llvm-project/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp
Bjorn Pettersson 2d3167f8d8
[SeparateConstOffsetFromGEP] Avoid miscompiles related to trunc nuw/nsw (#154582)
Drop poison generating flags on trunc when distributing trunc over
add/sub/or. We need to do this since for example
(add (trunc nuw A), (trunc nuw B)) is more poisonous than
(trunc nuw (add A, B))).

In some situations it is pessimistic to drop the flags. Such as
if the add in the example above also has the nuw flag. For now we
keep it simple and always drop the flags.

Worth mentioning is that we drop the flags when cloning
instructions and rebuilding the chain. This is done after the
"allowsPreservingNUW" checks in ConstantOffsetExtractor::Extract.
So we still take the "trunc nuw" into consideration when determining
if nuw can be preserved in the gep (which should be ok since that
check also require that all the involved binary operations has nuw).

Fixes #154116
2025-08-22 10:27:57 +02:00

1492 lines
58 KiB
C++

//===- SeparateConstOffsetFromGEP.cpp -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Loop unrolling may create many similar GEPs for array accesses.
// e.g., a 2-level loop
//
// float a[32][32]; // global variable
//
// for (int i = 0; i < 2; ++i) {
// for (int j = 0; j < 2; ++j) {
// ...
// ... = a[x + i][y + j];
// ...
// }
// }
//
// will probably be unrolled to:
//
// gep %a, 0, %x, %y; load
// gep %a, 0, %x, %y + 1; load
// gep %a, 0, %x + 1, %y; load
// gep %a, 0, %x + 1, %y + 1; load
//
// LLVM's GVN does not use partial redundancy elimination yet, and is thus
// unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
// significant slowdown in targets with limited addressing modes. For instance,
// because the PTX target does not support the reg+reg addressing mode, the
// NVPTX backend emits PTX code that literally computes the pointer address of
// each GEP, wasting tons of registers. It emits the following PTX for the
// first load and similar PTX for other loads.
//
// mov.u32 %r1, %x;
// mov.u32 %r2, %y;
// mul.wide.u32 %rl2, %r1, 128;
// mov.u64 %rl3, a;
// add.s64 %rl4, %rl3, %rl2;
// mul.wide.u32 %rl5, %r2, 4;
// add.s64 %rl6, %rl4, %rl5;
// ld.global.f32 %f1, [%rl6];
//
// To reduce the register pressure, the optimization implemented in this file
// merges the common part of a group of GEPs, so we can compute each pointer
// address by adding a simple offset to the common part, saving many registers.
//
// It works by splitting each GEP into a variadic base and a constant offset.
// The variadic base can be computed once and reused by multiple GEPs, and the
// constant offsets can be nicely folded into the reg+immediate addressing mode
// (supported by most targets) without using any extra register.
//
// For instance, we transform the four GEPs and four loads in the above example
// into:
//
// base = gep a, 0, x, y
// load base
// load base + 1 * sizeof(float)
// load base + 32 * sizeof(float)
// load base + 33 * sizeof(float)
//
// Given the transformed IR, a backend that supports the reg+immediate
// addressing mode can easily fold the pointer arithmetics into the loads. For
// example, the NVPTX backend can easily fold the pointer arithmetics into the
// ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
//
// mov.u32 %r1, %tid.x;
// mov.u32 %r2, %tid.y;
// mul.wide.u32 %rl2, %r1, 128;
// mov.u64 %rl3, a;
// add.s64 %rl4, %rl3, %rl2;
// mul.wide.u32 %rl5, %r2, 4;
// add.s64 %rl6, %rl4, %rl5;
// ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX
// ld.global.f32 %f2, [%rl6+4]; // much better
// ld.global.f32 %f3, [%rl6+128]; // much better
// ld.global.f32 %f4, [%rl6+132]; // much better
//
// Another improvement enabled by the LowerGEP flag is to lower a GEP with
// multiple indices to multiple GEPs with a single index.
// Such transformation can have following benefits:
// (1) It can always extract constants in the indices of structure type.
// (2) After such Lowering, there are more optimization opportunities such as
// CSE, LICM and CGP.
//
// E.g. The following GEPs have multiple indices:
// BB1:
// %p = getelementptr [10 x %struct], ptr %ptr, i64 %i, i64 %j1, i32 3
// load %p
// ...
// BB2:
// %p2 = getelementptr [10 x %struct], ptr %ptr, i64 %i, i64 %j1, i32 2
// load %p2
// ...
//
// We can not do CSE to the common part related to index "i64 %i". Lowering
// GEPs can achieve such goals.
//
// This pass will lower a GEP with multiple indices into multiple GEPs with a
// single index:
// BB1:
// %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
// %3 = getelementptr i8, ptr %ptr, i64 %2 ; CSE opportunity
// %4 = mul i64 %j1, length_of_struct
// %5 = getelementptr i8, ptr %3, i64 %4
// %p = getelementptr i8, ptr %5, struct_field_3 ; Constant offset
// load %p
// ...
// BB2:
// %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
// %9 = getelementptr i8, ptr %ptr, i64 %8 ; CSE opportunity
// %10 = mul i64 %j2, length_of_struct
// %11 = getelementptr i8, ptr %9, i64 %10
// %p2 = getelementptr i8, ptr %11, struct_field_2 ; Constant offset
// load %p2
// ...
//
// Lowering GEPs can also benefit other passes such as LICM and CGP.
// LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple
// indices if one of the index is variant. If we lower such GEP into invariant
// parts and variant parts, LICM can hoist/sink those invariant parts.
// CGP (CodeGen Prepare) tries to sink address calculations that match the
// target's addressing modes. A GEP with multiple indices may not match and will
// not be sunk. If we lower such GEP into smaller parts, CGP may sink some of
// them. So we end up with a better addressing mode.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/SeparateConstOffsetFromGEP.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <cstdint>
#include <string>
using namespace llvm;
using namespace llvm::PatternMatch;
static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
"disable-separate-const-offset-from-gep", cl::init(false),
cl::desc("Do not separate the constant offset from a GEP instruction"),
cl::Hidden);
// Setting this flag may emit false positives when the input module already
// contains dead instructions. Therefore, we set it only in unit tests that are
// free of dead code.
static cl::opt<bool>
VerifyNoDeadCode("reassociate-geps-verify-no-dead-code", cl::init(false),
cl::desc("Verify this pass produces no dead code"),
cl::Hidden);
namespace {
/// A helper class for separating a constant offset from a GEP index.
///
/// In real programs, a GEP index may be more complicated than a simple addition
/// of something and a constant integer which can be trivially splitted. For
/// example, to split ((a << 3) | 5) + b, we need to search deeper for the
/// constant offset, so that we can separate the index to (a << 3) + b and 5.
