
Look up marker symbols and decide whether candidate is really extra entry point in `adjustFunctionBoundaries()`.
6167 lines
225 KiB
C++
6167 lines
225 KiB
C++
//===- bolt/Rewrite/RewriteInstance.cpp - ELF rewriter --------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "bolt/Rewrite/RewriteInstance.h"
|
|
#include "bolt/Core/AddressMap.h"
|
|
#include "bolt/Core/BinaryContext.h"
|
|
#include "bolt/Core/BinaryEmitter.h"
|
|
#include "bolt/Core/BinaryFunction.h"
|
|
#include "bolt/Core/DebugData.h"
|
|
#include "bolt/Core/Exceptions.h"
|
|
#include "bolt/Core/FunctionLayout.h"
|
|
#include "bolt/Core/MCPlusBuilder.h"
|
|
#include "bolt/Core/ParallelUtilities.h"
|
|
#include "bolt/Core/Relocation.h"
|
|
#include "bolt/Passes/BinaryPasses.h"
|
|
#include "bolt/Passes/CacheMetrics.h"
|
|
#include "bolt/Passes/IdenticalCodeFolding.h"
|
|
#include "bolt/Passes/PAuthGadgetScanner.h"
|
|
#include "bolt/Passes/ReorderFunctions.h"
|
|
#include "bolt/Profile/BoltAddressTranslation.h"
|
|
#include "bolt/Profile/DataAggregator.h"
|
|
#include "bolt/Profile/DataReader.h"
|
|
#include "bolt/Profile/YAMLProfileReader.h"
|
|
#include "bolt/Profile/YAMLProfileWriter.h"
|
|
#include "bolt/Rewrite/BinaryPassManager.h"
|
|
#include "bolt/Rewrite/DWARFRewriter.h"
|
|
#include "bolt/Rewrite/ExecutableFileMemoryManager.h"
|
|
#include "bolt/Rewrite/JITLinkLinker.h"
|
|
#include "bolt/Rewrite/MetadataRewriters.h"
|
|
#include "bolt/RuntimeLibs/HugifyRuntimeLibrary.h"
|
|
#include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h"
|
|
#include "bolt/Utils/CommandLineOpts.h"
|
|
#include "bolt/Utils/Utils.h"
|
|
#include "llvm/ADT/AddressRanges.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
|
|
#include "llvm/MC/MCAsmBackend.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
|
|
#include "llvm/MC/MCObjectStreamer.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/MC/TargetRegistry.h"
|
|
#include "llvm/Object/ObjectFile.h"
|
|
#include "llvm/Support/Alignment.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/DataExtractor.h"
|
|
#include "llvm/Support/Errc.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
#include "llvm/Support/Timer.h"
|
|
#include "llvm/Support/ToolOutputFile.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <fstream>
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <system_error>
|
|
|
|
#undef DEBUG_TYPE
|
|
#define DEBUG_TYPE "bolt"
|
|
|
|
using namespace llvm;
|
|
using namespace object;
|
|
using namespace bolt;
|
|
|
|
extern cl::opt<uint32_t> X86AlignBranchBoundary;
|
|
extern cl::opt<bool> X86AlignBranchWithin32BBoundaries;
|
|
|
|
namespace opts {
|
|
|
|
extern cl::list<std::string> HotTextMoveSections;
|
|
extern cl::opt<bool> Hugify;
|
|
extern cl::opt<bool> Instrument;
|
|
extern cl::opt<bool> KeepNops;
|
|
extern cl::opt<bool> Lite;
|
|
extern cl::list<std::string> ReorderData;
|
|
extern cl::opt<bolt::ReorderFunctions::ReorderType> ReorderFunctions;
|
|
extern cl::opt<bool> TerminalHLT;
|
|
extern cl::opt<bool> TerminalTrap;
|
|
extern cl::opt<bool> TimeBuild;
|
|
extern cl::opt<bool> TimeRewrite;
|
|
extern cl::opt<bolt::IdenticalCodeFolding::ICFLevel, false,
|
|
llvm::bolt::DeprecatedICFNumericOptionParser>
|
|
ICF;
|
|
|
|
static cl::opt<bool>
|
|
AllowStripped("allow-stripped",
|
|
cl::desc("allow processing of stripped binaries"), cl::Hidden,
|
|
cl::cat(BoltCategory));
|
|
|
|
static cl::opt<bool> ForceToDataRelocations(
|
|
"force-data-relocations",
|
|
cl::desc("force relocations to data sections to always be processed"),
|
|
|
|
cl::Hidden, cl::cat(BoltCategory));
|
|
|
|
static cl::opt<std::string>
|
|
BoltID("bolt-id",
|
|
cl::desc("add any string to tag this execution in the "
|
|
"output binary via bolt info section"),
|
|
cl::cat(BoltCategory));
|
|
|
|
cl::opt<bool> DumpDotAll(
|
|
"dump-dot-all",
|
|
cl::desc("dump function CFGs to graphviz format after each stage;"
|
|
"enable '-print-loops' for color-coded blocks"),
|
|
cl::Hidden, cl::cat(BoltCategory));
|
|
|
|
static cl::list<std::string>
|
|
ForceFunctionNames("funcs",
|
|
cl::CommaSeparated,
|
|
cl::desc("limit optimizations to functions from the list"),
|
|
cl::value_desc("func1,func2,func3,..."),
|
|
cl::Hidden,
|
|
cl::cat(BoltCategory));
|
|
|
|
static cl::opt<std::string>
|
|
FunctionNamesFile("funcs-file",
|
|
cl::desc("file with list of functions to optimize"),
|
|
cl::Hidden,
|
|
cl::cat(BoltCategory));
|
|
|
|
static cl::list<std::string> ForceFunctionNamesNR(
|
|
"funcs-no-regex", cl::CommaSeparated,
|
|
cl::desc("limit optimizations to functions from the list (non-regex)"),
|
|
cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory));
|
|
|
|
static cl::opt<std::string> FunctionNamesFileNR(
|
|
"funcs-file-no-regex",
|
|
cl::desc("file with list of functions to optimize (non-regex)"), cl::Hidden,
|
|
cl::cat(BoltCategory));
|
|
|
|
cl::opt<bool>
|
|
KeepTmp("keep-tmp",
|
|
cl::desc("preserve intermediate .o file"),
|
|
cl::Hidden,
|
|
cl::cat(BoltCategory));
|
|
|
|
static cl::opt<unsigned>
|
|
LiteThresholdPct("lite-threshold-pct",
|
|
cl::desc("threshold (in percent) for selecting functions to process in lite "
|
|
"mode. Higher threshold means fewer functions to process. E.g "
|
|
"threshold of 90 means only top 10 percent of functions with "
|
|
"profile will be processed."),
|
|
cl::init(0),
|
|
cl::ZeroOrMore,
|
|
cl::Hidden,
|
|
cl::cat(BoltOptCategory));
|
|
|
|
static cl::opt<unsigned> LiteThresholdCount(
|
|
"lite-threshold-count",
|
|
cl::desc("similar to '-lite-threshold-pct' but specify threshold using "
|
|
"absolute function call count. I.e. limit processing to functions "
|
|
"executed at least the specified number of times."),
|
|
cl::init(0), cl::Hidden, cl::cat(BoltOptCategory));
|
|
|
|
static cl::opt<unsigned>
|
|
MaxFunctions("max-funcs",
|
|
cl::desc("maximum number of functions to process"), cl::Hidden,
|
|
cl::cat(BoltCategory));
|
|
|
|
static cl::opt<unsigned> MaxDataRelocations(
|
|
"max-data-relocations",
|
|
cl::desc("maximum number of data relocations to process"), cl::Hidden,
|
|
cl::cat(BoltCategory));
|
|
|
|
cl::opt<bool> PrintAll("print-all",
|
|
cl::desc("print functions after each stage"), cl::Hidden,
|
|
cl::cat(BoltCategory));
|
|
|
|
static cl::opt<bool>
|
|
PrintProfile("print-profile",
|
|
cl::desc("print functions after attaching profile"),
|
|
cl::Hidden, cl::cat(BoltCategory));
|
|
|
|
cl::opt<bool> PrintCFG("print-cfg",
|
|
cl::desc("print functions after CFG construction"),
|
|
cl::Hidden, cl::cat(BoltCategory));
|
|
|
|
cl::opt<bool> PrintDisasm("print-disasm",
|
|
cl::desc("print function after disassembly"),
|
|
cl::Hidden, cl::cat(BoltCategory));
|
|
|
|
static cl::opt<bool>
|
|
PrintGlobals("print-globals",
|
|
cl::desc("print global symbols after disassembly"), cl::Hidden,
|
|
cl::cat(BoltCategory));
|
|
|
|
extern cl::opt<bool> PrintSections;
|
|
|
|
static cl::opt<bool> PrintLoopInfo("print-loops",
|
|
cl::desc("print loop related information"),
|
|
cl::Hidden, cl::cat(BoltCategory));
|
|
|
|
static cl::opt<cl::boolOrDefault> RelocationMode(
|
|
"relocs", cl::desc("use relocations in the binary (default=autodetect)"),
|
|
cl::cat(BoltCategory));
|
|
|
|
extern cl::opt<std::string> SaveProfile;
|
|
|
|
static cl::list<std::string>
|
|
SkipFunctionNames("skip-funcs",
|
|
cl::CommaSeparated,
|
|
cl::desc("list of functions to skip"),
|
|
cl::value_desc("func1,func2,func3,..."),
|
|
cl::Hidden,
|
|
cl::cat(BoltCategory));
|
|
|
|
static cl::opt<std::string>
|
|
SkipFunctionNamesFile("skip-funcs-file",
|
|
cl::desc("file with list of functions to skip"),
|
|
cl::Hidden,
|
|
cl::cat(BoltCategory));
|
|
|
|
static cl::opt<bool> TrapOldCode(
|
|
"trap-old-code",
|
|
cl::desc("insert traps in old function bodies (relocation mode)"),
|
|
cl::Hidden, cl::cat(BoltCategory));
|
|
|
|
static cl::opt<std::string> DWPPathName("dwp",
|
|
cl::desc("Path and name to DWP file."),
|
|
cl::Hidden, cl::init(""),
|
|
cl::cat(BoltCategory));
|
|
|
|
static cl::opt<bool>
|
|
UseGnuStack("use-gnu-stack",
|
|
cl::desc("use GNU_STACK program header for new segment (workaround for "
|
|
"issues with strip/objcopy)"),
|
|
cl::ZeroOrMore,
|
|
cl::cat(BoltCategory));
|
|
|
|
static cl::opt<uint64_t> CustomAllocationVMA(
|
|
"custom-allocation-vma",
|
|
cl::desc("use a custom address at which new code will be put, "
|
|
"bypassing BOLT's logic to detect where to put code"),
|
|
cl::Hidden, cl::cat(BoltCategory));
|
|
|
|
static cl::opt<bool>
|
|
SequentialDisassembly("sequential-disassembly",
|
|
cl::desc("performs disassembly sequentially"),
|
|
cl::init(false),
|
|
cl::cat(BoltOptCategory));
|
|
|
|
static cl::opt<bool> WriteBoltInfoSection(
|
|
"bolt-info", cl::desc("write bolt info section in the output binary"),
|
|
cl::init(true), cl::Hidden, cl::cat(BoltOutputCategory));
|
|
|
|
cl::bits<GadgetScannerKind> GadgetScannersToRun(
|
|
"scanners", cl::desc("which gadget scanners to run"),
|
|
cl::values(
|
|
clEnumValN(GS_PACRET, "pacret",
|
|
"pac-ret: return address protection (subset of \"pauth\")"),
|
|
clEnumValN(GS_PAUTH, "pauth", "All Pointer Authentication scanners"),
|
|
clEnumValN(GS_ALL, "all", "All implemented scanners")),
|
|
cl::ZeroOrMore, cl::CommaSeparated, cl::cat(BinaryAnalysisCategory));
|
|
|
|
} // namespace opts
|
|
|
|
// FIXME: implement a better way to mark sections for replacement.
