Abid Qadeer d56c06e6c9
[flang][debug] Generate DISubprogramAttr for omp::TargetOp. (#146532)
This is combination of https://github.com/llvm/llvm-project/pull/138149
and https://github.com/llvm/llvm-project/pull/138039 which were opened
separately for ease of reviewing. Only other change is adjustments in 2
tests which have gone in since.

There are `DeclareOp` present for the variables mapped into target
region. That allow us to generate debug information for them. But the
`TargetOp` is still part of parent function and those variables get the
parent function's `DISubprogram` as a scope.
    
In `OMPIRBuilder`, a new function is created for the `TargetOp`. We also
create a new `DISubprogram` for it. All the variables that were in the
target region now have to be updated to have the correct scope. This
after the fact updating of
debug information becomes very difficult in certain cases. Take the
example of variable arrays. The type of those arrays depend on the
artificial `DILocalVariable`(s) which hold the size(s) of the array.
This new function will now require that we generate the new variable and
and new types. Similar issue exist for character type variables too.
    
To avoid this after the fact updating, this PR generates a
`DISubprogramAttr` for the `TargetOp` while generating the debug info in
`flang`. Then we don't need to generate a `DISubprogram` in
`OMPIRBuilder`. This change is made a bit more complicated by the the
fact that in new scheme, the debug location already points to the new
`DISubprogram` by the time it reaches `convertOmpTarget`. But we need
some code generation in the parent function so we have to carefully
manage the debug locations.
    
This fixes issue `#134991`.
2025-07-03 10:38:28 +01:00

709 lines
32 KiB
C++

//===-------------- AddDebugInfo.cpp -- add debug info -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// \file
/// This pass populates some debug information for the module and functions.
//===----------------------------------------------------------------------===//
#include "DebugTypeGenerator.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRCG/CGOps.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/Support/InternalNames.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "flang/Support/Version.h"
#include "mlir/Dialect/DLTI/DLTI.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
namespace fir {
#define GEN_PASS_DEF_ADDDEBUGINFO
#include "flang/Optimizer/Transforms/Passes.h.inc"
} // namespace fir
#define DEBUG_TYPE "flang-add-debug-info"
namespace {
class AddDebugInfoPass : public fir::impl::AddDebugInfoBase<AddDebugInfoPass> {
void handleDeclareOp(fir::cg::XDeclareOp declOp,
mlir::LLVM::DIFileAttr fileAttr,
mlir::LLVM::DIScopeAttr scopeAttr,
fir::DebugTypeGenerator &typeGen,
mlir::SymbolTable *symbolTable);
public:
AddDebugInfoPass(fir::AddDebugInfoOptions options) : Base(options) {}
void runOnOperation() override;
private:
llvm::StringMap<mlir::LLVM::DIModuleAttr> moduleMap;
llvm::StringMap<mlir::LLVM::DICommonBlockAttr> commonBlockMap;
// List of GlobalVariableExpressionAttr that are attached to a given global
// that represents the storage for common block.
llvm::DenseMap<fir::GlobalOp, llvm::SmallVector<mlir::Attribute>>
globalToGlobalExprsMap;
mlir::LLVM::DIModuleAttr getOrCreateModuleAttr(
const std::string &name, mlir::LLVM::DIFileAttr fileAttr,
mlir::LLVM::DIScopeAttr scope, unsigned line, bool decl);
mlir::LLVM::DICommonBlockAttr
getOrCreateCommonBlockAttr(llvm::StringRef name,
mlir::LLVM::DIFileAttr fileAttr,
mlir::LLVM::DIScopeAttr scope, unsigned line);
void handleGlobalOp(fir::GlobalOp glocalOp, mlir::LLVM::DIFileAttr fileAttr,
mlir::LLVM::DIScopeAttr scope,
fir::DebugTypeGenerator &typeGen,
mlir::SymbolTable *symbolTable,
fir::cg::XDeclareOp declOp);
void handleFuncOp(mlir::func::FuncOp funcOp, mlir::LLVM::DIFileAttr fileAttr,
mlir::LLVM::DICompileUnitAttr cuAttr,
fir::DebugTypeGenerator &typeGen,
mlir::SymbolTable *symbolTable);
bool createCommonBlockGlobal(fir::cg::XDeclareOp declOp,
const std::string &name,
mlir::LLVM::DIFileAttr fileAttr,
mlir::LLVM::DIScopeAttr scopeAttr,
fir::DebugTypeGenerator &typeGen,
mlir::SymbolTable *symbolTable);
std::optional<mlir::LLVM::DIModuleAttr>
getModuleAttrFromGlobalOp(fir::GlobalOp globalOp,
mlir::LLVM::DIFileAttr fileAttr,
mlir::LLVM::DIScopeAttr scope);
};
bool debugInfoIsAlreadySet(mlir::Location loc) {
if (mlir::isa<mlir::FusedLoc>(loc)) {
if (loc->findInstanceOf<mlir::FusedLocWith<fir::LocationKindAttr>>())
return false;
return true;
}
return false;
}
// Generates the name for the artificial DISubprogram that we are going to
// generate for omp::TargetOp. Its logic is borrowed from
// getTargetEntryUniqueInfo and
// TargetRegionEntryInfo::getTargetRegionEntryFnName to generate the same name.