///
/// Therefore, this class looks into the expression that computes a given GEP
/// index, and tries to find a constant integer that can be hoisted to the
/// outermost level of the expression as an addition. Not every constant in an
/// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
/// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
/// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
class ConstantOffsetExtractor {
public:
/// Extracts a constant offset from the given GEP index. It returns the
/// new index representing the remainder (equal to the original index minus
/// the constant offset), or nullptr if we cannot extract a constant offset.
/// \p Idx The given GEP index
/// \p GEP The given GEP
/// \p UserChainTail Outputs the tail of UserChain so that we can
/// garbage-collect unused instructions in UserChain.
/// \p PreservesNUW Outputs whether the extraction allows preserving the
/// GEP's nuw flag, if it has one.
static Value *Extract(Value *Idx, GetElementPtrInst *GEP,
User *&UserChainTail, bool &PreservesNUW);
/// Looks for a constant offset from the given GEP index without extracting
/// it. It returns the numeric value of the extracted constant offset (0 if
/// failed). The meaning of the arguments are the same as Extract.
static int64_t Find(Value *Idx, GetElementPtrInst *GEP);
private:
ConstantOffsetExtractor(BasicBlock::iterator InsertionPt)
: IP(InsertionPt), DL(InsertionPt->getDataLayout()) {}
/// Searches the expression that computes V for a non-zero constant C s.t.
/// V can be reassociated into the form V' + C. If the searching is
/// successful, returns C and update UserChain as a def-use chain from C to V;
/// otherwise, UserChain is empty.
///
/// \p V The given expression
/// \p SignExtended Whether V will be sign-extended in the computation of the
/// GEP index
/// \p ZeroExtended Whether V will be zero-extended in the computation of the
/// GEP index
/// \p NonNegative Whether V is guaranteed to be non-negative. For example,
/// an index of an inbounds GEP is guaranteed to be
/// non-negative. Levaraging this, we can better split
/// inbounds GEPs.
APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
/// A helper function to look into both operands of a binary operator.
APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
bool ZeroExtended);
/// After finding the constant offset C from the GEP index I, we build a new
/// index I' s.t. I' + C = I. This function builds and returns the new
/// index I' according to UserChain produced by function "find".
///
/// The building conceptually takes two steps:
/// 1) iteratively distribute s/zext towards the leaves of the expression tree
/// that computes I
/// 2) reassociate the expression tree to the form I' + C.
///
/// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
/// sext to a, b and 5 so that we have
/// sext(a) + (sext(b) + 5).
/// Then, we reassociate it to
/// (sext(a) + sext(b)) + 5.
/// Given this form, we know I' is sext(a) + sext(b).
Value *rebuildWithoutConstOffset();
/// After the first step of rebuilding the GEP index without the constant
/// offset, distribute s/zext to the operands of all operators in UserChain.
/// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
/// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
///
/// The function also updates UserChain to point to new subexpressions after
/// distributing s/zext. e.g., the old UserChain of the above example is
/// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
/// and the new UserChain is
/// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
/// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
///
/// \p ChainIndex The index to UserChain. ChainIndex is initially
/// UserChain.size() - 1, and is decremented during
/// the recursion.
Value *distributeExtsAndCloneChain(unsigned ChainIndex);
/// Reassociates the GEP index to the form I' + C and returns I'.
Value *removeConstOffset(unsigned ChainIndex);
/// A helper function to apply ExtInsts, a list of s/zext, to value V.
/// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
/// returns "sext i32 (zext i16 V to i32) to i64".
Value *applyExts(Value *V);
/// A helper function that returns whether we can trace into the operands
/// of binary operator BO for a constant offset.
///
/// \p SignExtended Whether BO is surrounded by sext
/// \p ZeroExtended Whether BO is surrounded by zext
/// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
/// array index.
bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
bool NonNegative);
/// Analyze XOR instruction to extract disjoint constant bits that behave
/// like addition operations for improved address mode folding.
APInt extractDisjointBitsFromXor(BinaryOperator *XorInst);
/// The path from the constant offset to the old GEP index. e.g., if the GEP
/// index is "a * b + (c + 5)". After running function find, UserChain[0] will
/// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
/// UserChain[2] will be the entire expression "a * b + (c + 5)".
///
/// This path helps to rebuild the new GEP index.
SmallVector<User *, 8> UserChain;
/// A data structure used in rebuildWithoutConstOffset. Contains all
/// sext/zext instructions along UserChain.
SmallVector<CastInst *, 16> ExtInsts;
/// Insertion position of cloned instructions.
BasicBlock::iterator IP;
const DataLayout &DL;
};
/// A pass that tries to split every GEP in the function into a variadic
/// base and a constant offset. It is a FunctionPass because searching for the
/// constant offset may inspect other basic blocks.
class SeparateConstOffsetFromGEPLegacyPass : public FunctionPass {
public:
static char ID;
SeparateConstOffsetFromGEPLegacyPass(bool LowerGEP = false)
: FunctionPass(ID), LowerGEP(LowerGEP) {
initializeSeparateConstOffsetFromGEPLegacyPassPass(
*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.setPreservesCFG();
AU.addRequired<TargetLibraryInfoWrapperPass>();
}
bool runOnFunction(Function &F) override;
private:
bool LowerGEP;
};
/// A pass that tries to split every GEP in the function into a variadic
/// base and a constant offset. It is a FunctionPass because searching for the
/// constant offset may inspect other basic blocks.
class SeparateConstOffsetFromGEP {
public:
SeparateConstOffsetFromGEP(
DominatorTree *DT, LoopInfo *LI, TargetLibraryInfo *TLI,
function_ref<TargetTransformInfo &(Function &)> GetTTI, bool LowerGEP)
: DT(DT), LI(LI), TLI(TLI), GetTTI(GetTTI), LowerGEP(LowerGEP) {}
bool run(Function &F);
private:
/// Track the operands of an add or sub.
using ExprKey = std::pair<Value *, Value *>;
/// Create a pair for use as a map key for a commutable operation.
static ExprKey createNormalizedCommutablePair(Value *A, Value *B) {
if (A < B)
return {A, B};
return {B, A};
}
/// Tries to split the given GEP into a variadic base and a constant offset,
/// and returns true if the splitting succeeds.
bool splitGEP(GetElementPtrInst *GEP);
/// Tries to reorder the given GEP with the GEP that produces the base if
/// doing so results in producing a constant offset as the outermost
/// index.
bool reorderGEP(GetElementPtrInst *GEP, TargetTransformInfo &TTI);
/// Lower a GEP with multiple indices into multiple GEPs with a single index.
/// Function splitGEP already split the original GEP into a variadic part and
/// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
/// variadic part into a set of GEPs with a single index and applies
/// AccumulativeByteOffset to it.
