Daniel Dunbar 2cc3f17a26 Driver: Add magic handling for "reserved library names", starting with
-lstdc++. This is the best gross solution for a gross problem.

This issue is that historically, GCC has add -L options to its internally
library directories. This has allowed users and platforms to end up depending on
the layout of GCC's internal library directories.

We want to correct this mistake by eliminating that -L, but this means that
existing libraries which are in the GCC lib dir won't be found. We are going to
handle this by treating those -l names as "reserved", and requiring toolchains
to know how to add the right full path to the reserved library.

The immediately side effect of this is that users trying to use -L to find their
own -lstdc++ will need to start using -nostdlib (which is a good idea
anyway). Another side effect is that -stdlib=libc++ -lstdc++ will now do the
"right" thing, for curious definitions of right.

llvm-svn: 114144
2010-09-17 00:45:02 +00:00

1375 lines
48 KiB
C++

//===--- Driver.cpp - Clang GCC Compatible Driver -----------------------*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "clang/Driver/Driver.h"
#include "clang/Driver/Action.h"
#include "clang/Driver/Arg.h"
#include "clang/Driver/ArgList.h"
#include "clang/Driver/Compilation.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "clang/Driver/HostInfo.h"
#include "clang/Driver/Job.h"
#include "clang/Driver/OptTable.h"
#include "clang/Driver/Option.h"
#include "clang/Driver/Options.h"
#include "clang/Driver/Tool.h"
#include "clang/Driver/ToolChain.h"
#include "clang/Driver/Types.h"
#include "clang/Basic/Version.h"
#include "llvm/Config/config.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Path.h"
#include "llvm/System/Program.h"
#include "InputInfo.h"
#include <map>
using namespace clang::driver;
using namespace clang;
Driver::Driver(llvm::StringRef _ClangExecutable,
llvm::StringRef _DefaultHostTriple,
llvm::StringRef _DefaultImageName,
bool IsProduction, bool CXXIsProduction,
Diagnostic &_Diags)
: Opts(createDriverOptTable()), Diags(_Diags),
ClangExecutable(_ClangExecutable), DefaultHostTriple(_DefaultHostTriple),
DefaultImageName(_DefaultImageName),
DriverTitle("clang \"gcc-compatible\" driver"),
Host(0),
CCPrintOptionsFilename(0), CCCIsCXX(false),
CCCEcho(false), CCCPrintBindings(false), CCPrintOptions(false), CCCGenericGCCName("gcc"),
CheckInputsExist(true), CCCUseClang(true), CCCUseClangCXX(true),
CCCUseClangCPP(true), CCCUsePCH(true), SuppressMissingInputWarning(false) {
if (IsProduction) {
// In a "production" build, only use clang on architectures we expect to
// work, and don't use clang C++.
//
// During development its more convenient to always have the driver use
// clang, but we don't want users to be confused when things don't work, or
// to file bugs for things we don't support.
CCCClangArchs.insert(llvm::Triple::x86);
CCCClangArchs.insert(llvm::Triple::x86_64);
CCCClangArchs.insert(llvm::Triple::arm);
if (!CXXIsProduction)
CCCUseClangCXX = false;
}
llvm::sys::Path Executable(ClangExecutable);
Name = Executable.getBasename();
Dir = Executable.getDirname();
// Compute the path to the resource directory.
llvm::sys::Path P(Dir);
P.eraseComponent(); // Remove /bin from foo/bin
P.appendComponent("lib");
P.appendComponent("clang");
P.appendComponent(CLANG_VERSION_STRING);
ResourceDir = P.str();
}
Driver::~Driver() {
delete Opts;
delete Host;
}
InputArgList *Driver::ParseArgStrings(const char **ArgBegin,
const char **ArgEnd) {
llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
unsigned MissingArgIndex, MissingArgCount;
InputArgList *Args = getOpts().ParseArgs(ArgBegin, ArgEnd,
MissingArgIndex, MissingArgCount);
// Check for missing argument error.
if (MissingArgCount)
Diag(clang::diag::err_drv_missing_argument)
<< Args->getArgString(MissingArgIndex) << MissingArgCount;
// Check for unsupported options.
for (ArgList::const_iterator it = Args->begin(), ie = Args->end();
it != ie; ++it) {
Arg *A = *it;
if (A->getOption().isUnsupported()) {
Diag(clang::diag::err_drv_unsupported_opt) << A->getAsString(*Args);
continue;
}
}
return Args;
}
DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
DerivedArgList *DAL = new DerivedArgList(Args);
bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
for (ArgList::const_iterator it = Args.begin(),
ie = Args.end(); it != ie; ++it) {
const Arg *A = *it;
// Unfortunately, we have to parse some forwarding options (-Xassembler,
// -Xlinker, -Xpreprocessor) because we either integrate their functionality
// (assembler and preprocessor), or bypass a previous driver ('collect2').
// Rewrite linker options, to replace --no-demangle with a custom internal
// option.
if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
A->getOption().matches(options::OPT_Xlinker)) &&
A->containsValue("--no-demangle")) {
// Add the rewritten no-demangle argument.
DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_Xlinker__no_demangle));
// Add the remaining values as Xlinker arguments.
for (unsigned i = 0, e = A->getNumValues(); i != e; ++i)
if (llvm::StringRef(A->getValue(Args, i)) != "--no-demangle")
DAL->AddSeparateArg(A, Opts->getOption(options::OPT_Xlinker),
A->getValue(Args, i));
continue;
}
// Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
// some build systems. We don't try to be complete here because we don't
// care to encourage this usage model.
if (A->getOption().matches(options::OPT_Wp_COMMA) &&
A->getNumValues() == 2 &&
(A->getValue(Args, 0) == llvm::StringRef("-MD") ||
A->getValue(Args, 0) == llvm::StringRef("-MMD"))) {
// Rewrite to -MD/-MMD along with -MF.
if (A->getValue(Args, 0) == llvm::StringRef("-MD"))
DAL->AddFlagArg(A, Opts->getOption(options::OPT_MD));
else
DAL->AddFlagArg(A, Opts->getOption(options::OPT_MMD));
DAL->AddSeparateArg(A, Opts->getOption(options::OPT_MF),
A->getValue(Args, 1));
continue;
}
// Rewrite reserved library names, unless -nostdlib is present.
if (!HasNostdlib && A->getOption().matches(options::OPT_l)) {
llvm::StringRef Value = A->getValue(Args);
if (Value == "stdc++") {
DAL->AddFlagArg(A, Opts->getOption(
options::OPT_Z_reserved_lib_stdcxx));
continue;
}
}
DAL->append(*it);
}
// Add a default value of -mlinker-version=, if one was given and the user
// didn't specify one.
