llvm-project/bolt/unittests/Core/BinaryContext.cpp
Jared Wyles 2ccf7ed277
[JITLink] Switch to SymbolStringPtr for Symbol names (#115796)
Use SymbolStringPtr for Symbol names in LinkGraph. This reduces string interning
on the boundary between JITLink and ORC, and allows pointer comparisons (rather
than string comparisons) between Symbol names. This should improve the
performance and readability of code that bridges between JITLink and ORC (e.g.
ObjectLinkingLayer and ObjectLinkingLayer::Plugins).

To enable use of SymbolStringPtr a std::shared_ptr<SymbolStringPool> is added to
LinkGraph and threaded through to its construction sites in LLVM and Bolt. All
LinkGraphs that are to have symbol names compared by pointer equality must point
to the same SymbolStringPool instance, which in ORC sessions should be the pool
attached to the ExecutionSession.
---------

Co-authored-by: Lang Hames <lhames@gmail.com>
2024-12-06 10:22:09 +11:00

221 lines
7.7 KiB
C++

//===- bolt/unittest/Core/BinaryContext.cpp -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "bolt/Core/BinaryContext.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/Support/TargetSelect.h"
#include "gtest/gtest.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::ELF;
using namespace bolt;
namespace {
struct BinaryContextTester : public testing::TestWithParam<Triple::ArchType> {
void SetUp() override {
initalizeLLVM();
prepareElf();
initializeBOLT();
}
protected:
void initalizeLLVM() {
llvm::InitializeAllTargetInfos();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllAsmParsers();
llvm::InitializeAllDisassemblers();
llvm::InitializeAllTargets();
llvm::InitializeAllAsmPrinters();
}
void prepareElf() {
memcpy(ElfBuf, "\177ELF", 4);
ELF64LE::Ehdr *EHdr = reinterpret_cast<typename ELF64LE::Ehdr *>(ElfBuf);
EHdr->e_ident[llvm::ELF::EI_CLASS] = llvm::ELF::ELFCLASS64;
EHdr->e_ident[llvm::ELF::EI_DATA] = llvm::ELF::ELFDATA2LSB;
EHdr->e_machine = GetParam() == Triple::aarch64 ? EM_AARCH64 : EM_X86_64;
MemoryBufferRef Source(StringRef(ElfBuf, sizeof(ElfBuf)), "ELF");
ObjFile = cantFail(ObjectFile::createObjectFile(Source));
}
void initializeBOLT() {
Relocation::Arch = ObjFile->makeTriple().getArch();
BC = cantFail(BinaryContext::createBinaryContext(
ObjFile->makeTriple(), std::make_shared<orc::SymbolStringPool>(),
ObjFile->getFileName(), nullptr, true,
DWARFContext::create(*ObjFile.get()), {llvm::outs(), llvm::errs()}));
ASSERT_FALSE(!BC);
}
char ElfBuf[sizeof(typename ELF64LE::Ehdr)] = {};
std::unique_ptr<ObjectFile> ObjFile;
std::unique_ptr<BinaryContext> BC;
};
} // namespace
#ifdef X86_AVAILABLE
INSTANTIATE_TEST_SUITE_P(X86, BinaryContextTester,
::testing::Values(Triple::x86_64));
#endif
#ifdef AARCH64_AVAILABLE
INSTANTIATE_TEST_SUITE_P(AArch64, BinaryContextTester,
::testing::Values(Triple::aarch64));
TEST_P(BinaryContextTester, FlushPendingRelocCALL26) {
if (GetParam() != Triple::aarch64)
GTEST_SKIP();
// This test checks that encodeValueAArch64 used by flushPendingRelocations
// returns correctly encoded values for CALL26 relocation for both backward
// and forward branches.
//
// The offsets layout is:
// 4: func1
// 8: bl func1
// 12: bl func2
// 16: func2
constexpr size_t DataSize = 20;
uint8_t *Data = new uint8_t[DataSize];
BinarySection &BS = BC->registerOrUpdateSection(
".text", ELF::SHT_PROGBITS, ELF::SHF_EXECINSTR | ELF::SHF_ALLOC, Data,
DataSize, 4);
MCSymbol *RelSymbol1 = BC->getOrCreateGlobalSymbol(4, "Func1");
ASSERT_TRUE(RelSymbol1);
BS.addRelocation(8, RelSymbol1, ELF::R_AARCH64_CALL26, 0, 0, true);
MCSymbol *RelSymbol2 = BC->getOrCreateGlobalSymbol(16, "Func2");
ASSERT_TRUE(RelSymbol2);
BS.addRelocation(12, RelSymbol2, ELF::R_AARCH64_CALL26, 0, 0, true);
std::error_code EC;
SmallVector<char> Vect(DataSize);
raw_svector_ostream OS(Vect);
BS.flushPendingRelocations(OS, [&](const MCSymbol *S) {
return S == RelSymbol1 ? 4 : S == RelSymbol2 ? 16 : 0;
});
const uint8_t Func1Call[4] = {255, 255, 255, 151};
const uint8_t Func2Call[4] = {1, 0, 0, 148};