// But even if there was a slight mismatch, it is not a problem because this
// name is artificial and not important to debug experience.
mlir::StringAttr getTargetFunctionName(mlir::MLIRContext *context,
mlir::Location Loc,
llvm::StringRef parentName) {
auto fileLoc = Loc->findInstanceOf<mlir::FileLineColLoc>();
assert(fileLoc && "No file found from location");
llvm::StringRef fileName = fileLoc.getFilename().getValue();
llvm::sys::fs::UniqueID id;
uint64_t line = fileLoc.getLine();
size_t fileId;
size_t deviceId;
if (auto ec = llvm::sys::fs::getUniqueID(fileName, id)) {
fileId = llvm::hash_value(fileName.str());
deviceId = 0xdeadf17e;
} else {
fileId = id.getFile();
deviceId = id.getDevice();
}
return mlir::StringAttr::get(
context,
std::string(llvm::formatv("__omp_offloading_{0:x-}_{1:x-}_{2}_l{3}",
deviceId, fileId, parentName, line)));
}
} // namespace
bool AddDebugInfoPass::createCommonBlockGlobal(
fir::cg::XDeclareOp declOp, const std::string &name,
mlir::LLVM::DIFileAttr fileAttr, mlir::LLVM::DIScopeAttr scopeAttr,
fir::DebugTypeGenerator &typeGen, mlir::SymbolTable *symbolTable) {
mlir::MLIRContext *context = &getContext();
mlir::OpBuilder builder(context);
std::optional<std::int64_t> optint;
mlir::Operation *op = declOp.getMemref().getDefiningOp();
if (auto conOp = mlir::dyn_cast_if_present<fir::ConvertOp>(op))
op = conOp.getValue().getDefiningOp();
if (auto cordOp = mlir::dyn_cast_if_present<fir::CoordinateOp>(op)) {
auto coors = cordOp.getCoor();
if (coors.size() != 1)
return false;
optint = fir::getIntIfConstant(coors[0]);
if (!optint)
return false;
op = cordOp.getRef().getDefiningOp();
if (auto conOp2 = mlir::dyn_cast_if_present<fir::ConvertOp>(op))
op = conOp2.getValue().getDefiningOp();
if (auto addrOfOp = mlir::dyn_cast_if_present<fir::AddrOfOp>(op)) {
mlir::SymbolRefAttr sym = addrOfOp.getSymbol();
if (auto global =
symbolTable->lookup<fir::GlobalOp>(sym.getRootReference())) {
unsigned line = getLineFromLoc(global.getLoc());
llvm::StringRef commonName(sym.getRootReference());
// FIXME: We are trying to extract the name of the common block from the
// name of the global. As part of mangling, GetCommonBlockObjectName can
// add a trailing _ in the name of that global. The demangle function
// does not seem to handle such cases. So the following hack is used to
// remove the trailing '_'.