/// \p Variadic The variadic part of the original GEP.
/// \p AccumulativeByteOffset The constant offset.
void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic,
int64_t AccumulativeByteOffset);
/// Finds the constant offset within each index and accumulates them. If
/// LowerGEP is true, it finds in indices of both sequential and structure
/// types, otherwise it only finds in sequential indices. The output
/// NeedsExtraction indicates whether we successfully find a non-zero constant
/// offset.
int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
/// Canonicalize array indices to pointer-size integers. This helps to
/// simplify the logic of splitting a GEP. For example, if a + b is a
/// pointer-size integer, we have
/// gep base, a + b = gep (gep base, a), b
/// However, this equality may not hold if the size of a + b is smaller than
/// the pointer size, because LLVM conceptually sign-extends GEP indices to
/// pointer size before computing the address
/// (http://llvm.org/docs/LangRef.html#id181).
///
/// This canonicalization is very likely already done in clang and
/// instcombine. Therefore, the program will probably remain the same.
///
/// Returns true if the module changes.
///
/// Verified in @i32_add in split-gep.ll
bool canonicalizeArrayIndicesToIndexSize(GetElementPtrInst *GEP);
/// Optimize sext(a)+sext(b) to sext(a+b) when a+b can't sign overflow.
/// SeparateConstOffsetFromGEP distributes a sext to leaves before extracting
/// the constant offset. After extraction, it becomes desirable to reunion the
/// distributed sexts. For example,
///
/// &a[sext(i +nsw (j +nsw 5)]
/// => distribute &a[sext(i) +nsw (sext(j) +nsw 5)]
/// => constant extraction &a[sext(i) + sext(j)] + 5
/// => reunion &a[sext(i +nsw j)] + 5
bool reuniteExts(Function &F);
/// A helper that reunites sexts in an instruction.
bool reuniteExts(Instruction *I);
/// Find the closest dominator of <Dominatee> that is equivalent to <Key>.
Instruction *findClosestMatchingDominator(
ExprKey Key, Instruction *Dominatee,
DenseMap<ExprKey, SmallVector<Instruction *, 2>> &DominatingExprs);
/// Verify F is free of dead code.
void verifyNoDeadCode(Function &F);
bool hasMoreThanOneUseInLoop(Value *v, Loop *L);
// Swap the index operand of two GEP.
void swapGEPOperand(GetElementPtrInst *First, GetElementPtrInst *Second);
// Check if it is safe to swap operand of two GEP.
bool isLegalToSwapOperand(GetElementPtrInst *First, GetElementPtrInst *Second,
Loop *CurLoop);
const DataLayout *DL = nullptr;
DominatorTree *DT = nullptr;
LoopInfo *LI;
TargetLibraryInfo *TLI;
// Retrieved lazily since not always used.
function_ref<TargetTransformInfo &(Function &)> GetTTI;
/// Whether to lower a GEP with multiple indices into arithmetic operations or
/// multiple GEPs with a single index.
bool LowerGEP;
DenseMap<ExprKey, SmallVector<Instruction *, 2>> DominatingAdds;
DenseMap<ExprKey, SmallVector<Instruction *, 2>> DominatingSubs;
};
} // end anonymous namespace
char SeparateConstOffsetFromGEPLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(
SeparateConstOffsetFromGEPLegacyPass, "separate-const-offset-from-gep",
"Split GEPs to a variadic base and a constant offset for better CSE", false,
false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(
SeparateConstOffsetFromGEPLegacyPass, "separate-const-offset-from-gep",
"Split GEPs to a variadic base and a constant offset for better CSE", false,
false)
FunctionPass *llvm::createSeparateConstOffsetFromGEPPass(bool LowerGEP) {
return new SeparateConstOffsetFromGEPLegacyPass(LowerGEP);
}
bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
bool ZeroExtended,
BinaryOperator *BO,
bool NonNegative) {
// We only consider ADD, SUB and OR, because a non-zero constant found in
// expressions composed of these operations can be easily hoisted as a
// constant offset by reassociation.
if (BO->getOpcode() != Instruction::Add &&
BO->getOpcode() != Instruction::Sub &&
BO->getOpcode() != Instruction::Or) {
return false;
}
Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
// Do not trace into "or" unless it is equivalent to "add".
// This is the case if the or's disjoint flag is set.
if (BO->getOpcode() == Instruction::Or &&
!cast<PossiblyDisjointInst>(BO)->isDisjoint())
return false;
// FIXME: We don't currently support constants from the RHS of subs,
// when we are zero-extended, because we need a way to zero-extended
// them before they are negated.
if (ZeroExtended && !SignExtended && BO->getOpcode() == Instruction::Sub)
return false;
// In addition, tracing into BO requires that its surrounding s/zext (if
// any) is distributable to both operands.
//
// Suppose BO = A op B.
// SignExtended | ZeroExtended | Distributable?
// --------------+--------------+----------------------------------
// 0 | 0 | true because no s/zext exists
// 0 | 1 | zext(BO) == zext(A) op zext(B)
// 1 | 0 | sext(BO) == sext(A) op sext(B)
// 1 | 1 | zext(sext(BO)) ==
// | | zext(sext(A)) op zext(sext(B))
if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
// If a + b >= 0 and (a >= 0 or b >= 0), then
// sext(a + b) = sext(a) + sext(b)
// even if the addition is not marked nsw.
//
// Leveraging this invariant, we can trace into an sext'ed inbound GEP
// index if the constant offset is non-negative.
//
// Verified in @sext_add in split-gep.ll.
if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
if (!ConstLHS->isNegative())
return true;
}
if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
if (!ConstRHS->isNegative())
return true;
}
}
// sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
// zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
if (BO->getOpcode() == Instruction::Add ||
BO->getOpcode() == Instruction::Sub) {
if (SignExtended && !BO->hasNoSignedWrap())
return false;
if (ZeroExtended && !BO->hasNoUnsignedWrap())
return false;
}
return true;
}
APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
bool SignExtended,
bool ZeroExtended) {
// Save off the current height of the chain, in case we need to restore it.
size_t ChainLength = UserChain.size();
// BO being non-negative does not shed light on whether its operands are
// non-negative. Clear the NonNegative flag here.
APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
/* NonNegative */ false);
// If we found a constant offset in the left operand, stop and return that.
// This shortcut might cause us to miss opportunities of combining the
// constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
// However, such cases are probably already handled by -instcombine,
// given this pass runs after the standard optimizations.
if (ConstantOffset != 0) return ConstantOffset;
// Reset the chain back to where it was when we started exploring this node,
// since visiting the LHS didn't pan out.