#if defined(HOST_LINK_VERSION)
if (!Args.hasArg(options::OPT_mlinker_version_EQ)) {
DAL->AddJoinedArg(0, Opts->getOption(options::OPT_mlinker_version_EQ),
HOST_LINK_VERSION);
DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
}
#endif
return DAL;
}
Compilation *Driver::BuildCompilation(int argc, const char **argv) {
llvm::PrettyStackTraceString CrashInfo("Compilation construction");
// FIXME: Handle environment options which effect driver behavior, somewhere
// (client?). GCC_EXEC_PREFIX, COMPILER_PATH, LIBRARY_PATH, LPATH,
// CC_PRINT_OPTIONS.
// FIXME: What are we going to do with -V and -b?
// FIXME: This stuff needs to go into the Compilation, not the driver.
bool CCCPrintOptions = false, CCCPrintActions = false;
const char **Start = argv + 1, **End = argv + argc;
InputArgList *Args = ParseArgStrings(Start, End);
// -no-canonical-prefixes is used very early in main.
Args->ClaimAllArgs(options::OPT_no_canonical_prefixes);
// Ignore -pipe.
Args->ClaimAllArgs(options::OPT_pipe);
// Extract -ccc args.
//
// FIXME: We need to figure out where this behavior should live. Most of it
// should be outside in the client; the parts that aren't should have proper
// options, either by introducing new ones or by overloading gcc ones like -V
// or -b.
CCCPrintOptions = Args->hasArg(options::OPT_ccc_print_options);
CCCPrintActions = Args->hasArg(options::OPT_ccc_print_phases);
CCCPrintBindings = Args->hasArg(options::OPT_ccc_print_bindings);
CCCIsCXX = Args->hasArg(options::OPT_ccc_cxx) || CCCIsCXX;
if (CCCIsCXX)
CCCGenericGCCName = "g++";
CCCEcho = Args->hasArg(options::OPT_ccc_echo);
if (const Arg *A = Args->getLastArg(options::OPT_ccc_gcc_name))
CCCGenericGCCName = A->getValue(*Args);
CCCUseClangCXX = Args->hasFlag(options::OPT_ccc_clang_cxx,
options::OPT_ccc_no_clang_cxx,
CCCUseClangCXX);
CCCUsePCH = Args->hasFlag(options::OPT_ccc_pch_is_pch,
options::OPT_ccc_pch_is_pth);
CCCUseClang = !Args->hasArg(options::OPT_ccc_no_clang);
CCCUseClangCPP = !Args->hasArg(options::OPT_ccc_no_clang_cpp);
if (const Arg *A = Args->getLastArg(options::OPT_ccc_clang_archs)) {
llvm::StringRef Cur = A->getValue(*Args);
CCCClangArchs.clear();
while (!Cur.empty()) {
std::pair<llvm::StringRef, llvm::StringRef> Split = Cur.split(',');
if (!Split.first.empty()) {
llvm::Triple::ArchType Arch =
llvm::Triple(Split.first, "", "").getArch();
if (Arch == llvm::Triple::UnknownArch)
Diag(clang::diag::err_drv_invalid_arch_name) << Split.first;
CCCClangArchs.insert(Arch);
}
Cur = Split.second;
}
}
// FIXME: We shouldn't overwrite the default host triple here, but we have
// nowhere else to put this currently.
if (const Arg *A = Args->getLastArg(options::OPT_ccc_host_triple))
DefaultHostTriple = A->getValue(*Args);
if (const Arg *A = Args->getLastArg(options::OPT_ccc_install_dir))
Dir = InstalledDir = A->getValue(*Args);
if (const Arg *A = Args->getLastArg(options::OPT_B))
PrefixDir = A->getValue(*Args);
Host = GetHostInfo(DefaultHostTriple.c_str());
// Perform the default argument translations.
DerivedArgList *TranslatedArgs = TranslateInputArgs(*Args);
// The compilation takes ownership of Args.
Compilation *C = new Compilation(*this, *Host->CreateToolChain(*Args), Args,
TranslatedArgs);
// FIXME: This behavior shouldn't be here.
if (CCCPrintOptions) {
PrintOptions(C->getInputArgs());
return C;
}
if (!HandleImmediateArgs(*C))
return C;
// Construct the list of abstract actions to perform for this compilation.
if (Host->useDriverDriver())
BuildUniversalActions(C->getDefaultToolChain(), C->getArgs(),
C->getActions());
else
BuildActions(C->getDefaultToolChain(), C->getArgs(), C->getActions());
if (CCCPrintActions) {
PrintActions(*C);
return C;
}
BuildJobs(*C);
return C;
}
int Driver::ExecuteCompilation(const Compilation &C) const {
// Just print if -### was present.
if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
C.PrintJob(llvm::errs(), C.getJobs(), "\n", true);
return 0;
}
// If there were errors building the compilation, quit now.
if (getDiags().getNumErrors())
return 1;
const Command *FailingCommand = 0;
int Res = C.ExecuteJob(C.getJobs(), FailingCommand);
// Remove temp files.
C.CleanupFileList(C.getTempFiles());
// If the command succeeded, we are done.
if (Res == 0)
return Res;
// Otherwise, remove result files as well.
if (!C.getArgs().hasArg(options::OPT_save_temps))
C.CleanupFileList(C.getResultFiles(), true);
// Print extra information about abnormal failures, if possible.