if (commonName != Fortran::common::blankCommonObjectName &&
commonName.back() == '_')
commonName = commonName.drop_back();
mlir::LLVM::DICommonBlockAttr commonBlock =
getOrCreateCommonBlockAttr(commonName, fileAttr, scopeAttr, line);
mlir::LLVM::DITypeAttr diType = typeGen.convertType(
fir::unwrapRefType(declOp.getType()), fileAttr, scopeAttr, declOp);
line = getLineFromLoc(declOp.getLoc());
auto gvAttr = mlir::LLVM::DIGlobalVariableAttr::get(
context, commonBlock, mlir::StringAttr::get(context, name),
declOp.getUniqName(), fileAttr, line, diType,
/*isLocalToUnit*/ false, /*isDefinition*/ true, /* alignInBits*/ 0);
mlir::LLVM::DIExpressionAttr expr;
if (*optint != 0) {
llvm::SmallVector<mlir::LLVM::DIExpressionElemAttr> ops;
ops.push_back(mlir::LLVM::DIExpressionElemAttr::get(
context, llvm::dwarf::DW_OP_plus_uconst, *optint));
expr = mlir::LLVM::DIExpressionAttr::get(context, ops);
}
auto dbgExpr = mlir::LLVM::DIGlobalVariableExpressionAttr::get(
global.getContext(), gvAttr, expr);
globalToGlobalExprsMap[global].push_back(dbgExpr);
return true;
}
}
}
return false;
}
void AddDebugInfoPass::handleDeclareOp(fir::cg::XDeclareOp declOp,
mlir::LLVM::DIFileAttr fileAttr,
mlir::LLVM::DIScopeAttr scopeAttr,
fir::DebugTypeGenerator &typeGen,
mlir::SymbolTable *symbolTable) {
mlir::MLIRContext *context = &getContext();
mlir::OpBuilder builder(context);
auto result = fir::NameUniquer::deconstruct(declOp.getUniqName());
if (result.first != fir::NameUniquer::NameKind::VARIABLE)
return;
if (createCommonBlockGlobal(declOp, result.second.name, fileAttr, scopeAttr,
typeGen, symbolTable))
return;
// If this DeclareOp actually represents a global then treat it as such.
mlir::Operation *defOp = declOp.getMemref().getDefiningOp();
if (defOp && llvm::isa<fir::AddrOfOp>(defOp)) {
if (auto global =
symbolTable->lookup<fir::GlobalOp>(declOp.getUniqName())) {
handleGlobalOp(global, fileAttr, scopeAttr, typeGen, symbolTable, declOp);
return;
}
}
// FIXME: There may be cases where an argument is processed a bit before
// DeclareOp is generated. In that case, DeclareOp may point to an
// intermediate op and not to BlockArgument.
// Moreover, with MLIR inlining we cannot use the BlockArgument
// position to identify the original number of the dummy argument.
// If we want to keep running AddDebugInfoPass late, the dummy argument
// position in the argument list has to be expressed in FIR (e.g. as a
// constant attribute of [hl]fir.declare/fircg.ext_declare operation that has
// a dummy_scope operand).
unsigned argNo = 0;
if (declOp.getDummyScope()) {
if (auto arg = llvm::dyn_cast<mlir::BlockArgument>(declOp.getMemref())) {
// Check if it is the BlockArgument of the function's entry block.
if (auto funcLikeOp =
declOp->getParentOfType<mlir::FunctionOpInterface>())
if (arg.getOwner() == &funcLikeOp.front())
argNo = arg.getArgNumber() + 1;
}
}
auto tyAttr = typeGen.convertType(fir::unwrapRefType(declOp.getType()),
fileAttr, scopeAttr, declOp);
auto localVarAttr = mlir::LLVM::DILocalVariableAttr::get(
context, scopeAttr, mlir::StringAttr::get(context, result.second.name),
fileAttr, getLineFromLoc(declOp.getLoc()), argNo, /* alignInBits*/ 0,
tyAttr, mlir::LLVM::DIFlags::Zero);
declOp->setLoc(builder.getFusedLoc({declOp->getLoc()}, localVarAttr));
}
mlir::LLVM::DICommonBlockAttr AddDebugInfoPass::getOrCreateCommonBlockAttr(
llvm::StringRef name, mlir::LLVM::DIFileAttr fileAttr,
mlir::LLVM::DIScopeAttr scope, unsigned line) {
mlir::MLIRContext *context = &getContext();
mlir::LLVM::DICommonBlockAttr cbAttr;
if (auto iter{commonBlockMap.find(name)}; iter != commonBlockMap.end()) {
cbAttr = iter->getValue();
} else {
cbAttr = mlir::LLVM::DICommonBlockAttr::get(
context, scope, nullptr, mlir::StringAttr::get(context, name), fileAttr,
line);
commonBlockMap[name] = cbAttr;
}
return cbAttr;
}
// The `module` does not have a first class representation in the `FIR`. We
// extract information about it from the name of the identifiers and keep a
// map to avoid duplication.
