
Use SymbolStringPtr for Symbol names in LinkGraph. This reduces string interning on the boundary between JITLink and ORC, and allows pointer comparisons (rather than string comparisons) between Symbol names. This should improve the performance and readability of code that bridges between JITLink and ORC (e.g. ObjectLinkingLayer and ObjectLinkingLayer::Plugins). To enable use of SymbolStringPtr a std::shared_ptr<SymbolStringPool> is added to LinkGraph and threaded through to its construction sites in LLVM and Bolt. All LinkGraphs that are to have symbol names compared by pointer equality must point to the same SymbolStringPool instance, which in ORC sessions should be the pool attached to the ExecutionSession. --------- Co-authored-by: Lang Hames <lhames@gmail.com>
221 lines
7.7 KiB
C++
221 lines
7.7 KiB
C++
//===- bolt/unittest/Core/BinaryContext.cpp -------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "bolt/Core/BinaryContext.h"
|
|
#include "llvm/BinaryFormat/ELF.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
|
|
#include "llvm/Support/TargetSelect.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
using namespace llvm::ELF;
|
|
using namespace bolt;
|
|
|
|
namespace {
|
|
struct BinaryContextTester : public testing::TestWithParam<Triple::ArchType> {
|
|
void SetUp() override {
|
|
initalizeLLVM();
|
|
prepareElf();
|
|
initializeBOLT();
|
|
}
|
|
|
|
protected:
|
|
void initalizeLLVM() {
|
|
llvm::InitializeAllTargetInfos();
|
|
llvm::InitializeAllTargetMCs();
|
|
llvm::InitializeAllAsmParsers();
|
|
llvm::InitializeAllDisassemblers();
|
|
llvm::InitializeAllTargets();
|
|
llvm::InitializeAllAsmPrinters();
|
|
}
|
|
|
|
void prepareElf() {
|
|
memcpy(ElfBuf, "\177ELF", 4);
|
|
ELF64LE::Ehdr *EHdr = reinterpret_cast<typename ELF64LE::Ehdr *>(ElfBuf);
|
|
EHdr->e_ident[llvm::ELF::EI_CLASS] = llvm::ELF::ELFCLASS64;
|
|
EHdr->e_ident[llvm::ELF::EI_DATA] = llvm::ELF::ELFDATA2LSB;
|
|
EHdr->e_machine = GetParam() == Triple::aarch64 ? EM_AARCH64 : EM_X86_64;
|
|
MemoryBufferRef Source(StringRef(ElfBuf, sizeof(ElfBuf)), "ELF");
|
|
ObjFile = cantFail(ObjectFile::createObjectFile(Source));
|
|
}
|
|
|
|
void initializeBOLT() {
|
|
Relocation::Arch = ObjFile->makeTriple().getArch();
|
|
BC = cantFail(BinaryContext::createBinaryContext(
|
|
ObjFile->makeTriple(), std::make_shared<orc::SymbolStringPool>(),
|
|
ObjFile->getFileName(), nullptr, true,
|
|
DWARFContext::create(*ObjFile.get()), {llvm::outs(), llvm::errs()}));
|
|
ASSERT_FALSE(!BC);
|
|
}
|
|
|
|
char ElfBuf[sizeof(typename ELF64LE::Ehdr)] = {};
|
|
std::unique_ptr<ObjectFile> ObjFile;
|
|
std::unique_ptr<BinaryContext> BC;
|
|
};
|
|
} // namespace
|
|
|
|
#ifdef X86_AVAILABLE
|
|
|
|
INSTANTIATE_TEST_SUITE_P(X86, BinaryContextTester,
|
|
::testing::Values(Triple::x86_64));
|
|
|
|
#endif
|
|
|
|
#ifdef AARCH64_AVAILABLE
|
|
|
|
INSTANTIATE_TEST_SUITE_P(AArch64, BinaryContextTester,
|
|
::testing::Values(Triple::aarch64));
|
|
|
|
TEST_P(BinaryContextTester, FlushPendingRelocCALL26) {
|
|
if (GetParam() != Triple::aarch64)
|
|
GTEST_SKIP();
|
|
|
|
// This test checks that encodeValueAArch64 used by flushPendingRelocations
|
|
// returns correctly encoded values for CALL26 relocation for both backward
|
|
// and forward branches.