|
|
constexpr const char *RewriteInstance::SectionsToOverwrite[];
|
|
std::vector<std::string> RewriteInstance::DebugSectionsToOverwrite = {
|
|
".debug_abbrev", ".debug_aranges", ".debug_line", ".debug_line_str",
|
|
".debug_loc", ".debug_loclists", ".debug_ranges", ".debug_rnglists",
|
|
".gdb_index", ".debug_addr", ".debug_abbrev", ".debug_info",
|
|
".debug_types", ".pseudo_probe"};
|
|
|
|
const char RewriteInstance::TimerGroupName[] = "rewrite";
|
|
const char RewriteInstance::TimerGroupDesc[] = "Rewrite passes";
|
|
|
|
namespace llvm {
|
|
namespace bolt {
|
|
|
|
extern const char *BoltRevision;
|
|
|
|
// Weird location for createMCPlusBuilder, but this is here to avoid a
|
|
// cyclic dependency of libCore (its natural place) and libTarget. libRewrite
|
|
// can depend on libTarget, but not libCore. Since libRewrite is the only
|
|
// user of this function, we define it here.
|
|
MCPlusBuilder *createMCPlusBuilder(const Triple::ArchType Arch,
|
|
const MCInstrAnalysis *Analysis,
|
|
const MCInstrInfo *Info,
|
|
const MCRegisterInfo *RegInfo,
|
|
const MCSubtargetInfo *STI) {
|
|
#ifdef X86_AVAILABLE
|
|
if (Arch == Triple::x86_64)
|
|
return createX86MCPlusBuilder(Analysis, Info, RegInfo, STI);
|
|
#endif
|
|
|
|
#ifdef AARCH64_AVAILABLE
|
|
if (Arch == Triple::aarch64)
|
|
return createAArch64MCPlusBuilder(Analysis, Info, RegInfo, STI);
|
|
#endif
|
|
|
|
#ifdef RISCV_AVAILABLE
|
|
if (Arch == Triple::riscv64)
|
|
return createRISCVMCPlusBuilder(Analysis, Info, RegInfo, STI);
|
|
#endif
|
|
|
|
llvm_unreachable("architecture unsupported by MCPlusBuilder");
|
|
}
|
|
|
|
} // namespace bolt
|
|
} // namespace llvm
|
|
|
|
using ELF64LEPhdrTy = ELF64LEFile::Elf_Phdr;
|
|
|
|
namespace {
|
|
|
|
bool refersToReorderedSection(ErrorOr<BinarySection &> Section) {
|
|
return llvm::any_of(opts::ReorderData, [&](const std::string &SectionName) {
|
|
return Section && Section->getName() == SectionName;
|
|
});
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
Expected<std::unique_ptr<RewriteInstance>>
|
|
RewriteInstance::create(ELFObjectFileBase *File, const int Argc,
|
|
const char *const *Argv, StringRef ToolPath,
|
|
raw_ostream &Stdout, raw_ostream &Stderr) {
|
|
Error Err = Error::success();
|
|
auto RI = std::make_unique<RewriteInstance>(File, Argc, Argv, ToolPath,
|
|
Stdout, Stderr, Err);
|
|
if (Err)
|
|
return std::move(Err);
|
|
return std::move(RI);
|
|
}
|
|
|
|
RewriteInstance::RewriteInstance(ELFObjectFileBase *File, const int Argc,
|
|
const char *const *Argv, StringRef ToolPath,
|
|
raw_ostream &Stdout, raw_ostream &Stderr,
|
|
Error &Err)
|
|
: InputFile(File), Argc(Argc), Argv(Argv), ToolPath(ToolPath),
|
|
SHStrTab(StringTableBuilder::ELF) {
|
|
ErrorAsOutParameter EAO(&Err);
|
|
auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile);
|
|
if (!ELF64LEFile) {
|
|
Err = createStringError(errc::not_supported,
|
|
"Only 64-bit LE ELF binaries are supported");
|
|
return;
|
|
}
|
|
|
|
bool IsPIC = false;
|
|
const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
|
|
if (Obj.getHeader().e_type != ELF::ET_EXEC) {
|
|
Stdout << "BOLT-INFO: shared object or position-independent executable "
|
|
"detected\n";
|
|
IsPIC = true;
|
|
}
|
|
|
|
// Make sure we don't miss any output on core dumps.
|
|
Stdout.SetUnbuffered();
|
|
Stderr.SetUnbuffered();
|
|
LLVM_DEBUG(dbgs().SetUnbuffered());
|
|
|
|
// Read RISCV subtarget features from input file
|
|
std::unique_ptr<SubtargetFeatures> Features;
|
|
Triple TheTriple = File->makeTriple();
|
|
if (TheTriple.getArch() == llvm::Triple::riscv64) {
|
|
Expected<SubtargetFeatures> FeaturesOrErr = File->getFeatures();
|
|
if (auto E = FeaturesOrErr.takeError()) {
|
|
Err = std::move(E);
|
|
return;
|
|
} else {
|
|
Features.reset(new SubtargetFeatures(*FeaturesOrErr));
|
|
}
|
|
}
|
|
|
|
Relocation::Arch = TheTriple.getArch();
|
|
auto BCOrErr = BinaryContext::createBinaryContext(
|
|
TheTriple, std::make_shared<orc::SymbolStringPool>(), File->getFileName(),
|
|
Features.get(), IsPIC,
|
|
DWARFContext::create(*File, DWARFContext::ProcessDebugRelocations::Ignore,
|
|
nullptr, opts::DWPPathName,
|
|
WithColor::defaultErrorHandler,
|
|
WithColor::defaultWarningHandler),
|
|
JournalingStreams{Stdout, Stderr});
|
|
if (Error E = BCOrErr.takeError()) {
|
|
Err = std::move(E);
|
|
return;
|
|
}
|
|
BC = std::move(BCOrErr.get());
|
|
BC->initializeTarget(std::unique_ptr<MCPlusBuilder>(
|
|
createMCPlusBuilder(BC->TheTriple->getArch(), BC->MIA.get(),
|
|
BC->MII.get(), BC->MRI.get(), BC->STI.get())));
|
|
|
|
BAT = std::make_unique<BoltAddressTranslation>();
|
|
|
|
if (opts::UpdateDebugSections)
|
|
DebugInfoRewriter = std::make_unique<DWARFRewriter>(*BC);
|
|
|
|
if (opts::Instrument)
|
|
BC->setRuntimeLibrary(std::make_unique<InstrumentationRuntimeLibrary>());
|
|
else if (opts::Hugify)
|
|
BC->setRuntimeLibrary(std::make_unique<HugifyRuntimeLibrary>());
|
|
}
|
|
|
|
RewriteInstance::~RewriteInstance() {}
|
|
|
|
Error RewriteInstance::setProfile(StringRef Filename) {
|
|
if (!sys::fs::exists(Filename))
|
|
return errorCodeToError(make_error_code(errc::no_such_file_or_directory));
|
|
|
|
if (ProfileReader) {
|
|
// Already exists
|
|
return make_error<StringError>(Twine("multiple profiles specified: ") +
|
|
ProfileReader->getFilename() + " and " +
|
|
Filename,
|
|
inconvertibleErrorCode());
|
|
}
|
|
|
|
// Spawn a profile reader based on file contents.
|
|
if (DataAggregator::checkPerfDataMagic(Filename))
|
|
ProfileReader = std::make_unique<DataAggregator>(Filename);
|
|
else if (YAMLProfileReader::isYAML(Filename))
|
|
ProfileReader = std::make_unique<YAMLProfileReader>(Filename);
|
|
else
|
|
ProfileReader = std::make_unique<DataReader>(Filename);
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
/// Return true if the function \p BF should be disassembled.
|
|
static bool shouldDisassemble(const BinaryFunction &BF) {
|
|
if (BF.isPseudo())
|
|
return false;
|
|
|
|
if (opts::processAllFunctions())
|
|
return true;
|
|
|
|
return !BF.isIgnored();
|
|
}
|
|
|
|
// Return if a section stored in the image falls into a segment address space.
|
|
// If not, Set \p Overlap to true if there's a partial overlap.
|
|
template <class ELFT>
|
|
static bool checkOffsets(const typename ELFT::Phdr &Phdr,
|
|
const typename ELFT::Shdr &Sec, bool &Overlap) {
|
|
// SHT_NOBITS sections don't need to have an offset inside the segment.
|
|
if (Sec.sh_type == ELF::SHT_NOBITS)
|
|
return true;
|
|
|
|
// Only non-empty sections can be at the end of a segment.
|
|
uint64_t SectionSize = Sec.sh_size ? Sec.sh_size : 1ull;
|
|
AddressRange SectionAddressRange((uint64_t)Sec.sh_offset,
|
|
Sec.sh_offset + SectionSize);
|
|
AddressRange SegmentAddressRange(Phdr.p_offset,
|
|
Phdr.p_offset + Phdr.p_filesz);
|
|
if (SegmentAddressRange.contains(SectionAddressRange))
|
|
return true;
|
|
|
|
Overlap = SegmentAddressRange.intersects(SectionAddressRange);
|
|
return false;
|
|
}
|
|
|
|
// Check that an allocatable section belongs to a virtual address
|
|
// space of a segment.
|
|
template <class ELFT>
|
|
static bool checkVMA(const typename ELFT::Phdr &Phdr,
|
|
const typename ELFT::Shdr &Sec, bool &Overlap) {
|
|
// Only non-empty sections can be at the end of a segment.
|
|
uint64_t SectionSize = Sec.sh_size ? Sec.sh_size : 1ull;
|
|
AddressRange SectionAddressRange((uint64_t)Sec.sh_addr,
|
|
Sec.sh_addr + SectionSize);
|
|
AddressRange SegmentAddressRange(Phdr.p_vaddr, Phdr.p_vaddr + Phdr.p_memsz);
|
|
|
|
if (SegmentAddressRange.contains(SectionAddressRange))
|
|
return true;
|
|
Overlap = SegmentAddressRange.intersects(SectionAddressRange);
|
|
return false;
|
|
}
|
|
|
|
void RewriteInstance::markGnuRelroSections() {
|
|
using ELFT = ELF64LE;
|
|
using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
|
|
auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile);
|
|
const ELFFile<ELFT> &Obj = ELF64LEFile->getELFFile();
|
|
|
|
auto handleSection = [&](const ELFT::Phdr &Phdr, SectionRef SecRef) {
|
|
BinarySection *BinarySection = BC->getSectionForSectionRef(SecRef);
|
|
// If the section is non-allocatable, ignore it for GNU_RELRO purposes:
|
|
// it can't be made read-only after runtime relocations processing.
