jeanPerier 31087c5e4c
[flang] handle alloca outside of entry blocks in MemoryAllocation (#98457)
This patch generalizes the MemoryAllocation pass (alloca -> heap) to
handle fir.alloca regardless of their postion in the IR. Currently, it
only dealt with fir.alloca in function entry blocks. The logic is placed
in a utility that can be used to replace alloca in an operation on
demand to whatever kind of allocation the utility user wants via
callbacks (allocmem, or custom runtime calls to instrument the code...).

To do so, a concept of ownership, that was already implied a bit and
used in passes like stack-reclaim, is formalized. Any operation with the
LoopLikeInterface, AutomaticAllocationScope, or IsolatedFromAbove owns
the alloca directly nested inside its regions, and they must not be used
after the operation.

The pass then looks for the exit points of region with such interface,
and use that to insert deallocation. If dominance is not proved, the
pass fallbacks to storing the new address into a C pointer variable
created in the entry of the owning region which allows inserting
deallocation as needed, included near the alloca itself to avoid leaks
when the alloca is executed multiple times due to block CFGs loops.

This should fix https://github.com/llvm/llvm-project/issues/88344.

In a next step, I will try to refactor lowering a bit to introduce
lifetime operation for alloca so that the deallocation points can be
inserted as soon as possible.
2024-07-17 09:15:47 +02:00