mlir::LLVM::DIModuleAttr AddDebugInfoPass::getOrCreateModuleAttr(
const std::string &name, mlir::LLVM::DIFileAttr fileAttr,
mlir::LLVM::DIScopeAttr scope, unsigned line, bool decl) {
mlir::MLIRContext *context = &getContext();
mlir::LLVM::DIModuleAttr modAttr;
if (auto iter{moduleMap.find(name)}; iter != moduleMap.end()) {
modAttr = iter->getValue();
} else {
modAttr = mlir::LLVM::DIModuleAttr::get(
context, fileAttr, scope, mlir::StringAttr::get(context, name),
/* configMacros */ mlir::StringAttr(),
/* includePath */ mlir::StringAttr(),
/* apinotes */ mlir::StringAttr(), line, decl);
moduleMap[name] = modAttr;
}
return modAttr;
}
/// If globalOp represents a module variable, return a ModuleAttr that
/// represents that module.
std::optional<mlir::LLVM::DIModuleAttr>
AddDebugInfoPass::getModuleAttrFromGlobalOp(fir::GlobalOp globalOp,
mlir::LLVM::DIFileAttr fileAttr,
mlir::LLVM::DIScopeAttr scope) {
mlir::MLIRContext *context = &getContext();
mlir::OpBuilder builder(context);
std::pair result = fir::NameUniquer::deconstruct(globalOp.getSymName());
// Only look for module if this variable is not part of a function.
if (!result.second.procs.empty() || result.second.modules.empty())
return std::nullopt;
// DWARF5 says following about the fortran modules:
// A Fortran 90 module may also be represented by a module entry
// (but no declaration attribute is warranted because Fortran has no concept
// of a corresponding module body).
// But in practice, compilers use declaration attribute with a module in cases
// where module was defined in another source file (only being used in this
// one). The isInitialized() seems to provide the right information
// but inverted. It is true where module is actually defined but false where
// it is used.
// FIXME: Currently we don't have the line number on which a module was
// declared. We are using a best guess of line - 1 where line is the source
// line of the first member of the module that we encounter.
unsigned line = getLineFromLoc(globalOp.getLoc());
mlir::LLVM::DISubprogramAttr sp =
mlir::dyn_cast_if_present<mlir::LLVM::DISubprogramAttr>(scope);
// Modules are generated at compile unit scope
if (sp)
scope = sp.getCompileUnit();
return getOrCreateModuleAttr(result.second.modules[0], fileAttr, scope,
std::max(line - 1, (unsigned)1),
!globalOp.isInitialized());
}
void AddDebugInfoPass::handleGlobalOp(fir::GlobalOp globalOp,
mlir::LLVM::DIFileAttr fileAttr,
mlir::LLVM::DIScopeAttr scope,
fir::DebugTypeGenerator &typeGen,
mlir::SymbolTable *symbolTable,
fir::cg::XDeclareOp declOp) {
if (debugInfoIsAlreadySet(globalOp.getLoc()))
return;
mlir::MLIRContext *context = &getContext();
mlir::OpBuilder builder(context);
std::pair result = fir::NameUniquer::deconstruct(globalOp.getSymName());
if (result.first != fir::NameUniquer::NameKind::VARIABLE)
return;
if (fir::NameUniquer::isSpecialSymbol(result.second.name))
return;
unsigned line = getLineFromLoc(globalOp.getLoc());
std::optional<mlir::LLVM::DIModuleAttr> modOpt =
getModuleAttrFromGlobalOp(globalOp, fileAttr, scope);
if (modOpt)
scope = *modOpt;
mlir::LLVM::DITypeAttr diType =
typeGen.convertType(globalOp.getType(), fileAttr, scope, declOp);
auto gvAttr = mlir::LLVM::DIGlobalVariableAttr::get(
context, scope, mlir::StringAttr::get(context, result.second.name),
mlir::StringAttr::get(context, globalOp.getName()), fileAttr, line,
diType, /*isLocalToUnit*/ false,
/*isDefinition*/ globalOp.isInitialized(), /* alignInBits*/ 0);
auto dbgExpr = mlir::LLVM::DIGlobalVariableExpressionAttr::get(
globalOp.getContext(), gvAttr, nullptr);
auto arrayAttr = mlir::ArrayAttr::get(context, {dbgExpr});
globalOp->setLoc(builder.getFusedLoc({globalOp.getLoc()}, arrayAttr));
}
void AddDebugInfoPass::handleFuncOp(mlir::func::FuncOp funcOp,
mlir::LLVM::DIFileAttr fileAttr,
mlir::LLVM::DICompileUnitAttr cuAttr,
fir::DebugTypeGenerator &typeGen,
mlir::SymbolTable *symbolTable) {
mlir::Location l = funcOp->getLoc();
// If fused location has already been created then nothing to do
// Otherwise, create a fused location.