|
|
if (!BinarySection || !BinarySection->isAllocatable())
|
|
return;
|
|
const ELFShdrTy *Sec = cantFail(Obj.getSection(SecRef.getIndex()));
|
|
bool ImageOverlap{false}, VMAOverlap{false};
|
|
bool ImageContains = checkOffsets<ELFT>(Phdr, *Sec, ImageOverlap);
|
|
bool VMAContains = checkVMA<ELFT>(Phdr, *Sec, VMAOverlap);
|
|
if (ImageOverlap) {
|
|
if (opts::Verbosity >= 1)
|
|
BC->errs() << "BOLT-WARNING: GNU_RELRO segment has partial file offset "
|
|
<< "overlap with section " << BinarySection->getName()
|
|
<< '\n';
|
|
return;
|
|
}
|
|
if (VMAOverlap) {
|
|
if (opts::Verbosity >= 1)
|
|
BC->errs() << "BOLT-WARNING: GNU_RELRO segment has partial VMA overlap "
|
|
<< "with section " << BinarySection->getName() << '\n';
|
|
return;
|
|
}
|
|
if (!ImageContains || !VMAContains)
|
|
return;
|
|
BinarySection->setRelro();
|
|
if (opts::Verbosity >= 1)
|
|
BC->outs() << "BOLT-INFO: marking " << BinarySection->getName()
|
|
<< " as GNU_RELRO\n";
|
|
};
|
|
|
|
for (const ELFT::Phdr &Phdr : cantFail(Obj.program_headers()))
|
|
if (Phdr.p_type == ELF::PT_GNU_RELRO)
|
|
for (SectionRef SecRef : InputFile->sections())
|
|
handleSection(Phdr, SecRef);
|
|
}
|
|
|
|
Error RewriteInstance::discoverStorage() {
|
|
NamedRegionTimer T("discoverStorage", "discover storage", TimerGroupName,
|
|
TimerGroupDesc, opts::TimeRewrite);
|
|
|
|
auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile);
|
|
const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
|
|
|
|
BC->StartFunctionAddress = Obj.getHeader().e_entry;
|
|
|
|
NextAvailableAddress = 0;
|
|
uint64_t NextAvailableOffset = 0;
|
|
Expected<ELF64LE::PhdrRange> PHsOrErr = Obj.program_headers();
|
|
if (Error E = PHsOrErr.takeError())
|
|
return E;
|
|
|
|
ELF64LE::PhdrRange PHs = PHsOrErr.get();
|
|
for (const ELF64LE::Phdr &Phdr : PHs) {
|
|
switch (Phdr.p_type) {
|
|
case ELF::PT_LOAD:
|
|
BC->FirstAllocAddress = std::min(BC->FirstAllocAddress,
|
|
static_cast<uint64_t>(Phdr.p_vaddr));
|
|
NextAvailableAddress = std::max(NextAvailableAddress,
|
|
Phdr.p_vaddr + Phdr.p_memsz);
|
|
NextAvailableOffset = std::max(NextAvailableOffset,
|
|
Phdr.p_offset + Phdr.p_filesz);
|
|
|
|
BC->SegmentMapInfo[Phdr.p_vaddr] =
|
|
SegmentInfo{Phdr.p_vaddr,
|
|
Phdr.p_memsz,
|
|
Phdr.p_offset,
|
|
Phdr.p_filesz,
|
|
Phdr.p_align,
|
|
(Phdr.p_flags & ELF::PF_X) != 0,
|
|
(Phdr.p_flags & ELF::PF_W) != 0};
|
|
if (BC->TheTriple->getArch() == llvm::Triple::x86_64 &&
|
|
Phdr.p_vaddr >= BinaryContext::KernelStartX86_64)
|
|
BC->IsLinuxKernel = true;
|
|
break;
|
|
case ELF::PT_INTERP:
|
|
BC->HasInterpHeader = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (BC->IsLinuxKernel)
|
|
BC->outs() << "BOLT-INFO: Linux kernel binary detected\n";
|
|
|
|
for (const SectionRef &Section : InputFile->sections()) {
|
|
Expected<StringRef> SectionNameOrErr = Section.getName();
|
|
if (Error E = SectionNameOrErr.takeError())
|
|
return E;
|
|
StringRef SectionName = SectionNameOrErr.get();
|
|
if (SectionName == BC->getMainCodeSectionName()) {
|
|
BC->OldTextSectionAddress = Section.getAddress();
|
|
BC->OldTextSectionSize = Section.getSize();
|
|
|
|
Expected<StringRef> SectionContentsOrErr = Section.getContents();
|
|
if (Error E = SectionContentsOrErr.takeError())
|
|
return E;
|
|
StringRef SectionContents = SectionContentsOrErr.get();
|
|
BC->OldTextSectionOffset =
|
|
SectionContents.data() - InputFile->getData().data();
|
|
}
|
|
|
|
if (!opts::HeatmapMode &&
|
|
!(opts::AggregateOnly && BAT->enabledFor(InputFile)) &&
|
|
(SectionName.starts_with(getOrgSecPrefix()) ||
|
|
SectionName == getBOLTTextSectionName()))
|
|
return createStringError(
|
|
errc::function_not_supported,
|
|
"BOLT-ERROR: input file was processed by BOLT. Cannot re-optimize");
|
|
}
|
|
|
|
if (!NextAvailableAddress || !NextAvailableOffset)
|
|
return createStringError(errc::executable_format_error,
|
|
"no PT_LOAD pheader seen");
|
|
|
|
BC->outs() << "BOLT-INFO: first alloc address is 0x"
|
|
<< Twine::utohexstr(BC->FirstAllocAddress) << '\n';
|
|
|
|
FirstNonAllocatableOffset = NextAvailableOffset;
|
|
|
|
if (opts::CustomAllocationVMA) {
|
|
// If user specified a custom address where we should start writing new
|
|
// data, honor that.
|
|
NextAvailableAddress = opts::CustomAllocationVMA;
|
|
// Sanity check the user-supplied address and emit warnings if something
|
|
// seems off.
|
|
for (const ELF64LE::Phdr &Phdr : PHs) {
|
|
switch (Phdr.p_type) {
|
|
case ELF::PT_LOAD:
|
|
if (NextAvailableAddress >= Phdr.p_vaddr &&
|
|
NextAvailableAddress < Phdr.p_vaddr + Phdr.p_memsz) {
|
|
BC->errs() << "BOLT-WARNING: user-supplied allocation vma 0x"
|
|
<< Twine::utohexstr(NextAvailableAddress)
|
|
<< " conflicts with ELF segment at 0x"
|
|
<< Twine::utohexstr(Phdr.p_vaddr) << "\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
NextAvailableAddress = alignTo(NextAvailableAddress, BC->PageAlign);
|
|
NextAvailableOffset = alignTo(NextAvailableOffset, BC->PageAlign);
|
|
|
|
// Hugify: Additional huge page from left side due to
|
|
// weird ASLR mapping addresses (4KB aligned)
|
|
if (opts::Hugify && !BC->HasFixedLoadAddress) {
|
|
NextAvailableAddress += BC->PageAlign;
|
|
}
|
|
|
|
NewTextSegmentAddress = NextAvailableAddress;
|
|
NewTextSegmentOffset = NextAvailableOffset;
|
|
|
|
if (!opts::UseGnuStack && !BC->IsLinuxKernel) {
|
|
// This is where the black magic happens. Creating PHDR table in a segment
|
|
// other than that containing ELF header is tricky. Some loaders and/or
|
|
// parts of loaders will apply e_phoff from ELF header assuming both are in
|
|
// the same segment, while others will do the proper calculation.
|
|
// We create the new PHDR table in such a way that both of the methods
|
|
// of loading and locating the table work. There's a slight file size
|
|
// overhead because of that.
|
|
//
|
|
// NB: bfd's strip command cannot do the above and will corrupt the
|
|
// binary during the process of stripping non-allocatable sections.
|
|
if (NextAvailableOffset <= NextAvailableAddress - BC->FirstAllocAddress)
|
|
NextAvailableOffset = NextAvailableAddress - BC->FirstAllocAddress;
|
|
else
|
|
NextAvailableAddress = NextAvailableOffset + BC->FirstAllocAddress;
|
|
|
|
assert(NextAvailableOffset ==
|
|
NextAvailableAddress - BC->FirstAllocAddress &&
|
|
"PHDR table address calculation error");
|
|
|
|
BC->outs() << "BOLT-INFO: creating new program header table at address 0x"
|
|
<< Twine::utohexstr(NextAvailableAddress) << ", offset 0x"
|
|
<< Twine::utohexstr(NextAvailableOffset) << '\n';
|
|
|
|
PHDRTableAddress = NextAvailableAddress;
|
|
PHDRTableOffset = NextAvailableOffset;
|
|
NewTextSegmentAddress = NextAvailableAddress;
|
|
NewTextSegmentOffset = NextAvailableOffset;
|
|
|
|
// Reserve space for 3 extra pheaders.
|
|
unsigned Phnum = Obj.getHeader().e_phnum;
|
|
Phnum += 3;
|
|
|
|
// Reserve two more pheaders to avoid having writeable and executable
|
|
// segment in instrumented binary.
|
|
if (opts::Instrument)
|
|
Phnum += 2;
|
|
|
|
NextAvailableAddress += Phnum * sizeof(ELF64LEPhdrTy);
|
|
NextAvailableOffset += Phnum * sizeof(ELF64LEPhdrTy);
|
|
|
|
// Align at cache line.
|
|
NextAvailableAddress = alignTo(NextAvailableAddress, 64);
|
|
NextAvailableOffset = alignTo(NextAvailableOffset, 64);
|
|
}
|
|
|
|
BC->LayoutStartAddress = NextAvailableAddress;
|
|
|
|
// Tools such as objcopy can strip section contents but leave header
|
|
// entries. Check that at least .text is mapped in the file.
|
|
if (!getFileOffsetForAddress(BC->OldTextSectionAddress))
|
|
return createStringError(errc::executable_format_error,
|
|
"BOLT-ERROR: input binary is not a valid ELF "
|
|
"executable as its text section is not "
|
|
"mapped to a valid segment");
|
|
return Error::success();
|
|
}
|
|
|
|
Error RewriteInstance::run() {
|
|
assert(BC && "failed to create a binary context");
|
|
|
|
BC->outs() << "BOLT-INFO: Target architecture: "
|
|
<< Triple::getArchTypeName(
|
|
(llvm::Triple::ArchType)InputFile->getArch())
|
|
<< "\n";
|
|
BC->outs() << "BOLT-INFO: BOLT version: " << BoltRevision << "\n";
|
|
|
|
if (Error E = discoverStorage())
|
|
return E;
|
|
if (Error E = readSpecialSections())
|
|
return E;
|
|
adjustCommandLineOptions();
|
|
discoverFileObjects();
|
|
|
|
if (opts::Instrument && !BC->IsStaticExecutable)
|
|
if (Error E = discoverRtFiniAddress())
|
|
return E;
|
|
|
|
preprocessProfileData();
|
|
|
|
selectFunctionsToProcess();
|
|
|
|
readDebugInfo();
|
|
|
|
disassembleFunctions();
|
|
|
|
processMetadataPreCFG();
|
|
|
|
buildFunctionsCFG();
|
|
|
|
processProfileData();
|
|
|
|
// Save input binary metadata if BAT section needs to be emitted
|
|
if (opts::EnableBAT)
|
|
BAT->saveMetadata(*BC);
|
|
|
|
postProcessFunctions();
|
|
|
|
processMetadataPostCFG();
|
|
|
|
if (opts::DiffOnly)
|
|
return Error::success();
|
|
|
|
if (opts::BinaryAnalysisMode) {
|
|
runBinaryAnalyses();
|
|
return Error::success();
|
|
}
|
|
|
|
preregisterSections();
|
|
|
|
runOptimizationPasses();
|
|
|
|
finalizeMetadataPreEmit();
|
|
|
|
emitAndLink();
|
|
|
|
updateMetadata();
|
|
|
|
if (opts::Instrument && !BC->IsStaticExecutable)
|
|
updateRtFiniReloc();
|
|
|
|
if (opts::OutputFilename == "/dev/null") {
|
|
BC->outs() << "BOLT-INFO: skipping writing final binary to disk\n";
|
|
return Error::success();
|
|
} else if (BC->IsLinuxKernel) {
|
|
BC->errs() << "BOLT-WARNING: Linux kernel support is experimental\n";
|
|
}
|
|
|
|
// Rewrite allocatable contents and copy non-allocatable parts with mods.
|
|
rewriteFile();
|
|
return Error::success();
|
|
}
|
|
|
|
void RewriteInstance::discoverFileObjects() {
|
|
NamedRegionTimer T("discoverFileObjects", "discover file objects",
|
|
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
|
|
|
|
// For local symbols we want to keep track of associated FILE symbol name for
|
|
// disambiguation by combined name.