//
// This is ad-hoc, but we don't want to be excessively noisy. If the result
// status was 1, assume the command failed normally. In particular, if it was
// the compiler then assume it gave a reasonable error code. Failures in other
// tools are less common, and they generally have worse diagnostics, so always
// print the diagnostic there.
const Tool &FailingTool = FailingCommand->getCreator();
if (!FailingCommand->getCreator().hasGoodDiagnostics() || Res != 1) {
// FIXME: See FIXME above regarding result code interpretation.
if (Res < 0)
Diag(clang::diag::err_drv_command_signalled)
<< FailingTool.getShortName() << -Res;
else
Diag(clang::diag::err_drv_command_failed)
<< FailingTool.getShortName() << Res;
}
return Res;
}
void Driver::PrintOptions(const ArgList &Args) const {
unsigned i = 0;
for (ArgList::const_iterator it = Args.begin(), ie = Args.end();
it != ie; ++it, ++i) {
Arg *A = *it;
llvm::errs() << "Option " << i << " - "
<< "Name: \"" << A->getOption().getName() << "\", "
<< "Values: {";
for (unsigned j = 0; j < A->getNumValues(); ++j) {
if (j)
llvm::errs() << ", ";
llvm::errs() << '"' << A->getValue(Args, j) << '"';
}
llvm::errs() << "}\n";
}
}
void Driver::PrintHelp(bool ShowHidden) const {
getOpts().PrintHelp(llvm::outs(), Name.c_str(), DriverTitle.c_str(),
ShowHidden);
}
void Driver::PrintVersion(const Compilation &C, llvm::raw_ostream &OS) const {
// FIXME: The following handlers should use a callback mechanism, we don't
// know what the client would like to do.
OS << getClangFullVersion() << '\n';
const ToolChain &TC = C.getDefaultToolChain();
OS << "Target: " << TC.getTripleString() << '\n';
// Print the threading model.
//
// FIXME: Implement correctly.
OS << "Thread model: " << "posix" << '\n';
}
/// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
/// option.
static void PrintDiagnosticCategories(llvm::raw_ostream &OS) {
for (unsigned i = 1; // Skip the empty category.
const char *CategoryName = Diagnostic::getCategoryNameFromID(i); ++i)
OS << i << ',' << CategoryName << '\n';
}
bool Driver::HandleImmediateArgs(const Compilation &C) {
// The order these options are handled in gcc is all over the place, but we
// don't expect inconsistencies w.r.t. that to matter in practice.
if (C.getArgs().hasArg(options::OPT_dumpversion)) {
llvm::outs() << CLANG_VERSION_STRING "\n";
return false;
}
if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
PrintDiagnosticCategories(llvm::outs());
return false;
}
if (C.getArgs().hasArg(options::OPT__help) ||
C.getArgs().hasArg(options::OPT__help_hidden)) {
PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
return false;
}
if (C.getArgs().hasArg(options::OPT__version)) {
// Follow gcc behavior and use stdout for --version and stderr for -v.
PrintVersion(C, llvm::outs());
return false;
}
if (C.getArgs().hasArg(options::OPT_v) ||
C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
PrintVersion(C, llvm::errs());
SuppressMissingInputWarning = true;
}
const ToolChain &TC = C.getDefaultToolChain();
if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
llvm::outs() << "programs: =";
for (ToolChain::path_list::const_iterator it = TC.getProgramPaths().begin(),
ie = TC.getProgramPaths().end(); it != ie; ++it) {
if (it != TC.getProgramPaths().begin())
llvm::outs() << ':';
llvm::outs() << *it;
}
llvm::outs() << "\n";
llvm::outs() << "libraries: =";
for (ToolChain::path_list::const_iterator it = TC.getFilePaths().begin(),
ie = TC.getFilePaths().end(); it != ie; ++it) {
if (it != TC.getFilePaths().begin())
llvm::outs() << ':';
llvm::outs() << *it;
}
llvm::outs() << "\n";
return false;
}
// FIXME: The following handlers should use a callback mechanism, we don't
// know what the client would like to do.
if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
llvm::outs() << GetFilePath(A->getValue(C.getArgs()), TC) << "\n";
return false;
}
if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
llvm::outs() << GetProgramPath(A->getValue(C.getArgs()), TC) << "\n";
return false;
}
if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
return false;
}
if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
// FIXME: We need tool chain support for this.
llvm::outs() << ".;\n";
switch (C.getDefaultToolChain().getTriple().getArch()) {
default:
break;
case llvm::Triple::x86_64:
llvm::outs() << "x86_64;@m64" << "\n";
break;
case llvm::Triple::ppc64:
llvm::outs() << "ppc64;@m64" << "\n";
break;
}
return false;
}
// FIXME: What is the difference between print-multi-directory and
// print-multi-os-directory?
if (C.getArgs().hasArg(options::OPT_print_multi_directory) ||
C.getArgs().hasArg(options::OPT_print_multi_os_directory)) {
switch (C.getDefaultToolChain().getTriple().getArch()) {
default:
case llvm::Triple::x86:
case llvm::Triple::ppc:
llvm::outs() << "." << "\n";
break;
case llvm::Triple::x86_64:
llvm::outs() << "x86_64" << "\n";
break;
case llvm::Triple::ppc64:
llvm::outs() << "ppc64" << "\n";
break;
}
return false;
}
return true;
}
static unsigned PrintActions1(const Compilation &C, Action *A,
std::map<Action*, unsigned> &Ids) {
if (Ids.count(A))
return Ids[A];
std::string str;
llvm::raw_string_ostream os(str);
os << Action::getClassName(A->getKind()) << ", ";
if (InputAction *IA = dyn_cast<InputAction>(A)) {
os << "\"" << IA->getInputArg().getValue(C.getArgs()) << "\"";
} else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
os << '"' << (BIA->getArchName() ? BIA->getArchName() :
C.getDefaultToolChain().getArchName()) << '"'
<< ", {" << PrintActions1(C, *BIA->begin(), Ids) << "}";
} else {
os << "{";
for (Action::iterator it = A->begin(), ie = A->end(); it != ie;) {
os << PrintActions1(C, *it, Ids);
++it;
if (it != ie)
os << ", ";
}
os << "}";
}
unsigned Id = Ids.size();
Ids[A] = Id;
llvm::errs() << Id << ": " << os.str() << ", "
<< types::getTypeName(A->getType()) << "\n";
return Id;
}
void Driver::PrintActions(const Compilation &C) const {
std::map<Action*, unsigned> Ids;
for (ActionList::const_iterator it = C.getActions().begin(),
ie = C.getActions().end(); it != ie; ++it)
PrintActions1(C, *it, Ids);
}
/// \brief Check whether the given input tree contains any compilation (or
/// assembly) actions.