if (debugInfoIsAlreadySet(l))
return;
mlir::MLIRContext *context = &getContext();
mlir::OpBuilder builder(context);
llvm::StringRef fileName(fileAttr.getName());
llvm::StringRef filePath(fileAttr.getDirectory());
unsigned int CC = (funcOp.getName() == fir::NameUniquer::doProgramEntry())
? llvm::dwarf::getCallingConvention("DW_CC_program")
: llvm::dwarf::getCallingConvention("DW_CC_normal");
if (auto funcLoc = mlir::dyn_cast<mlir::FileLineColLoc>(l)) {
fileName = llvm::sys::path::filename(funcLoc.getFilename().getValue());
filePath = llvm::sys::path::parent_path(funcLoc.getFilename().getValue());
}
mlir::StringAttr fullName = mlir::StringAttr::get(context, funcOp.getName());
mlir::Attribute attr = funcOp->getAttr(fir::getInternalFuncNameAttrName());
mlir::StringAttr funcName =
(attr) ? mlir::cast<mlir::StringAttr>(attr)
: mlir::StringAttr::get(context, funcOp.getName());
auto result = fir::NameUniquer::deconstruct(funcName);
funcName = mlir::StringAttr::get(context, result.second.name);
// try to use a better function name than _QQmain for the program statement
bool isMain = false;
if (funcName == fir::NameUniquer::doProgramEntry()) {
isMain = true;
mlir::StringAttr bindcName =
funcOp->getAttrOfType<mlir::StringAttr>(fir::getSymbolAttrName());
if (bindcName)
funcName = bindcName;
}
llvm::SmallVector<mlir::LLVM::DITypeAttr> types;
for (auto resTy : funcOp.getResultTypes()) {
auto tyAttr =
typeGen.convertType(resTy, fileAttr, cuAttr, /*declOp=*/nullptr);
types.push_back(tyAttr);
}
// If no return type then add a null type as a place holder for that.
if (types.empty())
types.push_back(mlir::LLVM::DINullTypeAttr::get(context));
for (auto inTy : funcOp.getArgumentTypes()) {
auto tyAttr = typeGen.convertType(fir::unwrapRefType(inTy), fileAttr,
cuAttr, /*declOp=*/nullptr);
types.push_back(tyAttr);
}
mlir::LLVM::DISubroutineTypeAttr subTypeAttr =
mlir::LLVM::DISubroutineTypeAttr::get(context, CC, types);
mlir::LLVM::DIFileAttr funcFileAttr =
mlir::LLVM::DIFileAttr::get(context, fileName, filePath);
// Only definitions need a distinct identifier and a compilation unit.
mlir::DistinctAttr id, id2;
mlir::LLVM::DIScopeAttr Scope = fileAttr;
mlir::LLVM::DICompileUnitAttr compilationUnit;
mlir::LLVM::DISubprogramFlags subprogramFlags =
mlir::LLVM::DISubprogramFlags{};
if (isOptimized)
subprogramFlags = mlir::LLVM::DISubprogramFlags::Optimized;
if (isMain)
subprogramFlags =
subprogramFlags | mlir::LLVM::DISubprogramFlags::MainSubprogram;
if (!funcOp.isExternal()) {
// Place holder and final function have to have different IDs, otherwise
// translation code will reject one of them.