|
|
for (const ELFSymbolRef &Symbol : InputFile->symbols()) {
|
|
Expected<StringRef> NameOrError = Symbol.getName();
|
|
if (NameOrError && NameOrError->starts_with("__asan_init")) {
|
|
BC->errs()
|
|
<< "BOLT-ERROR: input file was compiled or linked with sanitizer "
|
|
"support. Cannot optimize.\n";
|
|
exit(1);
|
|
}
|
|
if (NameOrError && NameOrError->starts_with("__llvm_coverage_mapping")) {
|
|
BC->errs()
|
|
<< "BOLT-ERROR: input file was compiled or linked with coverage "
|
|
"support. Cannot optimize.\n";
|
|
exit(1);
|
|
}
|
|
|
|
if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined)
|
|
continue;
|
|
|
|
if (cantFail(Symbol.getType()) == SymbolRef::ST_File)
|
|
FileSymbols.emplace_back(Symbol);
|
|
}
|
|
|
|
// Sort symbols in the file by value. Ignore symbols from non-allocatable
|
|
// sections. We memoize getAddress(), as it has rather high overhead.
|
|
struct SymbolInfo {
|
|
uint64_t Address;
|
|
SymbolRef Symbol;
|
|
};
|
|
std::vector<SymbolInfo> SortedSymbols;
|
|
auto isSymbolInMemory = [this](const SymbolRef &Sym) {
|
|
if (cantFail(Sym.getType()) == SymbolRef::ST_File)
|
|
return false;
|
|
if (cantFail(Sym.getFlags()) & SymbolRef::SF_Absolute)
|
|
return true;
|
|
if (cantFail(Sym.getFlags()) & SymbolRef::SF_Undefined)
|
|
return false;
|
|
BinarySection Section(*BC, *cantFail(Sym.getSection()));
|
|
return Section.isAllocatable();
|
|
};
|
|
auto checkSymbolInSection = [this](const SymbolInfo &S) {
|
|
// Sometimes, we encounter symbols with addresses outside their section. If
|
|
// such symbols happen to fall into another section, they can interfere with
|
|
// disassembly. Notably, this occurs with AArch64 marker symbols ($d and $t)
|
|
// that belong to .eh_frame, but end up pointing into .text.
|
|
// As a workaround, we ignore all symbols that lie outside their sections.
|
|
auto Section = cantFail(S.Symbol.getSection());
|
|
|
|
// Accept all absolute symbols.
|
|
if (Section == InputFile->section_end())
|
|
return true;
|
|
|
|
uint64_t SecStart = Section->getAddress();
|
|
uint64_t SecEnd = SecStart + Section->getSize();
|
|
uint64_t SymEnd = S.Address + ELFSymbolRef(S.Symbol).getSize();
|
|
if (S.Address >= SecStart && SymEnd <= SecEnd)
|
|
return true;
|
|
|
|
auto SymType = cantFail(S.Symbol.getType());
|
|
// Skip warnings for common benign cases.
|
|
if (opts::Verbosity < 1 && SymType == SymbolRef::ST_Other)
|
|
return false; // E.g. ELF::STT_TLS.
|
|
|
|
auto SymName = S.Symbol.getName();
|
|
auto SecName = cantFail(S.Symbol.getSection())->getName();
|
|
BC->errs() << "BOLT-WARNING: ignoring symbol "
|
|
<< (SymName ? *SymName : "[unnamed]") << " at 0x"
|
|
<< Twine::utohexstr(S.Address) << ", which lies outside "
|
|
<< (SecName ? *SecName : "[unnamed]") << "\n";
|
|
|
|
return false;
|
|
};
|
|
for (const SymbolRef &Symbol : InputFile->symbols())
|
|
if (isSymbolInMemory(Symbol)) {
|
|
SymbolInfo SymInfo{cantFail(Symbol.getAddress()), Symbol};
|
|
if (checkSymbolInSection(SymInfo))
|
|
SortedSymbols.push_back(SymInfo);
|
|
}
|
|
|
|
auto CompareSymbols = [this](const SymbolInfo &A, const SymbolInfo &B) {
|
|
if (A.Address != B.Address)
|
|
return A.Address < B.Address;
|
|
|
|
const bool AMarker = BC->isMarker(A.Symbol);
|
|
const bool BMarker = BC->isMarker(B.Symbol);
|
|
if (AMarker || BMarker) {
|
|
return AMarker && !BMarker;
|
|
}
|
|
|
|
const auto AType = cantFail(A.Symbol.getType());
|
|
const auto BType = cantFail(B.Symbol.getType());
|
|
if (AType == SymbolRef::ST_Function && BType != SymbolRef::ST_Function)
|
|
return true;
|
|
if (BType == SymbolRef::ST_Debug && AType != SymbolRef::ST_Debug)
|
|
return true;
|
|
|
|
return false;
|
|
};
|
|
llvm::stable_sort(SortedSymbols, CompareSymbols);
|
|
|
|
auto LastSymbol = SortedSymbols.end();
|
|
if (!SortedSymbols.empty())
|
|
--LastSymbol;
|
|
|
|
// For aarch64, the ABI defines mapping symbols so we identify data in the
|
|
// code section (see IHI0056B). $d identifies data contents.
|
|
// Compilers usually merge multiple data objects in a single $d-$x interval,
|
|
// but we need every data object to be marked with $d. Because of that we
|
|
// keep track of marker symbols with all locations of data objects.
|
|
|
|
DenseMap<uint64_t, MarkerSymType> MarkerSymbols;
|
|
auto addExtraDataMarkerPerSymbol = [&]() {
|
|
bool IsData = false;
|
|
uint64_t LastAddr = 0;
|
|
for (const auto &SymInfo : SortedSymbols) {
|
|
if (LastAddr == SymInfo.Address) // don't repeat markers
|
|
continue;
|
|
|
|
MarkerSymType MarkerType = BC->getMarkerType(SymInfo.Symbol);
|
|
|
|
// Treat ST_Function as code.
|
|
Expected<object::SymbolRef::Type> TypeOrError = SymInfo.Symbol.getType();
|
|
consumeError(TypeOrError.takeError());
|
|
if (TypeOrError && *TypeOrError == SymbolRef::ST_Function) {
|
|
if (IsData) {
|
|
Expected<StringRef> NameOrError = SymInfo.Symbol.getName();
|
|
consumeError(NameOrError.takeError());
|
|
BC->errs() << "BOLT-WARNING: function symbol " << *NameOrError
|
|
<< " lacks code marker\n";
|
|
}
|
|
MarkerType = MarkerSymType::CODE;
|
|
}
|
|
|
|
if (MarkerType != MarkerSymType::NONE) {
|
|
MarkerSymbols[SymInfo.Address] = MarkerType;
|
|
LastAddr = SymInfo.Address;
|
|
IsData = MarkerType == MarkerSymType::DATA;
|
|
continue;
|
|
}
|
|
|
|
if (IsData) {
|
|
MarkerSymbols[SymInfo.Address] = MarkerSymType::DATA;
|
|
LastAddr = SymInfo.Address;
|
|
}
|
|
}
|
|
};
|
|
|
|
if (BC->isAArch64() || BC->isRISCV()) {
|
|
addExtraDataMarkerPerSymbol();
|
|
LastSymbol = std::stable_partition(
|
|
SortedSymbols.begin(), SortedSymbols.end(),
|
|
[this](const SymbolInfo &S) { return !BC->isMarker(S.Symbol); });
|
|
if (!SortedSymbols.empty())
|
|
--LastSymbol;
|
|
}
|
|
|
|
BinaryFunction *PreviousFunction = nullptr;
|
|
unsigned AnonymousId = 0;
|
|
|
|
const auto SortedSymbolsEnd =
|
|
LastSymbol == SortedSymbols.end() ? LastSymbol : std::next(LastSymbol);
|
|
for (auto Iter = SortedSymbols.begin(); Iter != SortedSymbolsEnd; ++Iter) {
|
|
const SymbolRef &Symbol = Iter->Symbol;
|
|
const uint64_t SymbolAddress = Iter->Address;
|
|
const auto SymbolFlags = cantFail(Symbol.getFlags());
|
|
const SymbolRef::Type SymbolType = cantFail(Symbol.getType());
|
|
|
|
if (SymbolType == SymbolRef::ST_File)
|
|
continue;
|
|
|
|
StringRef SymName = cantFail(Symbol.getName(), "cannot get symbol name");
|
|
if (SymbolAddress == 0) {
|
|
if (opts::Verbosity >= 1 && SymbolType == SymbolRef::ST_Function)
|
|
BC->errs() << "BOLT-WARNING: function with 0 address seen\n";
|
|
continue;
|
|
}
|
|
|
|
// Ignore input hot markers unless in heatmap mode
|
|
if ((SymName == "__hot_start" || SymName == "__hot_end") &&
|
|
!opts::HeatmapMode)
|
|
continue;
|
|
|
|
FileSymRefs.emplace(SymbolAddress, Symbol);
|
|
|
|
// Skip section symbols that will be registered by disassemblePLT().
|
|
if (SymbolType == SymbolRef::ST_Debug) {
|
|
ErrorOr<BinarySection &> BSection =
|
|
BC->getSectionForAddress(SymbolAddress);
|
|
if (BSection && getPLTSectionInfo(BSection->getName()))
|
|
continue;
|
|
}
|
|
|
|
/// It is possible we are seeing a globalized local. LLVM might treat it as
|
|
/// a local if it has a "private global" prefix, e.g. ".L". Thus we have to
|
|
/// change the prefix to enforce global scope of the symbol.
|
|
std::string Name =
|
|
SymName.starts_with(BC->AsmInfo->getPrivateGlobalPrefix())
|
|
? "PG" + std::string(SymName)
|
|
: std::string(SymName);
|
|
|
|
// Disambiguate all local symbols before adding to symbol table.
|
|
// Since we don't know if we will see a global with the same name,
|
|
// always modify the local name.
|
|
//
|
|
// NOTE: the naming convention for local symbols should match
|
|
// the one we use for profile data.
|
|
std::string UniqueName;
|
|
std::string AlternativeName;
|
|
if (Name.empty()) {
|
|
UniqueName = "ANONYMOUS." + std::to_string(AnonymousId++);
|
|
} else if (SymbolFlags & SymbolRef::SF_Global) {
|
|
if (const BinaryData *BD = BC->getBinaryDataByName(Name)) {
|
|
if (BD->getSize() == ELFSymbolRef(Symbol).getSize() &&
|
|
BD->getAddress() == SymbolAddress) {
|
|
if (opts::Verbosity > 1)
|
|
BC->errs() << "BOLT-WARNING: ignoring duplicate global symbol "
|
|
<< Name << "\n";
|
|
// Ignore duplicate entry - possibly a bug in the linker
|
|
continue;
|
|
}
|
|
BC->errs() << "BOLT-ERROR: bad input binary, global symbol \"" << Name
|
|
<< "\" is not unique\n";
|
|
exit(1);
|
|
}
|
|
UniqueName = Name;
|
|
} else {
|
|
// If we have a local file name, we should create 2 variants for the
|
|
// function name. The reason is that perf profile might have been
|
|
// collected on a binary that did not have the local file name (e.g. as
|
|
// a side effect of stripping debug info from the binary):
|
|
//
|
|
// primary: <function>/<id>
|
|
// alternative: <function>/<file>/<id2>
|
|
//
|
|
// The <id> field is used for disambiguation of local symbols since there
|
|
// could be identical function names coming from identical file names
|
|
// (e.g. from different directories).