static bool ContainsCompileAction(const Action *A) {
if (isa<CompileJobAction>(A) || isa<AssembleJobAction>(A))
return true;
for (Action::const_iterator it = A->begin(), ie = A->end(); it != ie; ++it)
if (ContainsCompileAction(*it))
return true;
return false;
}
void Driver::BuildUniversalActions(const ToolChain &TC,
const ArgList &Args,
ActionList &Actions) const {
llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
// Collect the list of architectures. Duplicates are allowed, but should only
// be handled once (in the order seen).
llvm::StringSet<> ArchNames;
llvm::SmallVector<const char *, 4> Archs;
for (ArgList::const_iterator it = Args.begin(), ie = Args.end();
it != ie; ++it) {
Arg *A = *it;
if (A->getOption().matches(options::OPT_arch)) {
// Validate the option here; we don't save the type here because its
// particular spelling may participate in other driver choices.
llvm::Triple::ArchType Arch =
llvm::Triple::getArchTypeForDarwinArchName(A->getValue(Args));
if (Arch == llvm::Triple::UnknownArch) {
Diag(clang::diag::err_drv_invalid_arch_name)
<< A->getAsString(Args);
continue;
}
A->claim();
if (ArchNames.insert(A->getValue(Args)))
Archs.push_back(A->getValue(Args));
}
}
// When there is no explicit arch for this platform, make sure we still bind
// the architecture (to the default) so that -Xarch_ is handled correctly.
if (!Archs.size())
Archs.push_back(0);
// FIXME: We killed off some others but these aren't yet detected in a
// functional manner. If we added information to jobs about which "auxiliary"
// files they wrote then we could detect the conflict these cause downstream.
if (Archs.size() > 1) {
// No recovery needed, the point of this is just to prevent
// overwriting the same files.
if (const Arg *A = Args.getLastArg(options::OPT_save_temps))
Diag(clang::diag::err_drv_invalid_opt_with_multiple_archs)
<< A->getAsString(Args);
}
ActionList SingleActions;
BuildActions(TC, Args, SingleActions);
// Add in arch bindings for every top level action, as well as lipo and
// dsymutil steps if needed.
for (unsigned i = 0, e = SingleActions.size(); i != e; ++i) {
Action *Act = SingleActions[i];
// Make sure we can lipo this kind of output. If not (and it is an actual
// output) then we disallow, since we can't create an output file with the
// right name without overwriting it. We could remove this oddity by just
// changing the output names to include the arch, which would also fix
// -save-temps. Compatibility wins for now.
if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
<< types::getTypeName(Act->getType());
ActionList Inputs;
for (unsigned i = 0, e = Archs.size(); i != e; ++i) {
Inputs.push_back(new BindArchAction(Act, Archs[i]));
if (i != 0)
Inputs.back()->setOwnsInputs(false);
}
// Lipo if necessary, we do it this way because we need to set the arch flag
// so that -Xarch_ gets overwritten.
if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
Actions.append(Inputs.begin(), Inputs.end());
else
Actions.push_back(new LipoJobAction(Inputs, Act->getType()));
// Add a 'dsymutil' step if necessary, when debug info is enabled and we
// have a compile input. We need to run 'dsymutil' ourselves in such cases
// because the debug info will refer to a temporary object file which is
// will be removed at the end of the compilation process.
if (Act->getType() == types::TY_Image) {
Arg *A = Args.getLastArg(options::OPT_g_Group);
if (A && !A->getOption().matches(options::OPT_g0) &&
!A->getOption().matches(options::OPT_gstabs) &&
ContainsCompileAction(Actions.back())) {
ActionList Inputs;
Inputs.push_back(Actions.back());
Actions.pop_back();
Actions.push_back(new DsymutilJobAction(Inputs, types::TY_dSYM));
}
}
}
}
void Driver::BuildActions(const ToolChain &TC, const ArgList &Args,
ActionList &Actions) const {
llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
// Start by constructing the list of inputs and their types.
// Track the current user specified (-x) input. We also explicitly track the
// argument used to set the type; we only want to claim the type when we
// actually use it, so we warn about unused -x arguments.
types::ID InputType = types::TY_Nothing;
Arg *InputTypeArg = 0;
llvm::SmallVector<std::pair<types::ID, const Arg*>, 16> Inputs;
for (ArgList::const_iterator it = Args.begin(), ie = Args.end();
it != ie; ++it) {
Arg *A = *it;
if (isa<InputOption>(A->getOption())) {
const char *Value = A->getValue(Args);
types::ID Ty = types::TY_INVALID;
// Infer the input type if necessary.
if (InputType == types::TY_Nothing) {
// If there was an explicit arg for this, claim it.
if (InputTypeArg)
InputTypeArg->claim();
// stdin must be handled specially.
if (memcmp(Value, "-", 2) == 0) {
// If running with -E, treat as a C input (this changes the builtin
// macros, for example). This may be overridden by -ObjC below.