id = mlir::DistinctAttr::create(mlir::UnitAttr::get(context));
id2 = mlir::DistinctAttr::create(mlir::UnitAttr::get(context));
compilationUnit = cuAttr;
subprogramFlags =
subprogramFlags | mlir::LLVM::DISubprogramFlags::Definition;
}
unsigned line = getLineFromLoc(l);
if (fir::isInternalProcedure(funcOp)) {
// For contained functions, the scope is the parent subroutine.
mlir::SymbolRefAttr sym = mlir::cast<mlir::SymbolRefAttr>(
funcOp->getAttr(fir::getHostSymbolAttrName()));
if (sym) {
if (auto func =
symbolTable->lookup<mlir::func::FuncOp>(sym.getLeafReference())) {
// Make sure that parent is processed.
handleFuncOp(func, fileAttr, cuAttr, typeGen, symbolTable);
if (auto fusedLoc =
mlir::dyn_cast_if_present<mlir::FusedLoc>(func.getLoc())) {
if (auto spAttr =
mlir::dyn_cast_if_present<mlir::LLVM::DISubprogramAttr>(
fusedLoc.getMetadata()))
Scope = spAttr;
}
}
}
} else if (!result.second.modules.empty()) {
Scope = getOrCreateModuleAttr(result.second.modules[0], fileAttr, cuAttr,
line - 1, false);
}
auto addTargetOpDISP = [&](bool lineTableOnly,
llvm::ArrayRef<mlir::LLVM::DINodeAttr> entities) {
// When we process the DeclareOp inside the OpenMP target region, all the
// variables get the DISubprogram of the parent function of the target op as
// the scope. In the codegen (to llvm ir), OpenMP target op results in the
// creation of a separate function. As the variables in the debug info have
// the DISubprogram of the parent function as the scope, the variables
// need to be updated at codegen time to avoid verification failures.
// This updating after the fact becomes more and more difficult when types
// are dependent on local variables like in the case of variable size arrays
// or string. We not only have to generate new variables but also new types.
// We can avoid this problem by generating a DISubprogramAttr here for the
// target op and make sure that all the variables inside the target region
// get the correct scope in the first place.
funcOp.walk([&](mlir::omp::TargetOp targetOp) {
unsigned line = getLineFromLoc(targetOp.getLoc());
mlir::StringAttr name =
getTargetFunctionName(context, targetOp.getLoc(), funcOp.getName());
mlir::LLVM::DISubprogramFlags flags =
mlir::LLVM::DISubprogramFlags::Definition |
mlir::LLVM::DISubprogramFlags::LocalToUnit;
if (isOptimized)
flags = flags | mlir::LLVM::DISubprogramFlags::Optimized;
mlir::DistinctAttr id =
mlir::DistinctAttr::create(mlir::UnitAttr::get(context));
llvm::SmallVector<mlir::LLVM::DITypeAttr> types;
types.push_back(mlir::LLVM::DINullTypeAttr::get(context));
for (auto arg : targetOp.getRegion().getArguments()) {
auto tyAttr = typeGen.convertType(fir::unwrapRefType(arg.getType()),
fileAttr, cuAttr, /*declOp=*/nullptr);
types.push_back(tyAttr);
}
CC = llvm::dwarf::getCallingConvention("DW_CC_normal");
mlir::LLVM::DISubroutineTypeAttr spTy =
mlir::LLVM::DISubroutineTypeAttr::get(context, CC, types);
if (lineTableOnly) {
auto spAttr = mlir::LLVM::DISubprogramAttr::get(
context, id, compilationUnit, Scope, name, name, funcFileAttr, line,
line, flags, spTy, /*retainedNodes=*/{}, /*annotations=*/{});
targetOp->setLoc(builder.getFusedLoc({targetOp.getLoc()}, spAttr));
return;
}
mlir::DistinctAttr recId =
mlir::DistinctAttr::create(mlir::UnitAttr::get(context));
auto spAttr = mlir::LLVM::DISubprogramAttr::get(
context, recId, /*isRecSelf=*/true, id, compilationUnit, Scope, name,
name, funcFileAttr, line, line, flags, spTy, /*retainedNodes=*/{},
/*annotations=*/{});
// Make sure that information about the imported modules is copied in the
// new function.