|
|
auto SFI = llvm::upper_bound(FileSymbols, ELFSymbolRef(Symbol));
|
|
if (SymbolType == SymbolRef::ST_Function && SFI != FileSymbols.begin()) {
|
|
StringRef FileSymbolName = cantFail(SFI[-1].getName());
|
|
if (!FileSymbolName.empty())
|
|
AlternativeName = NR.uniquify(Name + "/" + FileSymbolName.str());
|
|
}
|
|
|
|
UniqueName = NR.uniquify(Name);
|
|
}
|
|
|
|
uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize();
|
|
uint64_t SymbolAlignment = Symbol.getAlignment();
|
|
|
|
auto registerName = [&](uint64_t FinalSize) {
|
|
// Register names even if it's not a function, e.g. for an entry point.
|
|
BC->registerNameAtAddress(UniqueName, SymbolAddress, FinalSize,
|
|
SymbolAlignment, SymbolFlags);
|
|
if (!AlternativeName.empty())
|
|
BC->registerNameAtAddress(AlternativeName, SymbolAddress, FinalSize,
|
|
SymbolAlignment, SymbolFlags);
|
|
};
|
|
|
|
section_iterator Section =
|
|
cantFail(Symbol.getSection(), "cannot get symbol section");
|
|
if (Section == InputFile->section_end()) {
|
|
// Could be an absolute symbol. Used on RISC-V for __global_pointer$ so we
|
|
// need to record it to handle relocations against it. For other instances
|
|
// of absolute symbols, we record for pretty printing.
|
|
LLVM_DEBUG(if (opts::Verbosity > 1) {
|
|
dbgs() << "BOLT-INFO: absolute sym " << UniqueName << "\n";
|
|
});
|
|
registerName(SymbolSize);
|
|
continue;
|
|
}
|
|
|
|
if (SymName == getBOLTReservedStart() || SymName == getBOLTReservedEnd()) {
|
|
registerName(SymbolSize);
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: considering symbol " << UniqueName
|
|
<< " for function\n");
|
|
|
|
if (SymbolAddress == Section->getAddress() + Section->getSize()) {
|
|
assert(SymbolSize == 0 &&
|
|
"unexpect non-zero sized symbol at end of section");
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "BOLT-DEBUG: rejecting as symbol points to end of its section\n");
|
|
registerName(SymbolSize);
|
|
continue;
|
|
}
|
|
|
|
if (!Section->isText() || Section->isVirtual()) {
|
|
assert(SymbolType != SymbolRef::ST_Function &&
|
|
"unexpected function inside non-code section");
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejecting as symbol is not in code or "
|
|
"is in nobits section\n");
|
|
registerName(SymbolSize);
|
|
continue;
|
|
}
|
|
|
|
// Assembly functions could be ST_NONE with 0 size. Check that the
|
|
// corresponding section is a code section and they are not inside any
|
|
// other known function to consider them.
|
|
//
|
|
// Sometimes assembly functions are not marked as functions and neither are
|
|
// their local labels. The only way to tell them apart is to look at
|
|
// symbol scope - global vs local.
|
|
if (PreviousFunction && SymbolType != SymbolRef::ST_Function) {
|
|
if (PreviousFunction->containsAddress(SymbolAddress)) {
|
|
if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "BOLT-DEBUG: symbol is a function local symbol\n");
|
|
} else if (SymbolAddress == PreviousFunction->getAddress() &&
|
|
!SymbolSize) {
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring symbol as a marker\n");
|
|
} else if (opts::Verbosity > 1) {
|
|
BC->errs() << "BOLT-WARNING: symbol " << UniqueName
|
|
<< " seen in the middle of function " << *PreviousFunction
|
|
<< ". Could be a new entry.\n";
|
|
}
|
|
registerName(SymbolSize);
|
|
continue;
|
|
} else if (PreviousFunction->getSize() == 0 &&
|
|
PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n");
|
|
registerName(SymbolSize);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (PreviousFunction && PreviousFunction->containsAddress(SymbolAddress) &&
|
|
PreviousFunction->getAddress() != SymbolAddress) {
|
|
if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
|
|
if (opts::Verbosity >= 1)
|
|
BC->outs()
|
|
<< "BOLT-INFO: skipping possibly another entry for function "
|
|
<< *PreviousFunction << " : " << UniqueName << '\n';
|
|
registerName(SymbolSize);
|
|
} else {
|
|
BC->outs() << "BOLT-INFO: using " << UniqueName
|
|
<< " as another entry to "
|
|
<< "function " << *PreviousFunction << '\n';
|
|
|
|
registerName(0);
|
|
|
|
PreviousFunction->addEntryPointAtOffset(SymbolAddress -
|
|
PreviousFunction->getAddress());
|
|
|
|
// Remove the symbol from FileSymRefs so that we can skip it from
|
|
// in the future.
|
|
auto SI = llvm::find_if(
|
|
llvm::make_range(FileSymRefs.equal_range(SymbolAddress)),
|
|
[&](auto SymIt) { return SymIt.second == Symbol; });
|
|
assert(SI != FileSymRefs.end() && "symbol expected to be present");
|
|
assert(SI->second == Symbol && "wrong symbol found");
|
|
FileSymRefs.erase(SI);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Checkout for conflicts with function data from FDEs.
|
|
bool IsSimple = true;
|
|
auto FDEI = CFIRdWrt->getFDEs().lower_bound(SymbolAddress);
|
|
if (FDEI != CFIRdWrt->getFDEs().end()) {
|
|
const dwarf::FDE &FDE = *FDEI->second;
|
|
if (FDEI->first != SymbolAddress) {
|
|
// There's no matching starting address in FDE. Make sure the previous
|
|
// FDE does not contain this address.
|
|
if (FDEI != CFIRdWrt->getFDEs().begin()) {
|
|
--FDEI;
|
|
const dwarf::FDE &PrevFDE = *FDEI->second;
|
|
uint64_t PrevStart = PrevFDE.getInitialLocation();
|
|
uint64_t PrevLength = PrevFDE.getAddressRange();
|
|
if (SymbolAddress > PrevStart &&
|
|
SymbolAddress < PrevStart + PrevLength) {
|
|
BC->errs() << "BOLT-ERROR: function " << UniqueName
|
|
<< " is in conflict with FDE ["
|
|
<< Twine::utohexstr(PrevStart) << ", "
|
|
<< Twine::utohexstr(PrevStart + PrevLength)
|
|
<< "). Skipping.\n";
|
|
IsSimple = false;
|
|
}
|
|
}
|
|
} else if (FDE.getAddressRange() != SymbolSize) {
|
|
if (SymbolSize) {
|
|
// Function addresses match but sizes differ.
|
|
BC->errs() << "BOLT-WARNING: sizes differ for function " << UniqueName
|
|
<< ". FDE : " << FDE.getAddressRange()
|
|
<< "; symbol table : " << SymbolSize
|
|
<< ". Using max size.\n";
|
|
}
|
|
SymbolSize = std::max(SymbolSize, FDE.getAddressRange());
|
|
if (BC->getBinaryDataAtAddress(SymbolAddress)) {
|
|
BC->setBinaryDataSize(SymbolAddress, SymbolSize);
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: No BD @ 0x"
|
|
<< Twine::utohexstr(SymbolAddress) << "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
BinaryFunction *BF = nullptr;
|
|
// Since function may not have yet obtained its real size, do a search
|
|
// using the list of registered functions instead of calling
|
|
// getBinaryFunctionAtAddress().
|
|
auto BFI = BC->getBinaryFunctions().find(SymbolAddress);
|
|
if (BFI != BC->getBinaryFunctions().end()) {
|
|
BF = &BFI->second;
|
|
// Duplicate the function name. Make sure everything matches before we add
|
|
// an alternative name.
|
|
if (SymbolSize != BF->getSize()) {
|
|
if (opts::Verbosity >= 1) {
|
|
if (SymbolSize && BF->getSize())
|
|
BC->errs() << "BOLT-WARNING: size mismatch for duplicate entries "
|
|
<< *BF << " and " << UniqueName << '\n';
|
|
BC->outs() << "BOLT-INFO: adjusting size of function " << *BF
|
|
<< " old " << BF->getSize() << " new " << SymbolSize
|
|
<< "\n";
|
|
}
|
|
BF->setSize(std::max(SymbolSize, BF->getSize()));
|
|
BC->setBinaryDataSize(SymbolAddress, BF->getSize());
|
|
}
|
|
BF->addAlternativeName(UniqueName);
|
|
} else {
|
|
ErrorOr<BinarySection &> Section =
|
|
BC->getSectionForAddress(SymbolAddress);
|
|
// Skip symbols from invalid sections
|
|
if (!Section) {
|
|
BC->errs() << "BOLT-WARNING: " << UniqueName << " (0x"
|
|
<< Twine::utohexstr(SymbolAddress)
|
|
<< ") does not have any section\n";
|
|
continue;
|
|
}
|
|
|
|
// Skip symbols from zero-sized sections.
|
|
if (!Section->getSize())
|
|
continue;
|
|
|
|
BF = BC->createBinaryFunction(UniqueName, *Section, SymbolAddress,
|
|
SymbolSize);
|
|
if (!IsSimple)
|
|
BF->setSimple(false);
|
|
}
|
|
|
|
// Check if it's a cold function fragment.
|
|
if (FunctionFragmentTemplate.match(SymName)) {
|
|
static bool PrintedWarning = false;
|
|
if (!PrintedWarning) {
|
|
PrintedWarning = true;
|
|
BC->errs() << "BOLT-WARNING: split function detected on input : "
|
|
<< SymName;
|
|
if (BC->HasRelocations)
|
|
BC->errs() << ". The support is limited in relocation mode\n";
|
|
else
|
|
BC->errs() << '\n';
|
|
}
|
|
BC->HasSplitFunctions = true;
|
|
BF->IsFragment = true;
|
|
}
|
|
|
|
if (!AlternativeName.empty())
|
|
BF->addAlternativeName(AlternativeName);
|
|
|
|
registerName(SymbolSize);
|
|
PreviousFunction = BF;
|
|
}
|
|
|
|
// Read dynamic relocation first as their presence affects the way we process
|
|
// static relocations. E.g. we will ignore a static relocation at an address
|
|
// that is a subject to dynamic relocation processing.
|
|
processDynamicRelocations();
|
|
|
|
// Process PLT section.
|
|
disassemblePLT();
|
|
|
|
// See if we missed any functions marked by FDE.
|
|
for (const auto &FDEI : CFIRdWrt->getFDEs()) {
|
|
const uint64_t Address = FDEI.first;
|
|
const dwarf::FDE *FDE = FDEI.second;
|
|
const BinaryFunction *BF = BC->getBinaryFunctionAtAddress(Address);
|
|
if (BF)
|
|
continue;
|
|
|
|
BF = BC->getBinaryFunctionContainingAddress(Address);
|
|
if (BF) {
|
|
BC->errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address)
|
|
<< ", 0x" << Twine::utohexstr(Address + FDE->getAddressRange())
|
|
<< ") conflicts with function " << *BF << '\n';
|
|
continue;
|
|
}
|
|
|
|
if (opts::Verbosity >= 1)
|
|
BC->errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address)
|
|
<< ", 0x" << Twine::utohexstr(Address + FDE->getAddressRange())
|
|
<< ") has no corresponding symbol table entry\n";
|
|
|
|
ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address);
|
|
assert(Section && "cannot get section for address from FDE");
|
|
std::string FunctionName =
|
|
"__BOLT_FDE_FUNCat" + Twine::utohexstr(Address).str();
|
|
BC->createBinaryFunction(FunctionName, *Section, Address,
|
|
FDE->getAddressRange());
|
|
}
|
|
|
|
BC->setHasSymbolsWithFileName(FileSymbols.size());
|
|
|
|
// Now that all the functions were created - adjust their boundaries.