288 lines
13 KiB
C++

//===- MemoryUtils.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Transforms/MemoryUtils.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "mlir/Dialect/OpenACC/OpenACC.h"
#include "mlir/IR/Dominance.h"
#include "llvm/ADT/STLExtras.h"
namespace {
/// Helper class to detect if an alloca is inside an mlir::Block that can be
/// reached again before its deallocation points via block successors. This
/// analysis is only valid if the deallocation points are inside (or nested
/// inside) the same region as alloca because it does not consider region CFG
/// (for instance, the block inside a fir.do_loop is obviously inside a loop,
/// but is not a loop formed by blocks). The dominance of the alloca on its
/// deallocation points implies this pre-condition (although it is more
/// restrictive).
class BlockCycleDetector {
public:
bool allocaIsInCycle(fir::AllocaOp alloca,
llvm::ArrayRef<mlir::Operation *> deallocationPoints);
private:
// Cache for blocks owning alloca that have been analyzed. In many Fortran
// programs, allocas are usually made in the same blocks with no block cycles.
// So getting a fast "no" is beneficial.
llvm::DenseMap<mlir::Block *, /*isInCycle*/ bool> analyzed;
};
} // namespace
namespace {
class AllocaReplaceImpl {
public:
AllocaReplaceImpl(fir::AllocaRewriterCallBack allocaRewriter,
fir::DeallocCallBack deallocGenerator)
: allocaRewriter{allocaRewriter}, deallocGenerator{deallocGenerator} {}
bool replace(mlir::RewriterBase &, fir::AllocaOp);
private:
mlir::Region *findDeallocationPointsAndOwner(
fir::AllocaOp alloca,
llvm::SmallVectorImpl<mlir::Operation *> &deallocationPoints);
bool
allocDominatesDealloc(fir::AllocaOp alloca,
llvm::ArrayRef<mlir::Operation *> deallocationPoints) {
return llvm::all_of(deallocationPoints, [&](mlir::Operation *deallocPoint) {
return this->dominanceInfo.properlyDominates(alloca.getOperation(),
deallocPoint);
});
}
void
genIndirectDeallocation(mlir::RewriterBase &, fir::AllocaOp,
llvm::ArrayRef<mlir::Operation *> deallocationPoints,
mlir::Value replacement, mlir::Region &owningRegion);
private:
fir::AllocaRewriterCallBack allocaRewriter;
fir::DeallocCallBack deallocGenerator;
mlir::DominanceInfo dominanceInfo;
BlockCycleDetector blockCycleDetector;
};
} // namespace
static bool
allocaIsInCycleImpl(mlir::Block *allocaBlock,
llvm::ArrayRef<mlir::Operation *> deallocationPoints) {
llvm::DenseSet<mlir::Block *> seen;
// Insert the deallocation point blocks as "seen" so that the block
// traversal will stop at them.
for (mlir::Operation *deallocPoint : deallocationPoints)
seen.insert(deallocPoint->getBlock());
if (seen.contains(allocaBlock))
return false;
// Traverse the block successor graph starting by the alloca block.
llvm::SmallVector<mlir::Block *> successors{allocaBlock};
while (!successors.empty())
for (mlir::Block *next : successors.pop_back_val()->getSuccessors()) {
if (next == allocaBlock)
return true;
if (auto pair = seen.insert(next); pair.second)
successors.push_back(next);
}
// The traversal did not reach the alloca block again.
return false;
}
bool BlockCycleDetector::allocaIsInCycle(
fir::AllocaOp alloca,
llvm::ArrayRef<mlir::Operation *> deallocationPoints) {
mlir::Block *allocaBlock = alloca->getBlock();
auto analyzedPair = analyzed.try_emplace(allocaBlock, /*isInCycle=*/false);
bool alreadyAnalyzed = !analyzedPair.second;
bool &isInCycle = analyzedPair.first->second;
// Fast exit if block was already analyzed and no cycle was found.
if (alreadyAnalyzed && !isInCycle)
return false;
// If the analysis was not done generically for this block, run it and
// save the result.
if (!alreadyAnalyzed)
isInCycle = allocaIsInCycleImpl(allocaBlock, /*deallocationPoints*/ {});
if (!isInCycle)
return false;
// If the generic analysis found a block loop, see if the deallocation
// point would be reached before reaching the block again. Do not
// cache that analysis that is specific to the deallocation points
// found for this alloca.
return allocaIsInCycleImpl(allocaBlock, deallocationPoints);
}
static bool terminatorYieldsMemory(mlir::Operation &terminator) {
return llvm::any_of(terminator.getResults(), [](mlir::OpResult res) {
return fir::conformsWithPassByRef(res.getType());
});
}
static bool isRegionTerminator(mlir::Operation &terminator) {
// Using ReturnLike trait is tempting but it is not set on
// all region terminator that matters (like omp::TerminatorOp that
// has no results).
// May be true for dead code. It is not a correctness issue and dead code can
// be eliminated by running region simplification before this utility is
// used.
// May also be true for unreachable like terminators (e.g., after an abort
// call related to Fortran STOP). This is also OK, the inserted deallocation
// will simply never be reached. It is easier for the rest of the code here
// to assume there is always at least one deallocation point, so keep
// unreachable terminators.
return !terminator.hasSuccessors();
}
mlir::Region *AllocaReplaceImpl::findDeallocationPointsAndOwner(
fir::AllocaOp alloca,
llvm::SmallVectorImpl<mlir::Operation *> &deallocationPoints) {
// Step 1: Identify the operation and region owning the alloca.
mlir::Region *owningRegion = alloca.getOwnerRegion();
if (!owningRegion)
return nullptr;
mlir::Operation *owningOp = owningRegion->getParentOp();
assert(owningOp && "region expected to be owned");
// Step 2: Identify the exit points of the owning region, they are the default
// deallocation points. TODO: detect and use lifetime markers to get earlier
// deallocation points.
bool isOpenACCMPRecipe = mlir::isa<mlir::accomp::RecipeInterface>(owningOp);
for (mlir::Block &block : owningRegion->getBlocks())
if (mlir::Operation *terminator = block.getTerminator();
isRegionTerminator(*terminator)) {
// FIXME: OpenACC and OpenMP privatization recipe are stand alone
// operation meant to be later "inlined", the value they return may