llvm::SmallVector<mlir::LLVM::DINodeAttr> opEntities;
for (mlir::LLVM::DINodeAttr N : entities) {
if (auto entity = mlir::dyn_cast<mlir::LLVM::DIImportedEntityAttr>(N)) {
auto importedEntity = mlir::LLVM::DIImportedEntityAttr::get(
context, llvm::dwarf::DW_TAG_imported_module, spAttr,
entity.getEntity(), fileAttr, /*line=*/1, /*name=*/nullptr,
/*elements*/ {});
opEntities.push_back(importedEntity);
}
}
id = mlir::DistinctAttr::create(mlir::UnitAttr::get(context));
spAttr = mlir::LLVM::DISubprogramAttr::get(
context, recId, /*isRecSelf=*/false, id, compilationUnit, Scope, name,
name, funcFileAttr, line, line, flags, spTy, opEntities,
/*annotations=*/{});
targetOp->setLoc(builder.getFusedLoc({targetOp.getLoc()}, spAttr));
});
};
// Don't process variables if user asked for line tables only.
if (debugLevel == mlir::LLVM::DIEmissionKind::LineTablesOnly) {
auto spAttr = mlir::LLVM::DISubprogramAttr::get(
context, id, compilationUnit, Scope, funcName, fullName, funcFileAttr,
line, line, subprogramFlags, subTypeAttr, /*retainedNodes=*/{},
/*annotations=*/{});
funcOp->setLoc(builder.getFusedLoc({l}, spAttr));
addTargetOpDISP(/*lineTableOnly=*/true, /*entities=*/{});
return;
}
mlir::DistinctAttr recId =
mlir::DistinctAttr::create(mlir::UnitAttr::get(context));
// The debug attribute in MLIR are readonly once created. But in case of
// imported entities, we have a circular dependency. The
// DIImportedEntityAttr requires scope information (DISubprogramAttr in this
// case) and DISubprogramAttr requires the list of imported entities. The
// MLIR provides a way where a DISubprogramAttr an be created with a certain
// recID and be used in places like DIImportedEntityAttr. After that another
// DISubprogramAttr can be created with same recID but with list of entities
// now available. The MLIR translation code takes care of updating the
// references. Note that references will be updated only in the things that
// are part of DISubprogramAttr (like DIImportedEntityAttr) so we have to
// create the final DISubprogramAttr before we process local variables.
// Look at DIRecursiveTypeAttrInterface for more details.
auto spAttr = mlir::LLVM::DISubprogramAttr::get(
context, recId, /*isRecSelf=*/true, id, compilationUnit, Scope, funcName,
fullName, funcFileAttr, line, line, subprogramFlags, subTypeAttr,
/*retainedNodes=*/{}, /*annotations=*/{});
// There is no direct information in the IR for any 'use' statement in the
// function. We have to extract that information from the DeclareOp. We do
// a pass on the DeclareOp and generate ModuleAttr and corresponding
// DIImportedEntityAttr for that module.
// FIXME: As we are depending on the variables to see which module is being
// 'used' in the function, there are certain limitations.
// For things like 'use mod1, only: v1', whole module will be brought into the
// namespace in the debug info. It is not a problem as such unless there is a
// clash of names.
// There is no information about module variable renaming
llvm::DenseSet<mlir::LLVM::DIImportedEntityAttr> importedModules;
funcOp.walk([&](fir::cg::XDeclareOp declOp) {
if (&funcOp.front() == declOp->getBlock())
if (auto global =
symbolTable->lookup<fir::GlobalOp>(declOp.getUniqName())) {
std::optional<mlir::LLVM::DIModuleAttr> modOpt =
getModuleAttrFromGlobalOp(global, fileAttr, cuAttr);
if (modOpt) {
auto importedEntity = mlir::LLVM::DIImportedEntityAttr::get(
context, llvm::dwarf::DW_TAG_imported_module, spAttr, *modOpt,
fileAttr, /*line=*/1, /*name=*/nullptr, /*elements*/ {});
importedModules.insert(importedEntity);
}
}
});
llvm::SmallVector<mlir::LLVM::DINodeAttr> entities(importedModules.begin(),
importedModules.end());
// We have the imported entities now. Generate the final DISubprogramAttr.