|
|
adjustFunctionBoundaries(MarkerSymbols);
|
|
|
|
// Annotate functions with code/data markers in AArch64
|
|
for (auto &[Address, Type] : MarkerSymbols) {
|
|
auto *BF = BC->getBinaryFunctionContainingAddress(Address, true, true);
|
|
|
|
if (!BF) {
|
|
// Stray marker
|
|
continue;
|
|
}
|
|
const auto EntryOffset = Address - BF->getAddress();
|
|
if (Type == MarkerSymType::CODE) {
|
|
BF->markCodeAtOffset(EntryOffset);
|
|
continue;
|
|
}
|
|
if (Type == MarkerSymType::DATA) {
|
|
BF->markDataAtOffset(EntryOffset);
|
|
BC->AddressToConstantIslandMap[Address] = BF;
|
|
continue;
|
|
}
|
|
llvm_unreachable("Unknown marker");
|
|
}
|
|
|
|
if (BC->isAArch64()) {
|
|
// Check for dynamic relocations that might be contained in
|
|
// constant islands.
|
|
for (const BinarySection &Section : BC->allocatableSections()) {
|
|
const uint64_t SectionAddress = Section.getAddress();
|
|
for (const Relocation &Rel : Section.dynamicRelocations()) {
|
|
const uint64_t RelAddress = SectionAddress + Rel.Offset;
|
|
BinaryFunction *BF =
|
|
BC->getBinaryFunctionContainingAddress(RelAddress,
|
|
/*CheckPastEnd*/ false,
|
|
/*UseMaxSize*/ true);
|
|
if (BF) {
|
|
assert(Rel.isRelative() && "Expected relative relocation for island");
|
|
BC->logBOLTErrorsAndQuitOnFatal(
|
|
BF->markIslandDynamicRelocationAtAddress(RelAddress));
|
|
}
|
|
}
|
|
}
|
|
|
|
// The linker may omit data markers for absolute long veneers. Introduce
|
|
// those markers artificially to assist the disassembler.
|
|
for (BinaryFunction &BF :
|
|
llvm::make_second_range(BC->getBinaryFunctions())) {
|
|
if (BF.getOneName().starts_with("__AArch64AbsLongThunk_") &&
|
|
BF.getSize() == 16 && !BF.getSizeOfDataInCodeAt(8)) {
|
|
BC->errs() << "BOLT-WARNING: missing data marker detected in veneer "
|
|
<< BF << '\n';
|
|
BF.markDataAtOffset(8);
|
|
BC->AddressToConstantIslandMap[BF.getAddress() + 8] = &BF;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!BC->IsLinuxKernel) {
|
|
// Read all relocations now that we have binary functions mapped.
|
|
processRelocations();
|
|
}
|
|
|
|
registerFragments();
|
|
FileSymbols.clear();
|
|
FileSymRefs.clear();
|
|
|
|
discoverBOLTReserved();
|
|
}
|
|
|
|
void RewriteInstance::discoverBOLTReserved() {
|
|
BinaryData *StartBD = BC->getBinaryDataByName(getBOLTReservedStart());
|
|
BinaryData *EndBD = BC->getBinaryDataByName(getBOLTReservedEnd());
|
|
if (!StartBD != !EndBD) {
|
|
BC->errs() << "BOLT-ERROR: one of the symbols is missing from the binary: "
|
|
<< getBOLTReservedStart() << ", " << getBOLTReservedEnd()
|
|
<< '\n';
|
|
exit(1);
|
|
}
|
|
|
|
if (!StartBD)
|
|
return;
|
|
|
|
if (StartBD->getAddress() >= EndBD->getAddress()) {
|
|
BC->errs() << "BOLT-ERROR: invalid reserved space boundaries\n";
|
|
exit(1);
|
|
}
|
|
BC->BOLTReserved = AddressRange(StartBD->getAddress(), EndBD->getAddress());
|
|
BC->outs() << "BOLT-INFO: using reserved space for allocating new sections\n";
|
|
|
|
PHDRTableOffset = 0;
|
|
PHDRTableAddress = 0;
|
|
NewTextSegmentAddress = 0;
|
|
NewTextSegmentOffset = 0;
|
|
NextAvailableAddress = BC->BOLTReserved.start();
|
|
}
|
|
|
|
Error RewriteInstance::discoverRtFiniAddress() {
|
|
// Use DT_FINI if it's available.
|
|
if (BC->FiniAddress) {
|
|
BC->FiniFunctionAddress = BC->FiniAddress;
|
|
return Error::success();
|
|
}
|
|
|
|
if (!BC->FiniArrayAddress || !BC->FiniArraySize) {
|
|
return createStringError(
|
|
std::errc::not_supported,
|
|
"Instrumentation needs either DT_FINI or DT_FINI_ARRAY");
|
|
}
|
|
|
|
if (*BC->FiniArraySize < BC->AsmInfo->getCodePointerSize()) {
|
|
return createStringError(std::errc::not_supported,
|
|
"Need at least 1 DT_FINI_ARRAY slot");
|
|
}
|
|
|
|
ErrorOr<BinarySection &> FiniArraySection =
|
|
BC->getSectionForAddress(*BC->FiniArrayAddress);
|
|
if (auto EC = FiniArraySection.getError())
|
|
return errorCodeToError(EC);
|
|
|
|
if (const Relocation *Reloc = FiniArraySection->getDynamicRelocationAt(0)) {
|
|
BC->FiniFunctionAddress = Reloc->Addend;
|
|
return Error::success();
|
|
}
|
|
|
|
if (const Relocation *Reloc = FiniArraySection->getRelocationAt(0)) {
|
|
BC->FiniFunctionAddress = Reloc->Value;
|
|
return Error::success();
|
|
}
|
|
|
|
return createStringError(std::errc::not_supported,
|
|
"No relocation for first DT_FINI_ARRAY slot");
|
|
}
|
|
|
|
void RewriteInstance::updateRtFiniReloc() {
|
|
// Updating DT_FINI is handled by patchELFDynamic.
|
|
if (BC->FiniAddress)
|
|
return;
|
|
|
|
const RuntimeLibrary *RT = BC->getRuntimeLibrary();
|
|
if (!RT || !RT->getRuntimeFiniAddress())
|
|
return;
|
|
|
|
assert(BC->FiniArrayAddress && BC->FiniArraySize &&
|
|
"inconsistent .fini_array state");
|
|
|
|
ErrorOr<BinarySection &> FiniArraySection =
|
|
BC->getSectionForAddress(*BC->FiniArrayAddress);
|
|
assert(FiniArraySection && ".fini_array removed");
|
|
|
|
if (std::optional<Relocation> Reloc =
|
|
FiniArraySection->takeDynamicRelocationAt(0)) {
|
|
assert(Reloc->Addend == BC->FiniFunctionAddress &&
|
|
"inconsistent .fini_array dynamic relocation");
|
|
Reloc->Addend = RT->getRuntimeFiniAddress();
|
|
FiniArraySection->addDynamicRelocation(*Reloc);
|
|
}
|
|
|
|
// Update the static relocation by adding a pending relocation which will get
|
|
// patched when flushPendingRelocations is called in rewriteFile. Note that
|
|
// flushPendingRelocations will calculate the value to patch as
|
|
// "Symbol + Addend". Since we don't have a symbol, just set the addend to the
|
|
// desired value.
|
|
FiniArraySection->addPendingRelocation(Relocation{
|
|
/*Offset*/ 0, /*Symbol*/ nullptr, /*Type*/ Relocation::getAbs64(),
|
|
/*Addend*/ RT->getRuntimeFiniAddress(), /*Value*/ 0});
|
|
}
|
|
|
|
void RewriteInstance::registerFragments() {
|
|
if (!BC->HasSplitFunctions ||
|
|
opts::HeatmapMode == opts::HeatmapModeKind::HM_Exclusive)
|
|
return;
|
|
|
|
// Process fragments with ambiguous parents separately as they are typically a
|
|
// vanishing minority of cases and require expensive symbol table lookups.
|
|
std::vector<std::pair<StringRef, BinaryFunction *>> AmbiguousFragments;
|
|
for (auto &BFI : BC->getBinaryFunctions()) {
|
|
BinaryFunction &Function = BFI.second;
|
|
if (!Function.isFragment())
|
|
continue;
|
|
for (StringRef Name : Function.getNames()) {
|
|
StringRef BaseName = NR.restore(Name);
|
|
const bool IsGlobal = BaseName == Name;
|
|
SmallVector<StringRef> Matches;
|
|
if (!FunctionFragmentTemplate.match(BaseName, &Matches))
|
|
continue;
|
|
StringRef ParentName = Matches[1];
|
|
const BinaryData *BD = BC->getBinaryDataByName(ParentName);
|
|
const uint64_t NumPossibleLocalParents =
|
|
NR.getUniquifiedNameCount(ParentName);
|
|
// The most common case: single local parent fragment.
|
|
if (!BD && NumPossibleLocalParents == 1) {
|
|
BD = BC->getBinaryDataByName(NR.getUniqueName(ParentName, 1));
|
|
} else if (BD && (!NumPossibleLocalParents || IsGlobal)) {
|
|
// Global parent and either no local candidates (second most common), or
|
|
// the fragment is global as well (uncommon).
|
|
} else {
|
|
// Any other case: need to disambiguate using FILE symbols.
|
|
AmbiguousFragments.emplace_back(ParentName, &Function);
|
|
continue;
|
|
}
|
|
if (BD) {
|
|
BinaryFunction *BF = BC->getFunctionForSymbol(BD->getSymbol());
|
|
if (BF) {
|
|
BC->registerFragment(Function, *BF);
|
|
continue;
|
|
}
|
|
}
|
|
BC->errs() << "BOLT-ERROR: parent function not found for " << Function
|
|
<< '\n';
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
if (AmbiguousFragments.empty())
|
|
return;
|
|
|
|
if (!BC->hasSymbolsWithFileName()) {
|
|
BC->errs() << "BOLT-ERROR: input file has split functions but does not "
|
|
"have FILE symbols. If the binary was stripped, preserve "
|
|
"FILE symbols with --keep-file-symbols strip option\n";
|
|
exit(1);
|
|
}
|
|
|
|
// The first global symbol is identified by the symbol table sh_info value.
|
|
// Used as local symbol search stopping point.
|
|
auto *ELF64LEFile = cast<ELF64LEObjectFile>(InputFile);
|
|
const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
|
|
auto *SymTab = llvm::find_if(cantFail(Obj.sections()), [](const auto &Sec) {
|
|
return Sec.sh_type == ELF::SHT_SYMTAB;
|
|
});
|
|
assert(SymTab);
|
|
// Symtab sh_info contains the value one greater than the symbol table index
|
|
// of the last local symbol.
|
|
ELFSymbolRef LocalSymEnd = ELF64LEFile->toSymbolRef(SymTab, SymTab->sh_info);
|
|
|
|
for (auto &Fragment : AmbiguousFragments) {
|
|
const StringRef &ParentName = Fragment.first;
|
|
BinaryFunction *BF = Fragment.second;
|
|
const uint64_t Address = BF->getAddress();
|
|
|
|
// Get fragment's own symbol
|
|
const auto SymIt = llvm::find_if(
|
|
llvm::make_range(FileSymRefs.equal_range(Address)), [&](auto SI) {
|
|
StringRef Name = cantFail(SI.second.getName());
|
|
return Name.contains(ParentName);
|
|
});
|
|
if (SymIt == FileSymRefs.end()) {
|
|
BC->errs()
|
|
<< "BOLT-ERROR: symbol lookup failed for function at address 0x"
|
|
<< Twine::utohexstr(Address) << '\n';
|
|
exit(1);
|
|
}
|
|
|
|
// Find containing FILE symbol
|
|
ELFSymbolRef Symbol = SymIt->second;
|
|
auto FSI = llvm::upper_bound(FileSymbols, Symbol);
|
|
if (FSI == FileSymbols.begin()) {
|
|
BC->errs() << "BOLT-ERROR: owning FILE symbol not found for symbol "
|
|
<< cantFail(Symbol.getName()) << '\n';
|
|
exit(1);
|
|
}
|
|
|
|
ELFSymbolRef StopSymbol = LocalSymEnd;
|
|
if (FSI != FileSymbols.end())
|
|
StopSymbol = *FSI;
|
|
|
|
uint64_t ParentAddress{0};
|
|
|
|
// Check if containing FILE symbol is BOLT emitted synthetic symbol marking
|
|
// local fragments of global parents.