EXPECT_FALSE(memcmp(Func1Call, &Vect[8], 4)) << "Wrong backward call value\n";
EXPECT_FALSE(memcmp(Func2Call, &Vect[12], 4)) << "Wrong forward call value\n";
}
TEST_P(BinaryContextTester, FlushPendingRelocJUMP26) {
if (GetParam() != Triple::aarch64)
GTEST_SKIP();
// This test checks that encodeValueAArch64 used by flushPendingRelocations
// returns correctly encoded values for R_AARCH64_JUMP26 relocation for both
// backward and forward branches.
//
// The offsets layout is:
// 4: func1
// 8: b func1
// 12: b func2
// 16: func2
const uint64_t Size = 20;
char *Data = new char[Size];
BinarySection &BS = BC->registerOrUpdateSection(
".text", ELF::SHT_PROGBITS, ELF::SHF_EXECINSTR | ELF::SHF_ALLOC,
(uint8_t *)Data, Size, 4);
MCSymbol *RelSymbol1 = BC->getOrCreateGlobalSymbol(4, "Func1");
ASSERT_TRUE(RelSymbol1);
BS.addRelocation(8, RelSymbol1, ELF::R_AARCH64_JUMP26, 0, 0, true);
MCSymbol *RelSymbol2 = BC->getOrCreateGlobalSymbol(16, "Func2");
ASSERT_TRUE(RelSymbol2);
BS.addRelocation(12, RelSymbol2, ELF::R_AARCH64_JUMP26, 0, 0, true);
std::error_code EC;
SmallVector<char> Vect(Size);
raw_svector_ostream OS(Vect);
BS.flushPendingRelocations(OS, [&](const MCSymbol *S) {
return S == RelSymbol1 ? 4 : S == RelSymbol2 ? 16 : 0;
});
const uint8_t Func1Call[4] = {255, 255, 255, 23};
const uint8_t Func2Call[4] = {1, 0, 0, 20};
EXPECT_FALSE(memcmp(Func1Call, &Vect[8], 4))
<< "Wrong backward branch value\n";
EXPECT_FALSE(memcmp(Func2Call, &Vect[12], 4))
<< "Wrong forward branch value\n";
}
#endif
TEST_P(BinaryContextTester, BaseAddress) {
// Check that base address calculation is correct for a binary with the
// following segment layout:
BC->SegmentMapInfo[0] =
SegmentInfo{0, 0x10e8c2b4, 0, 0x10e8c2b4, 0x1000, true};
BC->SegmentMapInfo[0x10e8d2b4] =
SegmentInfo{0x10e8d2b4, 0x3952faec, 0x10e8c2b4, 0x3952faec, 0x1000, true};
BC->SegmentMapInfo[0x4a3bddc0] =
SegmentInfo{0x4a3bddc0, 0x148e828, 0x4a3bbdc0, 0x148e828, 0x1000, true};
BC->SegmentMapInfo[0x4b84d5e8] =
SegmentInfo{0x4b84d5e8, 0x294f830, 0x4b84a5e8, 0x3d3820, 0x1000, true};
std::optional<uint64_t> BaseAddress =
BC->getBaseAddressForMapping(0x7f13f5556000, 0x10e8c000);
ASSERT_TRUE(BaseAddress.has_value());
ASSERT_EQ(*BaseAddress, 0x7f13e46c9000ULL);
BaseAddress = BC->getBaseAddressForMapping(0x7f13f5556000, 0x137a000);
ASSERT_FALSE(BaseAddress.has_value());
}
TEST_P(BinaryContextTester, BaseAddress2) {
// Check that base address calculation is correct for a binary if the
// alignment in ELF file are different from pagesize.
// The segment layout is as follows:
BC->SegmentMapInfo[0] = SegmentInfo{0, 0x2177c, 0, 0x2177c, 0x10000, true};
BC->SegmentMapInfo[0x31860] =
SegmentInfo{0x31860, 0x370, 0x21860, 0x370, 0x10000, true};
BC->SegmentMapInfo[0x41c20] =
SegmentInfo{0x41c20, 0x1f8, 0x21c20, 0x1f8, 0x10000, true};
BC->SegmentMapInfo[0x54e18] =
SegmentInfo{0x54e18, 0x51, 0x24e18, 0x51, 0x10000, true};
std::optional<uint64_t> BaseAddress =
BC->getBaseAddressForMapping(0xaaaaea444000, 0x21000);
ASSERT_TRUE(BaseAddress.has_value());
ASSERT_EQ(*BaseAddress, 0xaaaaea413000ULL);
BaseAddress = BC->getBaseAddressForMapping(0xaaaaea444000, 0x11000);
ASSERT_FALSE(BaseAddress.has_value());
}
TEST_P(BinaryContextTester, BaseAddressSegmentsSmallerThanAlignment) {
// Check that the correct segment is used to compute the base address
// when multiple segments are close together in the ELF file (closer
// than the required alignment in the process space).
// See https://github.com/llvm/llvm-project/issues/109384
BC->SegmentMapInfo[0] = SegmentInfo{0, 0x1d1c, 0, 0x1d1c, 0x10000, false};
BC->SegmentMapInfo[0x11d40] =
SegmentInfo{0x11d40, 0x11e0, 0x1d40, 0x11e0, 0x10000, true};
BC->SegmentMapInfo[0x22f20] =
SegmentInfo{0x22f20, 0x10e0, 0x2f20, 0x1f0, 0x10000, false};
BC->SegmentMapInfo[0x33110] =
SegmentInfo{0x33110, 0x89, 0x3110, 0x88, 0x10000, false};
std::optional<uint64_t> BaseAddress =
BC->getBaseAddressForMapping(0xaaaaaaab1000, 0x1000);
ASSERT_TRUE(BaseAddress.has_value());
ASSERT_EQ(*BaseAddress, 0xaaaaaaaa0000ULL);
}