|
|
//
|
|
// The offsets layout is:
|
|
// 4: func1
|
|
// 8: bl func1
|
|
// 12: bl func2
|
|
// 16: func2
|
|
|
|
constexpr size_t DataSize = 20;
|
|
uint8_t *Data = new uint8_t[DataSize];
|
|
BinarySection &BS = BC->registerOrUpdateSection(
|
|
".text", ELF::SHT_PROGBITS, ELF::SHF_EXECINSTR | ELF::SHF_ALLOC, Data,
|
|
DataSize, 4);
|
|
MCSymbol *RelSymbol1 = BC->getOrCreateGlobalSymbol(4, "Func1");
|
|
ASSERT_TRUE(RelSymbol1);
|
|
BS.addRelocation(8, RelSymbol1, ELF::R_AARCH64_CALL26, 0, 0, true);
|
|
MCSymbol *RelSymbol2 = BC->getOrCreateGlobalSymbol(16, "Func2");
|
|
ASSERT_TRUE(RelSymbol2);
|
|
BS.addRelocation(12, RelSymbol2, ELF::R_AARCH64_CALL26, 0, 0, true);
|
|
|
|
std::error_code EC;
|
|
SmallVector<char> Vect(DataSize);
|
|
raw_svector_ostream OS(Vect);
|
|
|
|
BS.flushPendingRelocations(OS, [&](const MCSymbol *S) {
|
|
return S == RelSymbol1 ? 4 : S == RelSymbol2 ? 16 : 0;
|
|
});
|
|
|
|
const uint8_t Func1Call[4] = {255, 255, 255, 151};
|
|
const uint8_t Func2Call[4] = {1, 0, 0, 148};
|
|
|
|
EXPECT_FALSE(memcmp(Func1Call, &Vect[8], 4)) << "Wrong backward call value\n";
|
|
EXPECT_FALSE(memcmp(Func2Call, &Vect[12], 4)) << "Wrong forward call value\n";
|
|
}
|
|
|
|
TEST_P(BinaryContextTester, FlushPendingRelocJUMP26) {
|
|
if (GetParam() != Triple::aarch64)
|
|
GTEST_SKIP();
|
|
|
|
// This test checks that encodeValueAArch64 used by flushPendingRelocations
|
|
// returns correctly encoded values for R_AARCH64_JUMP26 relocation for both
|
|
// backward and forward branches.
|
|
//
|
|
// The offsets layout is:
|
|
// 4: func1
|
|
// 8: b func1
|
|
// 12: b func2
|
|
// 16: func2
|
|
|
|
const uint64_t Size = 20;
|
|
char *Data = new char[Size];
|
|
BinarySection &BS = BC->registerOrUpdateSection(
|
|
".text", ELF::SHT_PROGBITS, ELF::SHF_EXECINSTR | ELF::SHF_ALLOC,
|
|
(uint8_t *)Data, Size, 4);
|
|
MCSymbol *RelSymbol1 = BC->getOrCreateGlobalSymbol(4, "Func1");
|
|
ASSERT_TRUE(RelSymbol1);
|
|
BS.addRelocation(8, RelSymbol1, ELF::R_AARCH64_JUMP26, 0, 0, true);
|
|
MCSymbol *RelSymbol2 = BC->getOrCreateGlobalSymbol(16, "Func2");
|
|
ASSERT_TRUE(RelSymbol2);
|
|
BS.addRelocation(12, RelSymbol2, ELF::R_AARCH64_JUMP26, 0, 0, true);
|
|
|
|
std::error_code EC;
|
|
SmallVector<char> Vect(Size);
|
|
raw_svector_ostream OS(Vect);
|
|
|
|
BS.flushPendingRelocations(OS, [&](const MCSymbol *S) {
|
|
return S == RelSymbol1 ? 4 : S == RelSymbol2 ? 16 : 0;
|
|
});
|
|
|
|
const uint8_t Func1Call[4] = {255, 255, 255, 23};
|
|
const uint8_t Func2Call[4] = {1, 0, 0, 20};
|
|
|
|
EXPECT_FALSE(memcmp(Func1Call, &Vect[8], 4))
|
|
<< "Wrong backward branch value\n";
|
|
EXPECT_FALSE(memcmp(Func2Call, &Vect[12], 4))
|
|
<< "Wrong forward branch value\n";
|
|
}
|
|
|
|
#endif
|
|
|
|