UserChain.resize(ChainLength);
ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
/* NonNegative */ false);
// If U is a sub operator, negate the constant offset found in the right
// operand.
if (BO->getOpcode() == Instruction::Sub)
ConstantOffset = -ConstantOffset;
// If RHS wasn't a suitable candidate either, reset the chain again.
if (ConstantOffset == 0)
UserChain.resize(ChainLength);
return ConstantOffset;
}
APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
bool ZeroExtended, bool NonNegative) {
// TODO(jingyue): We could trace into integer/pointer casts, such as
// inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
// integers because it gives good enough results for our benchmarks.
unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
// We cannot do much with Values that are not a User, such as an Argument.
User *U = dyn_cast<User>(V);
if (U == nullptr) return APInt(BitWidth, 0);
APInt ConstantOffset(BitWidth, 0);
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
// Hooray, we found it!
ConstantOffset = CI->getValue();
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
// Trace into subexpressions for more hoisting opportunities.
if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative))
ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
// Handle XOR with disjoint bits that can be treated as addition.
else if (BO->getOpcode() == Instruction::Xor)
ConstantOffset = extractDisjointBitsFromXor(BO);
} else if (isa<TruncInst>(V)) {
ConstantOffset =
find(U->getOperand(0), SignExtended, ZeroExtended, NonNegative)
.trunc(BitWidth);
} else if (isa<SExtInst>(V)) {
ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
ZeroExtended, NonNegative).sext(BitWidth);
} else if (isa<ZExtInst>(V)) {
// As an optimization, we can clear the SignExtended flag because
// sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
//
// Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
ConstantOffset =
find(U->getOperand(0), /* SignExtended */ false,
/* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
}
// If we found a non-zero constant offset, add it to the path for
// rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
// help this optimization.
if (ConstantOffset != 0)
UserChain.push_back(U);
return ConstantOffset;
}
Value *ConstantOffsetExtractor::applyExts(Value *V) {
Value *Current = V;
// ExtInsts is built in the use-def order. Therefore, we apply them to V
// in the reversed order.
for (CastInst *I : llvm::reverse(ExtInsts)) {
if (Constant *C = dyn_cast<Constant>(Current)) {
// Try to constant fold the cast.
Current = ConstantFoldCastOperand(I->getOpcode(), C, I->getType(), DL);
if (Current)
continue;
}
Instruction *Ext = I->clone();
Ext->setOperand(0, Current);
// In ConstantOffsetExtractor::find we do not analyze nuw/nsw for trunc, so
// we assume that it is ok to redistribute trunc over add/sub/or. But for
// example (add (trunc nuw A), (trunc nuw B)) is more poisonous than (trunc
// nuw (add A, B))). To make such redistributions legal we drop all the
// poison generating flags from cloned trunc instructions here.
if (isa<TruncInst>(Ext))
Ext->dropPoisonGeneratingFlags();
Ext->insertBefore(*IP->getParent(), IP);
Current = Ext;
}
return Current;
}
Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
distributeExtsAndCloneChain(UserChain.size() - 1);
// Remove all nullptrs (used to be s/zext) from UserChain.
unsigned NewSize = 0;
for (User *I : UserChain) {
if (I != nullptr) {
UserChain[NewSize] = I;
NewSize++;
}
}
UserChain.resize(NewSize);
return removeConstOffset(UserChain.size() - 1);
}
Value *
ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
User *U = UserChain[ChainIndex];
if (ChainIndex == 0) {
assert(isa<ConstantInt>(U));
// If U is a ConstantInt, applyExts will return a ConstantInt as well.
return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
}
if (CastInst *Cast = dyn_cast<CastInst>(U)) {
assert(
(isa<SExtInst>(Cast) || isa<ZExtInst>(Cast) || isa<TruncInst>(Cast)) &&
"Only following instructions can be traced: sext, zext & trunc");
ExtInsts.push_back(Cast);
UserChain[ChainIndex] = nullptr;
return distributeExtsAndCloneChain(ChainIndex - 1);
}
// Function find only trace into BinaryOperator and CastInst.
BinaryOperator *BO = cast<BinaryOperator>(U);
// OpNo = which operand of BO is UserChain[ChainIndex - 1]
unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
BinaryOperator *NewBO = nullptr;
if (OpNo == 0) {
NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
BO->getName(), IP);
} else {
NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
BO->getName(), IP);
}
return UserChain[ChainIndex] = NewBO;
}
Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
if (ChainIndex == 0) {
assert(isa<ConstantInt>(UserChain[ChainIndex]));
return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
}
BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
assert((BO->use_empty() || BO->hasOneUse()) &&
"distributeExtsAndCloneChain clones each BinaryOperator in "
"UserChain, so no one should be used more than "
"once");
unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
Value *NextInChain = removeConstOffset(ChainIndex - 1);
Value *TheOther = BO->getOperand(1 - OpNo);
if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
if (CI->isZero()) {
// Custom XOR handling for disjoint bits - preserves original XOR
// with non-disjoint constant bits.
// TODO: The design should be updated to support partial constant
// extraction.
if (BO->getOpcode() == Instruction::Xor)
return BO;
// If NextInChain is 0 and not the LHS of a sub, we can simplify the
// sub-expression to be just TheOther.
if (!(BO->getOpcode() == Instruction::Sub && OpNo == 0))
return TheOther;
}
}
BinaryOperator::BinaryOps NewOp = BO->getOpcode();
if (BO->getOpcode() == Instruction::Or) {
// Rebuild "or" as "add", because "or" may be invalid for the new
// expression.
//
// For instance, given
// a | (b + 5) where a and b + 5 have no common bits,
// we can extract 5 as the constant offset.
//
// However, reusing the "or" in the new index would give us
// (a | b) + 5
// which does not equal a | (b + 5).
//
// Replacing the "or" with "add" is fine, because
// a | (b + 5) = a + (b + 5) = (a + b) + 5
NewOp = Instruction::Add;
}
BinaryOperator *NewBO;
if (OpNo == 0) {
NewBO = BinaryOperator::Create(NewOp, NextInChain, TheOther, "", IP);
} else {
NewBO = BinaryOperator::Create(NewOp, TheOther, NextInChain, "", IP);
}
NewBO->takeName(BO);
return NewBO;
}
/// Analyze XOR instruction to extract disjoint constant bits for address
/// folding
///
/// This function identifies bits in an XOR constant operand that are disjoint
/// from the base operand's known set bits. For these disjoint bits, XOR behaves
/// identically to addition, allowing us to extract them as constant offsets
/// that can be folded into addressing modes.
