3:
any = FormattedComplexIO<3, DIR>(io_, instance_);
break;
case 4:
any = FormattedComplexIO<4, DIR>(io_, instance_);
break;
case 8:
any = FormattedComplexIO<8, DIR>(io_, instance_);
break;
case 10:
any = FormattedComplexIO<10, DIR>(io_, instance_);
break;
// TODO: case double/double
case 16:
any = FormattedComplexIO<16, DIR>(io_, instance_);
break;
default:
handler.Crash(
"not yet implemented: COMPLEX(KIND=%d) in formatted IO", kind);
return IostatEnd;
}
break;
case TypeCategory::Character:
switch (kind) {
case 1:
any = FormattedCharacterIO<char, DIR>(io_, instance_);
break;
case 2:
any = FormattedCharacterIO<char16_t, DIR>(io_, instance_);
break;
case 4:
any = FormattedCharacterIO<char32_t, DIR>(io_, instance_);
break;
default:
handler.Crash(
"not yet implemented: CHARACTER(KIND=%d) in formatted IO", kind);
return IostatEnd;
}
break;
case TypeCategory::Logical:
switch (kind) {
case 1:
any = FormattedLogicalIO<1, DIR>(io_, instance_);
break;
case 2:
any = FormattedLogicalIO<2, DIR>(io_, instance_);
break;
case 4:
any = FormattedLogicalIO<4, DIR>(io_, instance_);
break;
case 8:
any = FormattedLogicalIO<8, DIR>(io_, instance_);
break;
default:
handler.Crash(
"not yet implemented: LOGICAL(KIND=%d) in formatted IO", kind);
return IostatEnd;
}
break;
case TypeCategory::Derived: {
// Derived type information must be present for formatted I/O.
IoErrorHandler &handler{io_.GetIoErrorHandler()};
const DescriptorAddendum *addendum{instance_.Addendum()};
RUNTIME_CHECK(handler, addendum != nullptr);
derived_ = addendum->derivedType();
RUNTIME_CHECK(handler, derived_ != nullptr);
if (table_) {
if (const auto *definedIo{table_->Find(*derived_,
DIR == Direction::Input ? common::DefinedIo::ReadFormatted
: common::DefinedIo::WriteFormatted)}) {
if (definedIo->subroutine) {
nonTbpSpecial_.emplace(DIR == Direction::Input
? typeInfo::SpecialBinding::Which::ReadFormatted
: typeInfo::SpecialBinding::Which::WriteFormatted,
definedIo->subroutine, definedIo->isDtvArgPolymorphic, false,
false);
special_ = &*nonTbpSpecial_;
}
}
}
if (!special_) {
if (const typeInfo::SpecialBinding *binding{
derived_->FindSpecialBinding(DIR == Direction::Input
? typeInfo::SpecialBinding::Which::ReadFormatted
: typeInfo::SpecialBinding::Which::WriteFormatted)}) {
if (!table_ || !table_->ignoreNonTbpEntries ||
binding->IsTypeBound()) {
special_ = binding;
}
}
}
return StatContinue;
}
}
if (any) {
anyIoTookPlace_ = true;
} else {
return IostatEnd;
}
} else {
handler.Crash("DescriptorIO: bad type code (%d) in descriptor",
static_cast<int>(instance_.type().raw()));
return handler.GetIoStat();
}
return StatOk;
}
template RT_API_ATTRS int DescriptorIoTicket<Direction::Output>::Begin(
WorkQueue &);
template RT_API_ATTRS int DescriptorIoTicket<Direction::Input>::Begin(
WorkQueue &);
template <Direction DIR>
RT_API_ATTRS int DescriptorIoTicket<DIR>::Continue(WorkQueue &workQueue) {
// Only derived type formatted I/O gets here.
while (!IsComplete()) {
if (special_) {
if (auto defined{DefinedFormattedIo(
io_, instance_, *derived_, *special_, subscripts_)}) {
anyIoTookPlace_ |= *defined;
Advance();
continue;
}
}
Descriptor &elementDesc{elementDescriptor_.descriptor()};
elementDesc.Establish(
*derived_, nullptr, 0, nullptr, CFI_attribute_pointer);
elementDesc.set_base_addr(instance_.Element<char>(subscripts_));
Advance();
if (int status{workQueue.BeginDerivedIo<DIR>(
io_, elementDesc, *derived_, table_, anyIoTookPlace_)};
status != StatOk) {
return status;
}
}
return StatOk;
}
template RT_API_ATTRS int DescriptorIoTicket<Direction::Output>::Continue(
WorkQueue &);
template RT_API_ATTRS int DescriptorIoTicket<Direction::Input>::Continue(
WorkQueue &);
template <Direction DIR>
RT_API_ATTRS bool DescriptorIO(IoStatementState &io,
const Descriptor &descriptor, const NonTbpDefinedIoTable *table) {
bool anyIoTookPlace{false};
WorkQueue workQueue{io.GetIoErrorHandler()};
if (workQueue.BeginDescriptorIo<DIR>(io, descriptor, table, anyIoTookPlace) ==
StatContinue) {
workQueue.Run();
}
return anyIoTookPlace;
}
template RT_API_ATTRS bool DescriptorIO<Direction::Output>(
IoStatementState &, const Descriptor &, const NonTbpDefinedIoTable *);
template RT_API_ATTRS bool DescriptorIO<Direction::Input>(
IoStatementState &, const Descriptor &, const NonTbpDefinedIoTable *);
RT_OFFLOAD_API_GROUP_END
} // namespace Fortran::runtime::io::descr