// be the address of a local alloca. It would be incorrect to insert
// deallocation before the terminator (this would introduce use after
// free once the recipe is inlined.
// This probably require redesign or special handling on the OpenACC/MP
// side.
if (isOpenACCMPRecipe && terminatorYieldsMemory(*terminator))
return nullptr;
deallocationPoints.push_back(terminator);
}
// If no block terminators without successors have been found, this is
// an odd region we cannot reason about (never seen yet in FIR and
// mainstream dialects, but MLIR does not really prevent it).
if (deallocationPoints.empty())
return nullptr;
// Step 3: detect block based loops between the allocation and deallocation
// points, and add a deallocation point on the back edge to avoid memory
// leaks.
// The detection avoids doing region CFG analysis by assuming that there may
// be cycles if deallocation points are not dominated by the alloca.
// This leaves the cases where the deallocation points are in the same region
// as the alloca (or nested inside it). In which cases there may be a back
// edge between the alloca and the deallocation point via block successors. An
// analysis is run to detect those cases.
// When a loop is detected, the easiest solution to deallocate on the back
// edge is to store the allocated memory address in a variable (that dominates
// the loops) and to deallocate the address in that variable if it is set
// before executing the allocation. This strategy still leads to correct
// execution in the "false positive" cases.
// Hence, the alloca is added as a deallocation point when there is no
// dominance. Note that bringing lifetime markers above will reduce the
// false positives.
if (!allocDominatesDealloc(alloca, deallocationPoints) ||
blockCycleDetector.allocaIsInCycle(alloca, deallocationPoints))
deallocationPoints.push_back(alloca.getOperation());
return owningRegion;
}
void AllocaReplaceImpl::genIndirectDeallocation(
mlir::RewriterBase &rewriter, fir::AllocaOp alloca,
llvm::ArrayRef<mlir::Operation *> deallocationPoints,
mlir::Value replacement, mlir::Region &owningRegion) {
mlir::Location loc = alloca.getLoc();
auto replacementInsertPoint = rewriter.saveInsertionPoint();
// Create C pointer variable in the entry block to store the alloc
// and access it indirectly in the entry points that do not dominate.
rewriter.setInsertionPointToStart(&owningRegion.front());
mlir::Type heapType = fir::HeapType::get(alloca.getInType());
mlir::Value ptrVar = rewriter.create<fir::AllocaOp>(loc, heapType);
mlir::Value nullPtr = rewriter.create<fir::ZeroOp>(loc, heapType);
rewriter.create<fir::StoreOp>(loc, nullPtr, ptrVar);
// TODO: introducing a pointer compare op in FIR would help
// generating less IR here.
mlir::Type intPtrTy = fir::getIntPtrType(rewriter);
mlir::Value c0 = rewriter.create<mlir::arith::ConstantOp>(
loc, intPtrTy, rewriter.getIntegerAttr(intPtrTy, 0));
// Store new storage address right after its creation.
rewriter.restoreInsertionPoint(replacementInsertPoint);
mlir::Value castReplacement =
fir::factory::createConvert(rewriter, loc, heapType, replacement);
rewriter.create<fir::StoreOp>(loc, castReplacement, ptrVar);
// Generate conditional deallocation at every deallocation point.
auto genConditionalDealloc = [&](mlir::Location loc) {
mlir::Value ptrVal = rewriter.create<fir::LoadOp>(loc, ptrVar);
mlir::Value ptrToInt =
rewriter.create<fir::ConvertOp>(loc, intPtrTy, ptrVal);
mlir::Value isAllocated = rewriter.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::ne, ptrToInt, c0);
auto ifOp = rewriter.create<fir::IfOp>(loc, std::nullopt, isAllocated,
/*withElseRegion=*/false);
rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
mlir::Value cast = fir::factory::createConvert(
rewriter, loc, replacement.getType(), ptrVal);
deallocGenerator(loc, rewriter, cast);
// Currently there is no need to reset the pointer var because two
// deallocation points can never be reached without going through the
// alloca.
rewriter.setInsertionPointAfter(ifOp);
};
for (mlir::Operation *deallocPoint : deallocationPoints) {
rewriter.setInsertionPoint(deallocPoint);
genConditionalDealloc(deallocPoint->getLoc());
}
}
bool AllocaReplaceImpl::replace(mlir::RewriterBase &rewriter,
fir::AllocaOp alloca) {
llvm::SmallVector<mlir::Operation *> deallocationPoints;
mlir::Region *owningRegion =
findDeallocationPointsAndOwner(alloca, deallocationPoints);
if (!owningRegion)
return false;
rewriter.setInsertionPointAfter(alloca.getOperation());
bool deallocPointsDominateAlloc =
allocDominatesDealloc(alloca, deallocationPoints);
if (mlir::Value replacement =
allocaRewriter(rewriter, alloca, deallocPointsDominateAlloc)) {
mlir::Value castReplacement = fir::factory::createConvert(
rewriter, alloca.getLoc(), alloca.getType(), replacement);
if (deallocPointsDominateAlloc)
for (mlir::Operation *deallocPoint : deallocationPoints) {
rewriter.setInsertionPoint(deallocPoint);
deallocGenerator(deallocPoint->getLoc(), rewriter, replacement);
}
else
genIndirectDeallocation(rewriter, alloca, deallocationPoints, replacement,
*owningRegion);
rewriter.replaceOp(alloca, castReplacement);
}
return true;
}
bool fir::replaceAllocas(mlir::RewriterBase &rewriter,
mlir::Operation *parentOp,
MustRewriteCallBack mustReplace,
AllocaRewriterCallBack allocaRewriter,
DeallocCallBack deallocGenerator) {
// If the parent operation is not an alloca owner, the code below would risk
// modifying IR outside of parentOp.
if (!fir::AllocaOp::ownsNestedAlloca(parentOp))
return false;
auto insertPoint = rewriter.saveInsertionPoint();
bool replacedAllRequestedAlloca = true;
AllocaReplaceImpl impl(allocaRewriter, deallocGenerator);
parentOp->walk([&](fir::AllocaOp alloca) {
if (mustReplace(alloca))
replacedAllRequestedAlloca &= impl.replace(rewriter, alloca);
});
rewriter.restoreInsertionPoint(insertPoint);
return replacedAllRequestedAlloca;
}