///
/// Transformation: `Base ^ Const` becomes `(Base ^ NonDisjointBits) +
/// DisjointBits` where DisjointBits = Const & KnownZeros(Base)
///
/// Example with ptr having known-zero low bit:
/// Original: `xor %ptr, 3` ; 3 = 0b11
/// Analysis: DisjointBits = 3 & KnownZeros(%ptr) = 0b11 & 0b01 = 0b01
/// Result: `(xor %ptr, 2) + 1` where 1 can be folded into address mode
///
/// \param XorInst The XOR binary operator to analyze
/// \return APInt containing the disjoint bits that can be extracted as offset,
/// or zero if no disjoint bits exist
APInt ConstantOffsetExtractor::extractDisjointBitsFromXor(
BinaryOperator *XorInst) {
assert(XorInst && XorInst->getOpcode() == Instruction::Xor &&
"Expected XOR instruction");
const unsigned BitWidth = XorInst->getType()->getScalarSizeInBits();
Value *BaseOperand;
ConstantInt *XorConstant;
// Match pattern: xor BaseOperand, Constant.
if (!match(XorInst, m_Xor(m_Value(BaseOperand), m_ConstantInt(XorConstant))))
return APInt::getZero(BitWidth);
// Compute known bits for the base operand.
const SimplifyQuery SQ(DL);
const KnownBits BaseKnownBits = computeKnownBits(BaseOperand, SQ);
const APInt &ConstantValue = XorConstant->getValue();
// Identify disjoint bits: constant bits that are known zero in base.
const APInt DisjointBits = ConstantValue & BaseKnownBits.Zero;
// Early exit if no disjoint bits found.
if (DisjointBits.isZero())
return APInt::getZero(BitWidth);
// Compute the remaining non-disjoint bits that stay in the XOR.
const APInt NonDisjointBits = ConstantValue & ~DisjointBits;
// FIXME: Enhance XOR constant extraction to handle nested binary operations.
// Currently we only extract disjoint bits from the immediate XOR constant,
// but we could recursively process cases like:
// xor (add %base, C1), C2 -> add %base, (C1 ^ disjoint_bits(C2))
// This requires careful analysis to ensure the transformation preserves
// semantics, particularly around sign extension and overflow behavior.
// Add the non-disjoint constant to the user chain for later transformation
// This will replace the original constant in the XOR with the new
// constant.
UserChain.push_back(ConstantInt::get(XorInst->getType(), NonDisjointBits));
return DisjointBits;
}
/// A helper function to check if reassociating through an entry in the user
/// chain would invalidate the GEP's nuw flag.
static bool allowsPreservingNUW(const User *U) {
if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
// Binary operations need to be effectively add nuw.
auto Opcode = BO->getOpcode();
if (Opcode == BinaryOperator::Or) {
// Ors are only considered here if they are disjoint. The addition that
// they represent in this case is NUW.
assert(cast<PossiblyDisjointInst>(BO)->isDisjoint());
return true;
}
return Opcode == BinaryOperator::Add && BO->hasNoUnsignedWrap();
}
// UserChain can only contain ConstantInt, CastInst, or BinaryOperator.
// Among the possible CastInsts, only trunc without nuw is a problem: If it
// is distributed through an add nuw, wrapping may occur:
// "add nuw trunc(a), trunc(b)" is more poisonous than "trunc(add nuw a, b)"
if (const TruncInst *TI = dyn_cast<TruncInst>(U))
return TI->hasNoUnsignedWrap();
return isa<CastInst>(U) || isa<ConstantInt>(U);
}
Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP,
User *&UserChainTail,
bool &PreservesNUW) {
ConstantOffsetExtractor Extractor(GEP->getIterator());
// Find a non-zero constant offset first.
APInt ConstantOffset =
Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
GEP->isInBounds());
if (ConstantOffset == 0) {
UserChainTail = nullptr;
PreservesNUW = true;
return nullptr;
}
PreservesNUW = all_of(Extractor.UserChain, allowsPreservingNUW);
// Separates the constant offset from the GEP index.
Value *IdxWithoutConstOffset = Extractor.rebuildWithoutConstOffset();
UserChainTail = Extractor.UserChain.back();
return IdxWithoutConstOffset;
}
int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP) {
// If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
return ConstantOffsetExtractor(GEP->getIterator())
.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
GEP->isInBounds())
.getSExtValue();
}
bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToIndexSize(
GetElementPtrInst *GEP) {
bool Changed = false;
Type *PtrIdxTy = DL->getIndexType(GEP->getType());
gep_type_iterator GTI = gep_type_begin(*GEP);
for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
I != E; ++I, ++GTI) {
// Skip struct member indices which must be i32.
if (GTI.isSequential()) {
if ((*I)->getType() != PtrIdxTy) {
*I = CastInst::CreateIntegerCast(*I, PtrIdxTy, true, "idxprom",
GEP->getIterator());
Changed = true;
}
}
}
return Changed;
}
int64_t
SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
bool &NeedsExtraction) {
NeedsExtraction = false;
int64_t AccumulativeByteOffset = 0;
gep_type_iterator GTI = gep_type_begin(*GEP);
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
if (GTI.isSequential()) {
// Constant offsets of scalable types are not really constant.
if (GTI.getIndexedType()->isScalableTy())
continue;
// Tries to extract a constant offset from this GEP index.
int64_t ConstantOffset =
ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP);
if (ConstantOffset != 0) {
NeedsExtraction = true;
// A GEP may have multiple indices. We accumulate the extracted
// constant offset to a byte offset, and later offset the remainder of
// the original GEP with this byte offset.
AccumulativeByteOffset +=
ConstantOffset * GTI.getSequentialElementStride(*DL);
}
} else if (LowerGEP) {
StructType *StTy = GTI.getStructType();
uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue();
// Skip field 0 as the offset is always 0.
if (Field != 0) {
NeedsExtraction = true;
AccumulativeByteOffset +=
DL->getStructLayout(StTy)->getElementOffset(Field);
}
}
}
return AccumulativeByteOffset;
}
void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
IRBuilder<> Builder(Variadic);
Type *PtrIndexTy = DL->getIndexType(Variadic->getType());
Value *ResultPtr = Variadic->getOperand(0);
Loop *L = LI->getLoopFor(Variadic->getParent());
// Check if the base is not loop invariant or used more than once.
bool isSwapCandidate =
L && L->isLoopInvariant(ResultPtr) &&
!hasMoreThanOneUseInLoop(ResultPtr, L);
Value *FirstResult = nullptr;
gep_type_iterator GTI = gep_type_begin(*Variadic);
// Create an ugly GEP for each sequential index. We don't create GEPs for
// structure indices, as they are accumulated in the constant offset index.
for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
if (GTI.isSequential()) {
Value *Idx = Variadic->getOperand(I);
// Skip zero indices.
if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
if (CI->isZero())
continue;
APInt ElementSize = APInt(PtrIndexTy->getIntegerBitWidth(),
GTI.getSequentialElementStride(*DL));
// Scale the index by element size.
if (ElementSize != 1) {
if (ElementSize.isPowerOf2()) {
Idx = Builder.CreateShl(
Idx, ConstantInt::get(PtrIndexTy, ElementSize.logBase2()));
} else {
Idx =
Builder.CreateMul(Idx, ConstantInt::get(PtrIndexTy, ElementSize));
}
}
// Create an ugly GEP with a single index for each index.