//
// Otherwise emit an error but still use a valid type to avoid
// spurious errors (e.g., no inputs).
if (!Args.hasArgNoClaim(options::OPT_E))
Diag(clang::diag::err_drv_unknown_stdin_type);
Ty = types::TY_C;
} else {
// Otherwise lookup by extension, and fallback to ObjectType if not
// found. We use a host hook here because Darwin at least has its own
// idea of what .s is.
if (const char *Ext = strrchr(Value, '.'))
Ty = TC.LookupTypeForExtension(Ext + 1);
if (Ty == types::TY_INVALID)
Ty = types::TY_Object;
// If the driver is invoked as C++ compiler (like clang++ or c++) it
// should autodetect some input files as C++ for g++ compatibility.
if (CCCIsCXX) {
types::ID OldTy = Ty;
Ty = types::lookupCXXTypeForCType(Ty);
if (Ty != OldTy)
Diag(clang::diag::warn_drv_treating_input_as_cxx)
<< getTypeName(OldTy) << getTypeName(Ty);
}
}
// -ObjC and -ObjC++ override the default language, but only for "source
// files". We just treat everything that isn't a linker input as a
// source file.
//
// FIXME: Clean this up if we move the phase sequence into the type.
if (Ty != types::TY_Object) {
if (Args.hasArg(options::OPT_ObjC))
Ty = types::TY_ObjC;
else if (Args.hasArg(options::OPT_ObjCXX))
Ty = types::TY_ObjCXX;
}
} else {
assert(InputTypeArg && "InputType set w/o InputTypeArg");
InputTypeArg->claim();
Ty = InputType;
}
// Check that the file exists, if enabled.
if (CheckInputsExist && memcmp(Value, "-", 2) != 0 &&
!llvm::sys::Path(Value).exists())
Diag(clang::diag::err_drv_no_such_file) << A->getValue(Args);
else
Inputs.push_back(std::make_pair(Ty, A));
} else if (A->getOption().isLinkerInput()) {
// Just treat as object type, we could make a special type for this if
// necessary.
Inputs.push_back(std::make_pair(types::TY_Object, A));
} else if (A->getOption().matches(options::OPT_x)) {
InputTypeArg = A;
InputType = types::lookupTypeForTypeSpecifier(A->getValue(Args));
// Follow gcc behavior and treat as linker input for invalid -x
// options. Its not clear why we shouldn't just revert to unknown; but
// this isn't very important, we might as well be bug comatible.
if (!InputType) {
Diag(clang::diag::err_drv_unknown_language) << A->getValue(Args);
InputType = types::TY_Object;
}
}
}
if (!SuppressMissingInputWarning && Inputs.empty()) {
Diag(clang::diag::err_drv_no_input_files);
return;
}
// Determine which compilation mode we are in. We look for options which
// affect the phase, starting with the earliest phases, and record which
// option we used to determine the final phase.
Arg *FinalPhaseArg = 0;
phases::ID FinalPhase;
// -{E,M,MM} only run the preprocessor.
if ((FinalPhaseArg = Args.getLastArg(options::OPT_E)) ||
(FinalPhaseArg = Args.getLastArg(options::OPT_M)) ||
(FinalPhaseArg = Args.getLastArg(options::OPT_MM))) {
FinalPhase = phases::Preprocess;
// -{fsyntax-only,-analyze,emit-ast,S} only run up to the compiler.
} else if ((FinalPhaseArg = Args.getLastArg(options::OPT_fsyntax_only)) ||
(FinalPhaseArg = Args.getLastArg(options::OPT_rewrite_objc)) ||
(FinalPhaseArg = Args.getLastArg(options::OPT__analyze,
options::OPT__analyze_auto)) ||
(FinalPhaseArg = Args.getLastArg(options::OPT_emit_ast)) ||
(FinalPhaseArg = Args.getLastArg(options::OPT_S))) {
FinalPhase = phases::Compile;
// -c only runs up to the assembler.
} else if ((FinalPhaseArg = Args.getLastArg(options::OPT_c))) {
FinalPhase = phases::Assemble;
// Otherwise do everything.
} else
FinalPhase = phases::Link;
// Reject -Z* at the top level, these options should never have been exposed
// by gcc.
if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
// Construct the actions to perform.
ActionList LinkerInputs;
for (unsigned i = 0, e = Inputs.size(); i != e; ++i) {
types::ID InputType = Inputs[i].first;
const Arg *InputArg = Inputs[i].second;
unsigned NumSteps = types::getNumCompilationPhases(InputType);
assert(NumSteps && "Invalid number of steps!");
// If the first step comes after the final phase we are doing as part of
// this compilation, warn the user about it.
phases::ID InitialPhase = types::getCompilationPhase(InputType, 0);
if (InitialPhase > FinalPhase) {
// Claim here to avoid the more general unused warning.
InputArg->claim();
// Special case '-E' warning on a previously preprocessed file to make
// more sense.
if (InitialPhase == phases::Compile && FinalPhase == phases::Preprocess &&
getPreprocessedType(InputType) == types::TY_INVALID)
Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
<< InputArg->getAsString(Args)
<< FinalPhaseArg->getOption().getName();
else
Diag(clang::diag::warn_drv_input_file_unused)
<< InputArg->getAsString(Args)
<< getPhaseName(InitialPhase)
<< FinalPhaseArg->getOption().getName();
continue;
}
// Build the pipeline for this file.
llvm::OwningPtr<Action> Current(new InputAction(*InputArg, InputType));
for (unsigned i = 0; i != NumSteps; ++i) {
phases::ID Phase = types::getCompilationPhase(InputType, i);
// We are done if this step is past what the user requested.
if (Phase > FinalPhase)
break;
// Queue linker inputs.
if (Phase == phases::Link) {
assert(i + 1 == NumSteps && "linking must be final compilation step.");
LinkerInputs.push_back(Current.take());
break;
}
// Some types skip the assembler phase (e.g., llvm-bc), but we can't
// encode this in the steps because the intermediate type depends on
// arguments. Just special case here.
if (Phase == phases::Assemble && Current->getType() != types::TY_PP_Asm)
continue;
// Otherwise construct the appropriate action.