TEST_P(BinaryContextTester, BaseAddress) {
|
|
// Check that base address calculation is correct for a binary with the
|
|
// following segment layout:
|
|
BC->SegmentMapInfo[0] =
|
|
SegmentInfo{0, 0x10e8c2b4, 0, 0x10e8c2b4, 0x1000, true};
|
|
BC->SegmentMapInfo[0x10e8d2b4] =
|
|
SegmentInfo{0x10e8d2b4, 0x3952faec, 0x10e8c2b4, 0x3952faec, 0x1000, true};
|
|
BC->SegmentMapInfo[0x4a3bddc0] =
|
|
SegmentInfo{0x4a3bddc0, 0x148e828, 0x4a3bbdc0, 0x148e828, 0x1000, true};
|
|
BC->SegmentMapInfo[0x4b84d5e8] =
|
|
SegmentInfo{0x4b84d5e8, 0x294f830, 0x4b84a5e8, 0x3d3820, 0x1000, true};
|
|
|
|
std::optional<uint64_t> BaseAddress =
|
|
BC->getBaseAddressForMapping(0x7f13f5556000, 0x10e8c000);
|
|
ASSERT_TRUE(BaseAddress.has_value());
|
|
ASSERT_EQ(*BaseAddress, 0x7f13e46c9000ULL);
|
|
|
|
BaseAddress = BC->getBaseAddressForMapping(0x7f13f5556000, 0x137a000);
|
|
ASSERT_FALSE(BaseAddress.has_value());
|
|
}
|
|
|
|
TEST_P(BinaryContextTester, BaseAddress2) {
|
|
// Check that base address calculation is correct for a binary if the
|
|
// alignment in ELF file are different from pagesize.
|
|
// The segment layout is as follows:
|
|
BC->SegmentMapInfo[0] = SegmentInfo{0, 0x2177c, 0, 0x2177c, 0x10000, true};
|
|
BC->SegmentMapInfo[0x31860] =
|
|
SegmentInfo{0x31860, 0x370, 0x21860, 0x370, 0x10000, true};
|
|
BC->SegmentMapInfo[0x41c20] =
|
|
SegmentInfo{0x41c20, 0x1f8, 0x21c20, 0x1f8, 0x10000, true};
|
|
BC->SegmentMapInfo[0x54e18] =
|
|
SegmentInfo{0x54e18, 0x51, 0x24e18, 0x51, 0x10000, true};
|
|
|
|
std::optional<uint64_t> BaseAddress =
|
|
BC->getBaseAddressForMapping(0xaaaaea444000, 0x21000);
|
|
ASSERT_TRUE(BaseAddress.has_value());
|
|
ASSERT_EQ(*BaseAddress, 0xaaaaea413000ULL);
|
|
|
|
BaseAddress = BC->getBaseAddressForMapping(0xaaaaea444000, 0x11000);
|
|
ASSERT_FALSE(BaseAddress.has_value());
|
|
}
|
|
|
|
TEST_P(BinaryContextTester, BaseAddressSegmentsSmallerThanAlignment) {
|
|
// Check that the correct segment is used to compute the base address
|
|
// when multiple segments are close together in the ELF file (closer
|
|
// than the required alignment in the process space).
|
|
// See https://github.com/llvm/llvm-project/issues/109384
|
|
BC->SegmentMapInfo[0] = SegmentInfo{0, 0x1d1c, 0, 0x1d1c, 0x10000, false};
|
|
BC->SegmentMapInfo[0x11d40] =
|
|
SegmentInfo{0x11d40, 0x11e0, 0x1d40, 0x11e0, 0x10000, true};
|
|
BC->SegmentMapInfo[0x22f20] =
|
|
SegmentInfo{0x22f20, 0x10e0, 0x2f20, 0x1f0, 0x10000, false};
|
|
BC->SegmentMapInfo[0x33110] =
|
|
SegmentInfo{0x33110, 0x89, 0x3110, 0x88, 0x10000, false};
|
|
|
|
std::optional<uint64_t> BaseAddress =
|
|
BC->getBaseAddressForMapping(0xaaaaaaab1000, 0x1000);
|
|
ASSERT_TRUE(BaseAddress.has_value());
|
|
ASSERT_EQ(*BaseAddress, 0xaaaaaaaa0000ULL);
|
|
}
|