|
|
if (cantFail(FSI[-1].getName()) == getBOLTFileSymbolName())
|
|
goto registerParent;
|
|
|
|
// BOLT split fragment symbols are emitted just before the main function
|
|
// symbol.
|
|
for (ELFSymbolRef NextSymbol = Symbol; NextSymbol < StopSymbol;
|
|
NextSymbol.moveNext()) {
|
|
StringRef Name = cantFail(NextSymbol.getName());
|
|
if (Name == ParentName) {
|
|
ParentAddress = cantFail(NextSymbol.getValue());
|
|
goto registerParent;
|
|
}
|
|
if (Name.starts_with(ParentName))
|
|
// With multi-way splitting, there are multiple fragments with different
|
|
// suffixes. Parent follows the last fragment.
|
|
continue;
|
|
break;
|
|
}
|
|
|
|
// Iterate over local file symbols and check symbol names to match parent.
|
|
for (ELFSymbolRef Symbol(FSI[-1]); Symbol < StopSymbol; Symbol.moveNext()) {
|
|
if (cantFail(Symbol.getName()) == ParentName) {
|
|
ParentAddress = cantFail(Symbol.getAddress());
|
|
break;
|
|
}
|
|
}
|
|
|
|
registerParent:
|
|
// No local parent is found, use global parent function.
|
|
if (!ParentAddress)
|
|
if (BinaryData *ParentBD = BC->getBinaryDataByName(ParentName))
|
|
ParentAddress = ParentBD->getAddress();
|
|
|
|
if (BinaryFunction *ParentBF =
|
|
BC->getBinaryFunctionAtAddress(ParentAddress)) {
|
|
BC->registerFragment(*BF, *ParentBF);
|
|
continue;
|
|
}
|
|
BC->errs() << "BOLT-ERROR: parent function not found for " << *BF << '\n';
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
void RewriteInstance::createPLTBinaryFunction(uint64_t TargetAddress,
|
|
uint64_t EntryAddress,
|
|
uint64_t EntrySize) {
|
|
if (!TargetAddress)
|
|
return;
|
|
|
|
auto setPLTSymbol = [&](BinaryFunction *BF, StringRef Name) {
|
|
const unsigned PtrSize = BC->AsmInfo->getCodePointerSize();
|
|
MCSymbol *TargetSymbol = BC->registerNameAtAddress(
|
|
Name.str() + "@GOT", TargetAddress, PtrSize, PtrSize);
|
|
BF->setPLTSymbol(TargetSymbol);
|
|
};
|
|
|
|
BinaryFunction *BF = BC->getBinaryFunctionAtAddress(EntryAddress);
|
|
if (BF && BC->isAArch64()) {
|
|
// Handle IFUNC trampoline with symbol
|
|
setPLTSymbol(BF, BF->getOneName());
|
|
return;
|
|
}
|
|
|
|
const Relocation *Rel = BC->getDynamicRelocationAt(TargetAddress);
|
|
if (!Rel)
|
|
return;
|
|
|
|
MCSymbol *Symbol = Rel->Symbol;
|
|
if (!Symbol) {
|
|
if (BC->isRISCV() || !Rel->Addend || !Rel->isIRelative())
|
|
return;
|
|
|
|
// IFUNC trampoline without symbol
|
|
BinaryFunction *TargetBF = BC->getBinaryFunctionAtAddress(Rel->Addend);
|
|
if (!TargetBF) {
|
|
BC->errs()
|
|
<< "BOLT-WARNING: Expected BF to be presented as IFUNC resolver at "
|
|
<< Twine::utohexstr(Rel->Addend) << ", skipping\n";
|
|
return;
|
|
}
|
|
|
|
Symbol = TargetBF->getSymbol();
|
|
}
|
|
|
|
ErrorOr<BinarySection &> Section = BC->getSectionForAddress(EntryAddress);
|
|
assert(Section && "cannot get section for address");
|
|
if (!BF)
|
|
BF = BC->createBinaryFunction(Symbol->getName().str() + "@PLT", *Section,
|
|
EntryAddress, 0, EntrySize,
|
|
Section->getAlignment());
|
|
else
|
|
BF->addAlternativeName(Symbol->getName().str() + "@PLT");
|
|
setPLTSymbol(BF, Symbol->getName());
|
|
}
|
|
|
|
void RewriteInstance::disassemblePLTInstruction(const BinarySection &Section,
|
|
uint64_t InstrOffset,
|
|
MCInst &Instruction,
|
|
uint64_t &InstrSize) {
|
|
const uint64_t SectionAddress = Section.getAddress();
|
|
const uint64_t SectionSize = Section.getSize();
|
|
StringRef PLTContents = Section.getContents();
|
|
ArrayRef<uint8_t> PLTData(
|
|
reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize);
|
|
|
|
const uint64_t InstrAddr = SectionAddress + InstrOffset;
|
|
if (!BC->DisAsm->getInstruction(Instruction, InstrSize,
|
|
PLTData.slice(InstrOffset), InstrAddr,
|
|
nulls())) {
|
|
BC->errs()
|
|
<< "BOLT-ERROR: unable to disassemble instruction in PLT section "
|
|
<< Section.getName() << formatv(" at offset {0:x}\n", InstrOffset);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
void RewriteInstance::disassemblePLTSectionAArch64(BinarySection &Section) {
|
|
const uint64_t SectionAddress = Section.getAddress();
|
|
const uint64_t SectionSize = Section.getSize();
|
|
|
|
uint64_t InstrOffset = 0;
|
|
// Locate new plt entry
|
|
while (InstrOffset < SectionSize) {
|
|
InstructionListType Instructions;
|
|
MCInst Instruction;
|
|
uint64_t EntryOffset = InstrOffset;
|
|
uint64_t EntrySize = 0;
|
|
uint64_t InstrSize;
|
|
// Loop through entry instructions
|
|
while (InstrOffset < SectionSize) {
|
|
disassemblePLTInstruction(Section, InstrOffset, Instruction, InstrSize);
|
|
EntrySize += InstrSize;
|
|
if (!BC->MIB->isIndirectBranch(Instruction)) {
|
|
Instructions.emplace_back(Instruction);
|
|
InstrOffset += InstrSize;
|
|
continue;
|
|
}
|
|
|
|
const uint64_t EntryAddress = SectionAddress + EntryOffset;
|
|
const uint64_t TargetAddress = BC->MIB->analyzePLTEntry(
|
|
Instruction, Instructions.begin(), Instructions.end(), EntryAddress);
|
|
|
|
createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize);
|
|
break;
|
|
}
|
|
|
|
// Branch instruction
|
|
InstrOffset += InstrSize;
|
|
|
|
// Skip nops if any
|
|
while (InstrOffset < SectionSize) {
|
|
disassemblePLTInstruction(Section, InstrOffset, Instruction, InstrSize);
|
|
if (!BC->MIB->isNoop(Instruction))
|
|
break;
|
|
|
|
InstrOffset += InstrSize;
|
|
}
|
|
}
|
|
}
|
|
|
|
void RewriteInstance::disassemblePLTSectionRISCV(BinarySection &Section) {
|
|
const uint64_t SectionAddress = Section.getAddress();
|
|
const uint64_t SectionSize = Section.getSize();
|
|
StringRef PLTContents = Section.getContents();
|
|
ArrayRef<uint8_t> PLTData(
|
|
reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize);
|
|
|
|
auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction,
|
|
uint64_t &InstrSize) {
|
|
const uint64_t InstrAddr = SectionAddress + InstrOffset;
|
|
if (!BC->DisAsm->getInstruction(Instruction, InstrSize,
|
|
PLTData.slice(InstrOffset), InstrAddr,
|
|
nulls())) {
|
|
BC->errs()
|
|
<< "BOLT-ERROR: unable to disassemble instruction in PLT section "
|
|
<< Section.getName() << " at offset 0x"
|
|
<< Twine::utohexstr(InstrOffset) << '\n';
|
|
exit(1);
|
|
}
|
|
};
|
|
|
|
// Skip the first special entry since no relocation points to it.
|
|
uint64_t InstrOffset = 32;
|
|
|
|
while (InstrOffset < SectionSize) {
|
|
InstructionListType Instructions;
|
|
MCInst Instruction;
|
|
const uint64_t EntryOffset = InstrOffset;
|
|
const uint64_t EntrySize = 16;
|
|
uint64_t InstrSize;
|
|
|
|
while (InstrOffset < EntryOffset + EntrySize) {
|
|
disassembleInstruction(InstrOffset, Instruction, InstrSize);
|
|
Instructions.emplace_back(Instruction);
|
|
InstrOffset += InstrSize;
|
|
}
|
|
|
|
const uint64_t EntryAddress = SectionAddress + EntryOffset;
|
|
const uint64_t TargetAddress = BC->MIB->analyzePLTEntry(
|
|
Instruction, Instructions.begin(), Instructions.end(), EntryAddress);
|
|
|
|
createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize);
|
|
}
|
|
}
|
|
|
|
void RewriteInstance::disassemblePLTSectionX86(BinarySection &Section,
|
|
uint64_t EntrySize) {
|
|
const uint64_t SectionAddress = Section.getAddress();
|
|
const uint64_t SectionSize = Section.getSize();
|
|
|
|
for (uint64_t EntryOffset = 0; EntryOffset + EntrySize <= SectionSize;
|
|
EntryOffset += EntrySize) {
|
|
MCInst Instruction;
|
|
uint64_t InstrSize, InstrOffset = EntryOffset;
|
|
while (InstrOffset < EntryOffset + EntrySize) {
|
|
disassemblePLTInstruction(Section, InstrOffset, Instruction, InstrSize);
|
|
// Check if the entry size needs adjustment.
|
|
if (EntryOffset == 0 && BC->MIB->isTerminateBranch(Instruction) &&
|
|
EntrySize == 8)
|
|
EntrySize = 16;
|
|
|
|
if (BC->MIB->isIndirectBranch(Instruction))
|
|
break;
|
|
|
|
InstrOffset += InstrSize;
|
|
}
|
|
|
|
if (InstrOffset + InstrSize > EntryOffset + EntrySize)
|
|
continue;
|
|
|
|
uint64_t TargetAddress;
|
|
if (!BC->MIB->evaluateMemOperandTarget(Instruction, TargetAddress,
|
|
SectionAddress + InstrOffset,
|
|
InstrSize)) {
|
|
BC->errs() << "BOLT-ERROR: error evaluating PLT instruction at offset 0x"
|
|
<< Twine::utohexstr(SectionAddress + InstrOffset) << '\n';
|
|
exit(1);
|
|
}
|
|
|
|
createPLTBinaryFunction(TargetAddress, SectionAddress + EntryOffset,
|
|
EntrySize);
|
|
}
|
|
}
|
|
|
|
void RewriteInstance::disassemblePLT() {
|
|
auto analyzeOnePLTSection = [&](BinarySection &Section, uint64_t EntrySize) {
|
|
if (BC->isAArch64())
|
|
return disassemblePLTSectionAArch64(Section);
|
|
if (BC->isRISCV())
|
|
return disassemblePLTSectionRISCV(Section);
|
|
if (BC->isX86())
|
|
return disassemblePLTSectionX86(Section, EntrySize);
|
|
llvm_unreachable("Unmplemented PLT");
|
|
};
|
|
|
|
for (BinarySection &Section : BC->allocatableSections()) {
|
|
const PLTSectionInfo *PLTSI = getPLTSectionInfo(Section.getName());
|
|
if (!PLTSI)
|
|
continue;
|
|
|
|
analyzeOnePLTSection(Section, PLTSI->EntrySize);
|
|
|
|
BinaryFunction *PltBF;
|
|
auto BFIter = BC->getBinaryFunctions().find(Section.getAddress());
|
|
if (BFIter != BC->getBinaryFunctions().end()) {
|
|
PltBF = &BFIter->second;
|
|
} else {
|
|
// If we did not register any function at the start of the section,
|
|
// then it must be a general PLT entry. Add a function at the location.