Current.reset(ConstructPhaseAction(Args, Phase, Current.take()));
if (Current->getType() == types::TY_Nothing)
break;
}
// If we ended with something, add to the output list.
if (Current)
Actions.push_back(Current.take());
}
// Add a link action if necessary.
if (!LinkerInputs.empty())
Actions.push_back(new LinkJobAction(LinkerInputs, types::TY_Image));
// If we are linking, claim any options which are obviously only used for
// compilation.
if (FinalPhase == phases::Link)
Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
}
Action *Driver::ConstructPhaseAction(const ArgList &Args, phases::ID Phase,
Action *Input) const {
llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
// Build the appropriate action.
switch (Phase) {
case phases::Link: assert(0 && "link action invalid here.");
case phases::Preprocess: {
types::ID OutputTy;
// -{M, MM} alter the output type.
if (Args.hasArg(options::OPT_M) || Args.hasArg(options::OPT_MM)) {
OutputTy = types::TY_Dependencies;
} else {
OutputTy = types::getPreprocessedType(Input->getType());
assert(OutputTy != types::TY_INVALID &&
"Cannot preprocess this input type!");
}
return new PreprocessJobAction(Input, OutputTy);
}
case phases::Precompile:
return new PrecompileJobAction(Input, types::TY_PCH);
case phases::Compile: {
bool HasO4 = false;
if (const Arg *A = Args.getLastArg(options::OPT_O_Group))
HasO4 = A->getOption().matches(options::OPT_O4);
if (Args.hasArg(options::OPT_fsyntax_only)) {
return new CompileJobAction(Input, types::TY_Nothing);
} else if (Args.hasArg(options::OPT_rewrite_objc)) {
return new CompileJobAction(Input, types::TY_RewrittenObjC);
} else if (Args.hasArg(options::OPT__analyze, options::OPT__analyze_auto)) {
return new AnalyzeJobAction(Input, types::TY_Plist);
} else if (Args.hasArg(options::OPT_emit_ast)) {
return new CompileJobAction(Input, types::TY_AST);
} else if (Args.hasArg(options::OPT_emit_llvm) ||
Args.hasArg(options::OPT_flto) || HasO4) {
types::ID Output =
Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
return new CompileJobAction(Input, Output);
} else {
return new CompileJobAction(Input, types::TY_PP_Asm);
}
}
case phases::Assemble:
return new AssembleJobAction(Input, types::TY_Object);
}
assert(0 && "invalid phase in ConstructPhaseAction");
return 0;
}
void Driver::BuildJobs(Compilation &C) const {
llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
// It is an error to provide a -o option if we are making multiple output
// files.
if (FinalOutput) {
unsigned NumOutputs = 0;
for (ActionList::const_iterator it = C.getActions().begin(),
ie = C.getActions().end(); it != ie; ++it)
if ((*it)->getType() != types::TY_Nothing)
++NumOutputs;
if (NumOutputs > 1) {
Diag(clang::diag::err_drv_output_argument_with_multiple_files);
FinalOutput = 0;
}
}
for (ActionList::const_iterator it = C.getActions().begin(),
ie = C.getActions().end(); it != ie; ++it) {
Action *A = *it;
// If we are linking an image for multiple archs then the linker wants
// -arch_multiple and -final_output <final image name>. Unfortunately, this
// doesn't fit in cleanly because we have to pass this information down.
//
// FIXME: This is a hack; find a cleaner way to integrate this into the
// process.
const char *LinkingOutput = 0;
if (isa<LipoJobAction>(A)) {
if (FinalOutput)
LinkingOutput = FinalOutput->getValue(C.getArgs());
else
LinkingOutput = DefaultImageName.c_str();
}
InputInfo II;
BuildJobsForAction(C, A, &C.getDefaultToolChain(),
/*BoundArch*/0,
/*AtTopLevel*/ true,
/*LinkingOutput*/ LinkingOutput,
II);
}
// If the user passed -Qunused-arguments or there were errors, don't warn
// about any unused arguments.
if (Diags.getNumErrors() ||
C.getArgs().hasArg(options::OPT_Qunused_arguments))
return;
// Claim -### here.
(void) C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
for (ArgList::const_iterator it = C.getArgs().begin(), ie = C.getArgs().end();
it != ie; ++it) {
Arg *A = *it;
// FIXME: It would be nice to be able to send the argument to the
// Diagnostic, so that extra values, position, and so on could be printed.
if (!A->isClaimed()) {
if (A->getOption().hasNoArgumentUnused())
continue;
// Suppress the warning automatically if this is just a flag, and it is an
// instance of an argument we already claimed.
const Option &Opt = A->getOption();
if (isa<FlagOption>(Opt)) {
bool DuplicateClaimed = false;
for (arg_iterator it = C.getArgs().filtered_begin(&Opt),
ie = C.getArgs().filtered_end(); it != ie; ++it) {
if ((*it)->isClaimed()) {
DuplicateClaimed = true;
break;
}
}
if (DuplicateClaimed)
continue;
}
Diag(clang::diag::warn_drv_unused_argument)
<< A->getAsString(C.getArgs());
}
}
}
static const Tool &SelectToolForJob(Compilation &C, const ToolChain *TC,
const JobAction *JA,
const ActionList *&Inputs) {
const Tool *ToolForJob = 0;
// See if we should look for a compiler with an integrated assembler. We match
// bottom up, so what we are actually looking for is an assembler job with a
// compiler input.