spAttr = mlir::LLVM::DISubprogramAttr::get(
context, recId, /*isRecSelf=*/false, id2, compilationUnit, Scope,
funcName, fullName, funcFileAttr, line, line, subprogramFlags,
subTypeAttr, entities, /*annotations=*/{});
funcOp->setLoc(builder.getFusedLoc({l}, spAttr));
addTargetOpDISP(/*lineTableOnly=*/false, entities);
funcOp.walk([&](fir::cg::XDeclareOp declOp) {
mlir::LLVM::DISubprogramAttr spTy = spAttr;
if (auto tOp = declOp->getParentOfType<mlir::omp::TargetOp>()) {
if (auto fusedLoc = llvm::dyn_cast<mlir::FusedLoc>(tOp.getLoc())) {
if (auto sp = llvm::dyn_cast<mlir::LLVM::DISubprogramAttr>(
fusedLoc.getMetadata()))
spTy = sp;
}
}
handleDeclareOp(declOp, fileAttr, spTy, typeGen, symbolTable);
});
// commonBlockMap ensures that we don't create multiple DICommonBlockAttr of
// the same name in one function. But it is ok (rather required) to create
// them in different functions if common block of the same name has been used
// there.
commonBlockMap.clear();
}
void AddDebugInfoPass::runOnOperation() {
mlir::ModuleOp module = getOperation();
mlir::MLIRContext *context = &getContext();
mlir::SymbolTable symbolTable(module);
llvm::StringRef fileName;
std::string filePath;
std::optional<mlir::DataLayout> dl =
fir::support::getOrSetMLIRDataLayout(module, /*allowDefaultLayout=*/true);
if (!dl) {
mlir::emitError(module.getLoc(), "Missing data layout attribute in module");
signalPassFailure();
return;
}
fir::DebugTypeGenerator typeGen(module, &symbolTable, *dl);
// We need 2 type of file paths here.
// 1. Name of the file as was presented to compiler. This can be absolute
// or relative to 2.
// 2. Current working directory
//
// We are also dealing with 2 different situations below. One is normal
// compilation where we will have a value in 'inputFilename' and we can
// obtain the current directory using 'current_path'.
// The 2nd case is when this pass is invoked directly from 'fir-opt' tool.
// In that case, 'inputFilename' may be empty. Location embedded in the
// module will be used to get file name and its directory.
if (inputFilename.empty()) {
if (auto fileLoc = mlir::dyn_cast<mlir::FileLineColLoc>(module.getLoc())) {
fileName = llvm::sys::path::filename(fileLoc.getFilename().getValue());
filePath = llvm::sys::path::parent_path(fileLoc.getFilename().getValue());
} else
fileName = "-";
} else {
fileName = inputFilename;
llvm::SmallString<256> cwd;
if (!llvm::sys::fs::current_path(cwd))
filePath = cwd.str();
}
mlir::LLVM::DIFileAttr fileAttr =
mlir::LLVM::DIFileAttr::get(context, fileName, filePath);
mlir::StringAttr producer =
mlir::StringAttr::get(context, Fortran::common::getFlangFullVersion());
mlir::LLVM::DICompileUnitAttr cuAttr = mlir::LLVM::DICompileUnitAttr::get(
mlir::DistinctAttr::create(mlir::UnitAttr::get(context)),
llvm::dwarf::getLanguage("DW_LANG_Fortran95"), fileAttr, producer,
isOptimized, debugLevel);
module.walk([&](mlir::func::FuncOp funcOp) {
handleFuncOp(funcOp, fileAttr, cuAttr, typeGen, &symbolTable);
});
mlir::OpBuilder builder(context);
// We have processed all function. Attach common block variables to the
// global that represent the storage.
for (auto [global, exprs] : globalToGlobalExprsMap) {
auto arrayAttr = mlir::ArrayAttr::get(context, exprs);
global->setLoc(builder.getFusedLoc({global.getLoc()}, arrayAttr));
}
// Process any global which was not processed through DeclareOp.
if (debugLevel == mlir::LLVM::DIEmissionKind::Full) {
// Process 'GlobalOp' only if full debug info is requested.
for (auto globalOp : module.getOps<fir::GlobalOp>())
handleGlobalOp(globalOp, fileAttr, cuAttr, typeGen, &symbolTable,
/*declOp=*/nullptr);
}
}
std::unique_ptr<mlir::Pass>
fir::createAddDebugInfoPass(fir::AddDebugInfoOptions options) {
return std::make_unique<AddDebugInfoPass>(options);
}