ResultPtr = Builder.CreatePtrAdd(ResultPtr, Idx, "uglygep");
if (FirstResult == nullptr)
FirstResult = ResultPtr;
}
}
// Create a GEP with the constant offset index.
if (AccumulativeByteOffset != 0) {
Value *Offset = ConstantInt::get(PtrIndexTy, AccumulativeByteOffset);
ResultPtr = Builder.CreatePtrAdd(ResultPtr, Offset, "uglygep");
} else
isSwapCandidate = false;
// If we created a GEP with constant index, and the base is loop invariant,
// then we swap the first one with it, so LICM can move constant GEP out
// later.
auto *FirstGEP = dyn_cast_or_null<GetElementPtrInst>(FirstResult);
auto *SecondGEP = dyn_cast<GetElementPtrInst>(ResultPtr);
if (isSwapCandidate && isLegalToSwapOperand(FirstGEP, SecondGEP, L))
swapGEPOperand(FirstGEP, SecondGEP);
Variadic->replaceAllUsesWith(ResultPtr);
Variadic->eraseFromParent();
}
bool SeparateConstOffsetFromGEP::reorderGEP(GetElementPtrInst *GEP,
TargetTransformInfo &TTI) {
auto PtrGEP = dyn_cast<GetElementPtrInst>(GEP->getPointerOperand());
if (!PtrGEP)
return false;
bool NestedNeedsExtraction;
int64_t NestedByteOffset =
accumulateByteOffset(PtrGEP, NestedNeedsExtraction);
if (!NestedNeedsExtraction)
return false;
unsigned AddrSpace = PtrGEP->getPointerAddressSpace();
if (!TTI.isLegalAddressingMode(GEP->getResultElementType(),
/*BaseGV=*/nullptr, NestedByteOffset,
/*HasBaseReg=*/true, /*Scale=*/0, AddrSpace))
return false;
bool GEPInBounds = GEP->isInBounds();
bool PtrGEPInBounds = PtrGEP->isInBounds();
bool IsChainInBounds = GEPInBounds && PtrGEPInBounds;
if (IsChainInBounds) {
auto IsKnownNonNegative = [this](Value *V) {
return isKnownNonNegative(V, *DL);
};
IsChainInBounds &= all_of(GEP->indices(), IsKnownNonNegative);
if (IsChainInBounds)
IsChainInBounds &= all_of(PtrGEP->indices(), IsKnownNonNegative);
}
IRBuilder<> Builder(GEP);
// For trivial GEP chains, we can swap the indices.
Value *NewSrc = Builder.CreateGEP(
GEP->getSourceElementType(), PtrGEP->getPointerOperand(),
SmallVector<Value *, 4>(GEP->indices()), "", IsChainInBounds);
Value *NewGEP = Builder.CreateGEP(PtrGEP->getSourceElementType(), NewSrc,
SmallVector<Value *, 4>(PtrGEP->indices()),
"", IsChainInBounds);
GEP->replaceAllUsesWith(NewGEP);
RecursivelyDeleteTriviallyDeadInstructions(GEP);
return true;
}
bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
// Skip vector GEPs.
if (GEP->getType()->isVectorTy())
return false;
// If the base of this GEP is a ptradd of a constant, lets pass the constant
// along. This ensures that when we have a chain of GEPs the constant
// offset from each is accumulated.
Value *NewBase;
const APInt *BaseOffset;
const bool ExtractBase =
match(GEP->getPointerOperand(),
m_PtrAdd(m_Value(NewBase), m_APInt(BaseOffset)));
const int64_t BaseByteOffset = ExtractBase ? BaseOffset->getSExtValue() : 0;
// The backend can already nicely handle the case where all indices are
// constant.
if (GEP->hasAllConstantIndices() && !ExtractBase)
return false;
bool Changed = canonicalizeArrayIndicesToIndexSize(GEP);
bool NeedsExtraction;
int64_t AccumulativeByteOffset =
BaseByteOffset + accumulateByteOffset(GEP, NeedsExtraction);
TargetTransformInfo &TTI = GetTTI(*GEP->getFunction());
if (!NeedsExtraction && !ExtractBase) {
Changed |= reorderGEP(GEP, TTI);
return Changed;
}
// If LowerGEP is disabled, before really splitting the GEP, check whether the
// backend supports the addressing mode we are about to produce. If no, this
// splitting probably won't be beneficial.
// If LowerGEP is enabled, even the extracted constant offset can not match
// the addressing mode, we can still do optimizations to other lowered parts
// of variable indices. Therefore, we don't check for addressing modes in that
// case.
if (!LowerGEP) {
unsigned AddrSpace = GEP->getPointerAddressSpace();
if (!TTI.isLegalAddressingMode(GEP->getResultElementType(),
/*BaseGV=*/nullptr, AccumulativeByteOffset,
/*HasBaseReg=*/true, /*Scale=*/0,
AddrSpace)) {
return Changed;
}
}
// Track information for preserving GEP flags.
bool AllOffsetsNonNegative = AccumulativeByteOffset >= 0;
bool AllNUWPreserved = GEP->hasNoUnsignedWrap();
bool NewGEPInBounds = GEP->isInBounds();
bool NewGEPNUSW = GEP->hasNoUnsignedSignedWrap();
// Remove the constant offset in each sequential index. The resultant GEP
// computes the variadic base.
// Notice that we don't remove struct field indices here. If LowerGEP is
// disabled, a structure index is not accumulated and we still use the old
// one. If LowerGEP is enabled, a structure index is accumulated in the
// constant offset. LowerToSingleIndexGEPs will later handle the constant
// offset and won't need a new structure index.
gep_type_iterator GTI = gep_type_begin(*GEP);
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
if (GTI.isSequential()) {
// Constant offsets of scalable types are not really constant.
if (GTI.getIndexedType()->isScalableTy())
continue;
// Splits this GEP index into a variadic part and a constant offset, and
// uses the variadic part as the new index.
Value *OldIdx = GEP->getOperand(I);
User *UserChainTail;
bool PreservesNUW;
Value *NewIdx = ConstantOffsetExtractor::Extract(
OldIdx, GEP, UserChainTail, PreservesNUW);
if (NewIdx != nullptr) {
// Switches to the index with the constant offset removed.