// FIXME: This doesn't belong here, but ideally we will support static soon
// anyway.
bool HasStatic = (C.getArgs().hasArg(options::OPT_mkernel) ||
C.getArgs().hasArg(options::OPT_static) ||
C.getArgs().hasArg(options::OPT_fapple_kext));
bool IsIADefault = (TC->IsIntegratedAssemblerDefault() && !HasStatic);
if (C.getArgs().hasFlag(options::OPT_integrated_as,
options::OPT_no_integrated_as,
IsIADefault) &&
!C.getArgs().hasArg(options::OPT_save_temps) &&
isa<AssembleJobAction>(JA) &&
Inputs->size() == 1 && isa<CompileJobAction>(*Inputs->begin())) {
const Tool &Compiler = TC->SelectTool(C,cast<JobAction>(**Inputs->begin()));
if (Compiler.hasIntegratedAssembler()) {
Inputs = &(*Inputs)[0]->getInputs();
ToolForJob = &Compiler;
}
}
// Otherwise use the tool for the current job.
if (!ToolForJob)
ToolForJob = &TC->SelectTool(C, *JA);
// See if we should use an integrated preprocessor. We do so when we have
// exactly one input, since this is the only use case we care about
// (irrelevant since we don't support combine yet).
if (Inputs->size() == 1 && isa<PreprocessJobAction>(*Inputs->begin()) &&
!C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
!C.getArgs().hasArg(options::OPT_traditional_cpp) &&
!C.getArgs().hasArg(options::OPT_save_temps) &&
ToolForJob->hasIntegratedCPP())
Inputs = &(*Inputs)[0]->getInputs();
return *ToolForJob;
}
void Driver::BuildJobsForAction(Compilation &C,
const Action *A,
const ToolChain *TC,
const char *BoundArch,
bool AtTopLevel,
const char *LinkingOutput,
InputInfo &Result) const {
llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
if (const InputAction *IA = dyn_cast<InputAction>(A)) {
// FIXME: It would be nice to not claim this here; maybe the old scheme of
// just using Args was better?
const Arg &Input = IA->getInputArg();
Input.claim();
if (Input.getOption().matches(options::OPT_INPUT)) {
const char *Name = Input.getValue(C.getArgs());
Result = InputInfo(Name, A->getType(), Name);
} else
Result = InputInfo(&Input, A->getType(), "");
return;
}
if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
const ToolChain *TC = &C.getDefaultToolChain();
std::string Arch;
if (BAA->getArchName())
TC = Host->CreateToolChain(C.getArgs(), BAA->getArchName());
BuildJobsForAction(C, *BAA->begin(), TC, BAA->getArchName(),
AtTopLevel, LinkingOutput, Result);
return;
}
const ActionList *Inputs = &A->getInputs();
const JobAction *JA = cast<JobAction>(A);
const Tool &T = SelectToolForJob(C, TC, JA, Inputs);
// Only use pipes when there is exactly one input.
InputInfoList InputInfos;
for (ActionList::const_iterator it = Inputs->begin(), ie = Inputs->end();
it != ie; ++it) {
// Treat dsymutil sub-jobs as being at the top-level too, they shouldn't get
// temporary output names.
//
// FIXME: Clean this up.
bool SubJobAtTopLevel = false;
if (AtTopLevel && isa<DsymutilJobAction>(A))
SubJobAtTopLevel = true;
InputInfo II;
BuildJobsForAction(C, *it, TC, BoundArch,
SubJobAtTopLevel, LinkingOutput, II);
InputInfos.push_back(II);
}
// Always use the first input as the base input.
const char *BaseInput = InputInfos[0].getBaseInput();
// ... except dsymutil actions, which use their actual input as the base
// input.
if (JA->getType() == types::TY_dSYM)
BaseInput = InputInfos[0].getFilename();
// Determine the place to write output to, if any.
if (JA->getType() == types::TY_Nothing) {
Result = InputInfo(A->getType(), BaseInput);
} else {
Result = InputInfo(GetNamedOutputPath(C, *JA, BaseInput, AtTopLevel),
A->getType(), BaseInput);
}
if (CCCPrintBindings) {
llvm::errs() << "# \"" << T.getToolChain().getTripleString() << '"'
<< " - \"" << T.getName() << "\", inputs: [";
for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
llvm::errs() << InputInfos[i].getAsString();
if (i + 1 != e)
llvm::errs() << ", ";
}
llvm::errs() << "], output: " << Result.getAsString() << "\n";
} else {
T.ConstructJob(C, *JA, Result, InputInfos,
C.getArgsForToolChain(TC, BoundArch), LinkingOutput);
}
}
const char *Driver::GetNamedOutputPath(Compilation &C,
const JobAction &JA,
const char *BaseInput,
bool AtTopLevel) const {
llvm::PrettyStackTraceString CrashInfo("Computing output path");
// Output to a user requested destination?
if (AtTopLevel && !isa<DsymutilJobAction>(JA)) {
if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
return C.addResultFile(FinalOutput->getValue(C.getArgs()));
}
// Default to writing to stdout?
if (AtTopLevel && isa<PreprocessJobAction>(JA))
return "-";
// Output to a temporary file?
if (!AtTopLevel && !C.getArgs().hasArg(options::OPT_save_temps)) {
std::string TmpName =
GetTemporaryPath(types::getTypeTempSuffix(JA.getType()));
return C.addTempFile(C.getArgs().MakeArgString(TmpName.c_str()));
}
llvm::sys::Path BasePath(BaseInput);
std::string BaseName(BasePath.getLast());
// Determine what the derived output name should be.
const char *NamedOutput;
if (JA.getType() == types::TY_Image) {
NamedOutput = DefaultImageName.c_str();
} else {
const char *Suffix = types::getTypeTempSuffix(JA.getType());
assert(Suffix && "All types used for output should have a suffix.");
std::string::size_type End = std::string::npos;
if (!types::appendSuffixForType(JA.getType()))
End = BaseName.rfind('.');
std::string Suffixed(BaseName.substr(0, End));
Suffixed += '.';
Suffixed += Suffix;
NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
}
// As an annoying special case, PCH generation doesn't strip the pathname.
if (JA.getType() == types::TY_PCH) {
BasePath.eraseComponent();
if (BasePath.isEmpty())
BasePath = NamedOutput;
else
BasePath.appendComponent(NamedOutput);
return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()));
} else {
return C.addResultFile(NamedOutput);
}
}
std::string Driver::GetFilePath(const char *Name, const ToolChain &TC) const {
// Respect a limited subset of the '-Bprefix' functionality in GCC by
// attempting to use this prefix when lokup up program paths.
if (!PrefixDir.empty()) {
llvm::sys::Path P(PrefixDir);
P.appendComponent(Name);
if (P.exists())
return P.str();
}
const ToolChain::path_list &List = TC.getFilePaths();
for (ToolChain::path_list::const_iterator
it = List.begin(), ie = List.end(); it != ie; ++it) {
llvm::sys::Path P(*it);
P.appendComponent(Name);
if (P.exists())
return P.str();
}
return Name;
}
std::string Driver::GetProgramPath(const char *Name, const ToolChain &TC,
bool WantFile) const {
// Respect a limited subset of the '-Bprefix' functionality in GCC by
// attempting to use this prefix when lokup up program paths.
if (!PrefixDir.empty()) {
llvm::sys::Path P(PrefixDir);
P.appendComponent(Name);
if (WantFile ? P.exists() : P.canExecute())
return P.str();
}
const ToolChain::path_list &List = TC.getProgramPaths();
for (ToolChain::path_list::const_iterator
it = List.begin(), ie = List.end(); it != ie; ++it) {
llvm::sys::Path P(*it);
P.appendComponent(Name);
if (WantFile ? P.exists() : P.canExecute())
return P.str();
}
// If all else failed, search the path.
llvm::sys::Path P(llvm::sys::Program::FindProgramByName(Name));
if (!P.empty())
return P.str();
return Name;
}
std::string Driver::GetTemporaryPath(const char *Suffix) const {
// FIXME: This is lame; sys::Path should provide this function (in particular,
// it should know how to find the temporary files dir).
std::string Error;
const char *TmpDir = ::getenv("TMPDIR");
if (!TmpDir)
TmpDir = ::getenv("TEMP");
if (!TmpDir)
TmpDir = ::getenv("TMP");
if (!TmpDir)
TmpDir = "/tmp";
llvm::sys::Path P(TmpDir);
P.appendComponent("cc");
if (P.makeUnique(false, &Error)) {
Diag(clang::diag::err_drv_unable_to_make_temp) << Error;
return "";
}
// FIXME: Grumble, makeUnique sometimes leaves the file around!? PR3837.
P.eraseFromDisk(false, 0);
P.appendSuffix(Suffix);
return P.str();
}
const HostInfo *Driver::GetHostInfo(const char *TripleStr) const {
llvm::PrettyStackTraceString CrashInfo("Constructing host");
llvm::Triple Triple(TripleStr);
// TCE is an osless target
if (Triple.getArchName() == "tce")
return createTCEHostInfo(*this, Triple);
switch (Triple.getOS()) {
case llvm::Triple::AuroraUX:
return createAuroraUXHostInfo(*this, Triple);
case llvm::Triple::Darwin:
return createDarwinHostInfo(*this, Triple);
case llvm::Triple::DragonFly:
return createDragonFlyHostInfo(*this, Triple);
case llvm::Triple::OpenBSD:
return createOpenBSDHostInfo(*this, Triple);
case llvm::Triple::FreeBSD:
return createFreeBSDHostInfo(*this, Triple);
case llvm::Triple::Minix:
return createMinixHostInfo(*this, Triple);
case llvm::Triple::Linux:
return createLinuxHostInfo(*this, Triple);
case llvm::Triple::Win32:
return createWindowsHostInfo(*this, Triple);
case llvm::Triple::MinGW32:
case llvm::Triple::MinGW64:
return createMinGWHostInfo(*this, Triple);
default:
return createUnknownHostInfo(*this, Triple);
}
}
bool Driver::ShouldUseClangCompiler(const Compilation &C, const JobAction &JA,
const llvm::Triple &Triple) const {
// Check if user requested no clang, or clang doesn't understand this type (we
// only handle single inputs for now).
if (!CCCUseClang || JA.size() != 1 ||
!types::isAcceptedByClang((*JA.begin())->getType()))
return false;
// Otherwise make sure this is an action clang understands.
if (isa<PreprocessJobAction>(JA)) {
if (!CCCUseClangCPP) {
Diag(clang::diag::warn_drv_not_using_clang_cpp);
return false;
}
} else if (!isa<PrecompileJobAction>(JA) && !isa<CompileJobAction>(JA))
return false;
// Use clang for C++?
if (!CCCUseClangCXX && types::isCXX((*JA.begin())->getType())) {
Diag(clang::diag::warn_drv_not_using_clang_cxx);
return false;
}
// Always use clang for precompiling, AST generation, and rewriting,
// regardless of archs.
if (isa<PrecompileJobAction>(JA) ||
types::isOnlyAcceptedByClang(JA.getType()))
return true;
// Finally, don't use clang if this isn't one of the user specified archs to
// build.
if (!CCCClangArchs.empty() && !CCCClangArchs.count(Triple.getArch())) {
Diag(clang::diag::warn_drv_not_using_clang_arch) << Triple.getArchName();
return false;
}
return true;
}
/// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
/// grouped values as integers. Numbers which are not provided are set to 0.
///
/// \return True if the entire string was parsed (9.2), or all groups were
/// parsed (10.3.5extrastuff).
bool Driver::GetReleaseVersion(const char *Str, unsigned &Major,
unsigned &Minor, unsigned &Micro,
bool &HadExtra) {
HadExtra = false;
Major = Minor = Micro = 0;
if (*Str == '\0')
return true;
char *End;
Major = (unsigned) strtol(Str, &End, 10);
if (*Str != '\0' && *End == '\0')
return true;
if (*End != '.')
return false;
Str = End+1;
Minor = (unsigned) strtol(Str, &End, 10);
if (*Str != '\0' && *End == '\0')
return true;
if (*End != '.')
return false;
Str = End+1;
Micro = (unsigned) strtol(Str, &End, 10);
if (*Str != '\0' && *End == '\0')
return true;
if (Str == End)
return false;
HadExtra = true;
return true;
}