GEP->setOperand(I, NewIdx);
// After switching to the new index, we can garbage-collect UserChain
// and the old index if they are not used.
RecursivelyDeleteTriviallyDeadInstructions(UserChainTail);
RecursivelyDeleteTriviallyDeadInstructions(OldIdx);
AllOffsetsNonNegative =
AllOffsetsNonNegative && isKnownNonNegative(NewIdx, *DL);
AllNUWPreserved &= PreservesNUW;
}
}
}
if (ExtractBase) {
GEPOperator *Base = cast<GEPOperator>(GEP->getPointerOperand());
AllNUWPreserved &= Base->hasNoUnsignedWrap();
NewGEPInBounds &= Base->isInBounds();
NewGEPNUSW &= Base->hasNoUnsignedSignedWrap();
AllOffsetsNonNegative &= BaseByteOffset >= 0;
GEP->setOperand(0, NewBase);
RecursivelyDeleteTriviallyDeadInstructions(Base);
}
// Clear the inbounds attribute because the new index may be off-bound.
// e.g.,
//
// b = add i64 a, 5
// addr = gep inbounds float, float* p, i64 b
//
// is transformed to:
//
// addr2 = gep float, float* p, i64 a ; inbounds removed
// addr = gep float, float* addr2, i64 5 ; inbounds removed
//
// If a is -4, although the old index b is in bounds, the new index a is
// off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
// inbounds keyword is not present, the offsets are added to the base
// address with silently-wrapping two's complement arithmetic".
// Therefore, the final code will be a semantically equivalent.
GEPNoWrapFlags NewGEPFlags = GEPNoWrapFlags::none();
// If the initial GEP was inbounds/nusw and all variable indices and the
// accumulated offsets are non-negative, they can be added in any order and
// the intermediate results are in bounds and don't overflow in a nusw sense.
// So, we can preserve the inbounds/nusw flag for both GEPs.
bool CanPreserveInBoundsNUSW = AllOffsetsNonNegative;
// If the initial GEP was NUW and all operations that we reassociate were NUW
// additions, the resulting GEPs are also NUW.
if (AllNUWPreserved) {
NewGEPFlags |= GEPNoWrapFlags::noUnsignedWrap();
// If the initial GEP additionally had NUSW (or inbounds, which implies
// NUSW), we know that the indices in the initial GEP must all have their
// signbit not set. For indices that are the result of NUW adds, the
// add-operands therefore also don't have their signbit set. Therefore, all
// indices of the resulting GEPs are non-negative -> we can preserve
// the inbounds/nusw flag.
CanPreserveInBoundsNUSW |= NewGEPNUSW;
}
if (CanPreserveInBoundsNUSW) {
if (NewGEPInBounds)
NewGEPFlags |= GEPNoWrapFlags::inBounds();
else if (NewGEPNUSW)
NewGEPFlags |= GEPNoWrapFlags::noUnsignedSignedWrap();
}
GEP->setNoWrapFlags(NewGEPFlags);
// Lowers a GEP to GEPs with a single index.
if (LowerGEP) {
lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset);
return true;
}
// No need to create another GEP if the accumulative byte offset is 0.
if (AccumulativeByteOffset == 0)
return true;
// Offsets the base with the accumulative byte offset.
//
// %gep ; the base
// ... %gep ...
//
// => add the offset
//
// %gep2 ; clone of %gep
// %new.gep = gep i8, %gep2, %offset
// %gep ; will be removed
// ... %gep ...
//
// => replace all uses of %gep with %new.gep and remove %gep
//
// %gep2 ; clone of %gep
// %new.gep = gep i8, %gep2, %offset
// ... %new.gep ...
Instruction *NewGEP = GEP->clone();
NewGEP->insertBefore(GEP->getIterator());
Type *PtrIdxTy = DL->getIndexType(GEP->getType());
IRBuilder<> Builder(GEP);
NewGEP = cast<Instruction>(Builder.CreatePtrAdd(
NewGEP, ConstantInt::get(PtrIdxTy, AccumulativeByteOffset, true),
GEP->getName(), NewGEPFlags));
NewGEP->copyMetadata(*GEP);
GEP->replaceAllUsesWith(NewGEP);
GEP->eraseFromParent();
return true;
}
bool SeparateConstOffsetFromGEPLegacyPass::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
};
SeparateConstOffsetFromGEP Impl(DT, LI, TLI, GetTTI, LowerGEP);
return Impl.run(F);
}
bool SeparateConstOffsetFromGEP::run(Function &F) {
if (DisableSeparateConstOffsetFromGEP)
return false;
DL = &F.getDataLayout();
bool Changed = false;
ReversePostOrderTraversal<Function *> RPOT(&F);
for (BasicBlock *B : RPOT) {
if (!DT->isReachableFromEntry(B))
continue;
for (Instruction &I : llvm::make_early_inc_range(*B))
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I))
Changed |= splitGEP(GEP);
// No need to split GEP ConstantExprs because all its indices are constant
// already.
}
Changed |= reuniteExts(F);
if (VerifyNoDeadCode)
verifyNoDeadCode(F);
return Changed;
}
Instruction *SeparateConstOffsetFromGEP::findClosestMatchingDominator(
ExprKey Key, Instruction *Dominatee,
DenseMap<ExprKey, SmallVector<Instruction *, 2>> &DominatingExprs) {
auto Pos = DominatingExprs.find(Key);
if (Pos == DominatingExprs.end())
return nullptr;
auto &Candidates = Pos->second;
// Because we process the basic blocks in pre-order of the dominator tree, a
// candidate that doesn't dominate the current instruction won't dominate any
// future instruction either. Therefore, we pop it out of the stack. This
// optimization makes the algorithm O(n).
while (!Candidates.empty()) {
Instruction *Candidate = Candidates.back();
if (DT->dominates(Candidate, Dominatee))
return Candidate;
Candidates.pop_back();
}
return nullptr;
}
bool SeparateConstOffsetFromGEP::reuniteExts(Instruction *I) {
if (!I->getType()->isIntOrIntVectorTy())
return false;
// Dom: LHS+RHS
// I: sext(LHS)+sext(RHS)
// If Dom can't sign overflow and Dom dominates I, optimize I to sext(Dom).
// TODO: handle zext
Value *LHS = nullptr, *RHS = nullptr;
if (match(I, m_Add(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) {
if (LHS->getType() == RHS->getType()) {
ExprKey Key = createNormalizedCommutablePair(LHS, RHS);
if (auto *Dom = findClosestMatchingDominator(Key, I, DominatingAdds)) {
Instruction *NewSExt =
new SExtInst(Dom, I->getType(), "", I->getIterator());
NewSExt->takeName(I);
I->replaceAllUsesWith(NewSExt);
NewSExt->setDebugLoc(I->getDebugLoc());
RecursivelyDeleteTriviallyDeadInstructions(I);
return true;
}
}
} else if (match(I, m_Sub(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) {
if (LHS->getType() == RHS->getType()) {
if (auto *Dom =
findClosestMatchingDominator({LHS, RHS}, I, DominatingSubs)) {
Instruction *NewSExt =
new SExtInst(Dom, I->getType(), "", I->getIterator());
NewSExt->takeName(I);
I->replaceAllUsesWith(NewSExt);
NewSExt->setDebugLoc(I->getDebugLoc());
RecursivelyDeleteTriviallyDeadInstructions(I);
return true;
}
}
}
// Add I to DominatingExprs if it's an add/sub that can't sign overflow.
if (match(I, m_NSWAdd(m_Value(LHS), m_Value(RHS)))) {
if (programUndefinedIfPoison(I)) {
ExprKey Key = createNormalizedCommutablePair(LHS, RHS);
DominatingAdds[Key].push_back(I);
}
} else if (match(I, m_NSWSub(m_Value(LHS), m_Value(RHS)))) {
if (programUndefinedIfPoison(I))
DominatingSubs[{LHS, RHS}].push_back(I);
}
return false;
}
bool SeparateConstOffsetFromGEP::reuniteExts(Function &F) {
bool Changed = false;
DominatingAdds.clear();
DominatingSubs.clear();
for (const auto Node : depth_first(DT)) {
BasicBlock *BB = Node->getBlock();
for (Instruction &I : llvm::make_early_inc_range(*BB))
Changed |= reuniteExts(&I);
}
return Changed;
}
void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function &F) {
for (BasicBlock &B : F) {
for (Instruction &I : B) {
if (isInstructionTriviallyDead(&I)) {
std::string ErrMessage;
raw_string_ostream RSO(ErrMessage);
RSO << "Dead instruction detected!\n" << I << "\n";
llvm_unreachable(RSO.str().c_str());
}
}
}
}
bool SeparateConstOffsetFromGEP::isLegalToSwapOperand(
GetElementPtrInst *FirstGEP, GetElementPtrInst *SecondGEP, Loop *CurLoop) {
if (!FirstGEP || !FirstGEP->hasOneUse())
return false;
if (!SecondGEP || FirstGEP->getParent() != SecondGEP->getParent())
return false;
if (FirstGEP == SecondGEP)
return false;
unsigned FirstNum = FirstGEP->getNumOperands();
unsigned SecondNum = SecondGEP->getNumOperands();
// Give up if the number of operands are not 2.
if (FirstNum != SecondNum || FirstNum != 2)
return false;
Value *FirstBase = FirstGEP->getOperand(0);
Value *SecondBase = SecondGEP->getOperand(0);
Value *FirstOffset = FirstGEP->getOperand(1);
// Give up if the index of the first GEP is loop invariant.
if (CurLoop->isLoopInvariant(FirstOffset))
return false;
// Give up if base doesn't have same type.
if (FirstBase->getType() != SecondBase->getType())
return false;
Instruction *FirstOffsetDef = dyn_cast<Instruction>(FirstOffset);
// Check if the second operand of first GEP has constant coefficient.
// For an example, for the following code, we won't gain anything by
// hoisting the second GEP out because the second GEP can be folded away.
// %scevgep.sum.ur159 = add i64 %idxprom48.ur, 256
// %67 = shl i64 %scevgep.sum.ur159, 2
// %uglygep160 = getelementptr i8* %65, i64 %67
// %uglygep161 = getelementptr i8* %uglygep160, i64 -1024
// Skip constant shift instruction which may be generated by Splitting GEPs.
if (FirstOffsetDef && FirstOffsetDef->isShift() &&
isa<ConstantInt>(FirstOffsetDef->getOperand(1)))
FirstOffsetDef = dyn_cast<Instruction>(FirstOffsetDef->getOperand(0));
// Give up if FirstOffsetDef is an Add or Sub with constant.
// Because it may not profitable at all due to constant folding.
if (FirstOffsetDef)
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FirstOffsetDef)) {
unsigned opc = BO->getOpcode();
if ((opc == Instruction::Add || opc == Instruction::Sub) &&
(isa<ConstantInt>(BO->getOperand(0)) ||
isa<ConstantInt>(BO->getOperand(1))))
return false;
}
return true;
}
bool SeparateConstOffsetFromGEP::hasMoreThanOneUseInLoop(Value *V, Loop *L) {
// TODO: Could look at uses of globals, but we need to make sure we are
// looking at the correct function.
if (isa<Constant>(V))
return false;
int UsesInLoop = 0;
for (User *U : V->users()) {
if (Instruction *User = dyn_cast<Instruction>(U))
if (L->contains(User))
if (++UsesInLoop > 1)
return true;
}
return false;
}
void SeparateConstOffsetFromGEP::swapGEPOperand(GetElementPtrInst *First,
GetElementPtrInst *Second) {
Value *Offset1 = First->getOperand(1);
Value *Offset2 = Second->getOperand(1);
First->setOperand(1, Offset2);
Second->setOperand(1, Offset1);
// We changed p+o+c to p+c+o, p+c may not be inbound anymore.
const DataLayout &DAL = First->getDataLayout();
APInt Offset(DAL.getIndexSizeInBits(
cast<PointerType>(First->getType())->getAddressSpace()),
0);
Value *NewBase =
First->stripAndAccumulateInBoundsConstantOffsets(DAL, Offset);
uint64_t ObjectSize;
if (!getObjectSize(NewBase, ObjectSize, DAL, TLI) ||
Offset.ugt(ObjectSize)) {
// TODO(gep_nowrap): Make flag preservation more precise.
First->setNoWrapFlags(GEPNoWrapFlags::none());
Second->setNoWrapFlags(GEPNoWrapFlags::none());
} else
First->setIsInBounds(true);
}
void SeparateConstOffsetFromGEPPass::printPipeline(
raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
static_cast<PassInfoMixin<SeparateConstOffsetFromGEPPass> *>(this)
->printPipeline(OS, MapClassName2PassName);
OS << '<';
if (LowerGEP)
OS << "lower-gep";
OS << '>';
}
PreservedAnalyses
SeparateConstOffsetFromGEPPass::run(Function &F, FunctionAnalysisManager &AM) {
auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
auto *LI = &AM.getResult<LoopAnalysis>(F);
auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
auto GetTTI = [&AM](Function &F) -> TargetTransformInfo & {
return AM.getResult<TargetIRAnalysis>(F);
};
SeparateConstOffsetFromGEP Impl(DT, LI, TLI, GetTTI, LowerGEP);
if (!Impl.run(F))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
return PA;
}