|
|
PltBF = BC->createBinaryFunction(
|
|
"__BOLT_PSEUDO_" + Section.getName().str(), Section,
|
|
Section.getAddress(), 0, PLTSI->EntrySize, Section.getAlignment());
|
|
}
|
|
PltBF->setPseudo(true);
|
|
}
|
|
}
|
|
|
|
void RewriteInstance::adjustFunctionBoundaries(
|
|
DenseMap<uint64_t, MarkerSymType> &MarkerSyms) {
|
|
for (auto BFI = BC->getBinaryFunctions().begin(),
|
|
BFE = BC->getBinaryFunctions().end();
|
|
BFI != BFE; ++BFI) {
|
|
BinaryFunction &Function = BFI->second;
|
|
const BinaryFunction *NextFunction = nullptr;
|
|
if (std::next(BFI) != BFE)
|
|
NextFunction = &std::next(BFI)->second;
|
|
|
|
// Check if there's a symbol or a function with a larger address in the
|
|
// same section. If there is - it determines the maximum size for the
|
|
// current function. Otherwise, it is the size of a containing section
|
|
// the defines it.
|
|
//
|
|
// NOTE: ignore some symbols that could be tolerated inside the body
|
|
// of a function.
|
|
auto NextSymRefI = FileSymRefs.upper_bound(Function.getAddress());
|
|
while (NextSymRefI != FileSymRefs.end()) {
|
|
SymbolRef &Symbol = NextSymRefI->second;
|
|
const uint64_t SymbolAddress = NextSymRefI->first;
|
|
const uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize();
|
|
|
|
if (NextFunction && SymbolAddress >= NextFunction->getAddress())
|
|
break;
|
|
|
|
if (!Function.isSymbolValidInScope(Symbol, SymbolSize))
|
|
break;
|
|
|
|
// Skip basic block labels. This happens on RISC-V with linker relaxation
|
|
// enabled because every branch needs a relocation and corresponding
|
|
// symbol. We don't want to add such symbols as entry points.
|
|
const auto PrivateLabelPrefix = BC->AsmInfo->getPrivateLabelPrefix();
|
|
if (!PrivateLabelPrefix.empty() &&
|
|
cantFail(Symbol.getName()).starts_with(PrivateLabelPrefix)) {
|
|
++NextSymRefI;
|
|
continue;
|
|
}
|
|
|
|
auto It = MarkerSyms.find(NextSymRefI->first);
|
|
if (It == MarkerSyms.end() || It->second != MarkerSymType::DATA) {
|
|
// This is potentially another entry point into the function.
|
|
uint64_t EntryOffset = NextSymRefI->first - Function.getAddress();
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding entry point to function "
|
|
<< Function << " at offset 0x"
|
|
<< Twine::utohexstr(EntryOffset) << '\n');
|
|
Function.addEntryPointAtOffset(EntryOffset);
|
|
}
|
|
|
|
++NextSymRefI;
|
|
}
|
|
|
|
// Function runs at most till the end of the containing section.
|
|
uint64_t NextObjectAddress = Function.getOriginSection()->getEndAddress();
|
|
// Or till the next object marked by a symbol.
|
|
if (NextSymRefI != FileSymRefs.end())
|
|
NextObjectAddress = std::min(NextSymRefI->first, NextObjectAddress);
|
|
|
|
// Or till the next function not marked by a symbol.
|
|
if (NextFunction)
|
|
NextObjectAddress =
|
|
std::min(NextFunction->getAddress(), NextObjectAddress);
|
|
|
|
const uint64_t MaxSize = NextObjectAddress - Function.getAddress();
|
|
if (MaxSize < Function.getSize()) {
|
|
BC->errs() << "BOLT-ERROR: symbol seen in the middle of the function "
|
|
<< Function << ". Skipping.\n";
|
|
Function.setSimple(false);
|
|
Function.setMaxSize(Function.getSize());
|
|
continue;
|
|
}
|
|
Function.setMaxSize(MaxSize);
|
|
if (!Function.getSize() && Function.isSimple()) {
|
|
// Some assembly functions have their size set to 0, use the max
|
|
// size as their real size.
|
|
if (opts::Verbosity >= 1)
|
|
BC->outs() << "BOLT-INFO: setting size of function " << Function
|
|
<< " to " << Function.getMaxSize() << " (was 0)\n";
|
|
Function.setSize(Function.getMaxSize());
|
|
}
|
|
}
|
|
}
|
|
|
|
void RewriteInstance::relocateEHFrameSection() {
|
|
assert(EHFrameSection && "Non-empty .eh_frame section expected.");
|
|
|
|
BinarySection *RelocatedEHFrameSection =
|
|
getSection(".relocated" + getEHFrameSectionName());
|
|
assert(RelocatedEHFrameSection &&
|
|
"Relocated eh_frame section should be preregistered.");
|
|
DWARFDataExtractor DE(EHFrameSection->getContents(),
|
|
BC->AsmInfo->isLittleEndian(),
|
|
BC->AsmInfo->getCodePointerSize());
|
|
auto createReloc = [&](uint64_t Value, uint64_t Offset, uint64_t DwarfType) {
|
|
if (DwarfType == dwarf::DW_EH_PE_omit)
|
|
return;
|
|
|
|
// Only fix references that are relative to other locations.
|
|
if (!(DwarfType & dwarf::DW_EH_PE_pcrel) &&
|
|
!(DwarfType & dwarf::DW_EH_PE_textrel) &&
|
|
!(DwarfType & dwarf::DW_EH_PE_funcrel) &&
|
|
!(DwarfType & dwarf::DW_EH_PE_datarel))
|
|
return;
|
|
|
|
if (!(DwarfType & dwarf::DW_EH_PE_sdata4))
|
|
return;
|
|
|
|
uint32_t RelType;
|
|
switch (DwarfType & 0x0f) {
|
|
default:
|
|
llvm_unreachable("unsupported DWARF encoding type");
|
|
case dwarf::DW_EH_PE_sdata4:
|
|
case dwarf::DW_EH_PE_udata4:
|
|
RelType = Relocation::getPC32();
|
|
Offset -= 4;
|
|
break;
|
|
case dwarf::DW_EH_PE_sdata8:
|
|
case dwarf::DW_EH_PE_udata8:
|
|
RelType = Relocation::getPC64();
|
|
Offset -= 8;
|
|
break;
|
|
}
|
|
|
|
// Create a relocation against an absolute value since the goal is to
|
|
// preserve the contents of the section independent of the new values
|
|
// of referenced symbols.
|
|
RelocatedEHFrameSection->addRelocation(Offset, nullptr, RelType, Value);
|
|
};
|
|
|
|
Error E = EHFrameParser::parse(DE, EHFrameSection->getAddress(), createReloc);
|
|
check_error(std::move(E), "failed to patch EH frame");
|
|
}
|
|
|
|
Error RewriteInstance::readSpecialSections() {
|
|
NamedRegionTimer T("readSpecialSections", "read special sections",
|
|
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
|
|
|
|
bool HasTextRelocations = false;
|
|
bool HasSymbolTable = false;
|
|
bool HasDebugInfo = false;
|
|
|
|
// Process special sections.
|
|
for (const SectionRef &Section : InputFile->sections()) {
|
|
Expected<StringRef> SectionNameOrErr = Section.getName();
|
|
check_error(SectionNameOrErr.takeError(), "cannot get section name");
|
|
StringRef SectionName = *SectionNameOrErr;
|
|
|
|
if (Error E = Section.getContents().takeError())
|
|
return E;
|
|
BC->registerSection(Section);
|
|
LLVM_DEBUG(
|
|
dbgs() << "BOLT-DEBUG: registering section " << SectionName << " @ 0x"
|
|
<< Twine::utohexstr(Section.getAddress()) << ":0x"
|
|
<< Twine::utohexstr(Section.getAddress() + Section.getSize())
|
|
<< "\n");
|
|
if (isDebugSection(SectionName))
|
|
HasDebugInfo = true;
|
|
}
|
|
|
|
// Set IsRelro section attribute based on PT_GNU_RELRO segment.
|
|
markGnuRelroSections();
|
|
|
|
if (HasDebugInfo && !opts::UpdateDebugSections && !opts::AggregateOnly) {
|
|
BC->errs() << "BOLT-WARNING: debug info will be stripped from the binary. "
|
|
"Use -update-debug-sections to keep it.\n";
|
|
}
|
|
|
|
HasTextRelocations = (bool)BC->getUniqueSectionByName(
|
|
".rela" + std::string(BC->getMainCodeSectionName()));
|
|
HasSymbolTable = (bool)BC->getUniqueSectionByName(".symtab");
|
|
EHFrameSection = BC->getUniqueSectionByName(".eh_frame");
|
|
|
|
if (ErrorOr<BinarySection &> BATSec =
|
|
BC->getUniqueSectionByName(BoltAddressTranslation::SECTION_NAME)) {
|
|
BC->HasBATSection = true;
|
|
// Do not read BAT when plotting a heatmap
|
|
if (opts::HeatmapMode != opts::HeatmapModeKind::HM_Exclusive) {
|
|
if (std::error_code EC = BAT->parse(BC->outs(), BATSec->getContents())) {
|
|
BC->errs() << "BOLT-ERROR: failed to parse BOLT address translation "
|
|
"table.\n";
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (opts::PrintSections) {
|
|
BC->outs() << "BOLT-INFO: Sections from original binary:\n";
|
|
BC->printSections(BC->outs());
|
|
}
|
|
|
|
if (opts::RelocationMode == cl::BOU_TRUE && !HasTextRelocations) {
|
|
BC->errs()
|
|
<< "BOLT-ERROR: relocations against code are missing from the input "
|
|
"file. Cannot proceed in relocations mode (-relocs).\n";
|
|
exit(1);
|
|
}
|
|
|
|
BC->HasRelocations =
|
|
HasTextRelocations && (opts::RelocationMode != cl::BOU_FALSE);
|
|
|
|
if (BC->IsLinuxKernel && BC->HasRelocations) {
|
|
BC->outs() << "BOLT-INFO: disabling relocation mode for Linux kernel\n";
|
|
BC->HasRelocations = false;
|
|
}
|
|
|
|
BC->IsStripped = !HasSymbolTable;
|
|
|
|
if (BC->IsStripped && !opts::AllowStripped) {
|
|
BC->errs()
|
|
<< "BOLT-ERROR: stripped binaries are not supported. If you know "
|
|
"what you're doing, use --allow-stripped to proceed";
|
|
exit(1);
|
|
}
|
|
|
|
// Force non-relocation mode for heatmap generation
|
|
if (opts::HeatmapMode == opts::HeatmapModeKind::HM_Exclusive)
|
|
BC->HasRelocations = false;
|
|
|
|
if (BC->HasRelocations)
|
|
BC->outs() << "BOLT-INFO: enabling " << (opts::StrictMode ? "strict " : "")
|
|
<< "relocation mode\n";
|
|
|
|
// Read EH frame for function boundaries info.
|
|
Expected<const DWARFDebugFrame *> EHFrameOrError = BC->DwCtx->getEHFrame();
|
|
if (!EHFrameOrError)
|
|
report_error("expected valid eh_frame section", EHFrameOrError.takeError());
|
|
CFIRdWrt.reset(new CFIReaderWriter(*BC, *EHFrameOrError.get()));
|
|
|
|
processSectionMetadata();
|
|
|
|
// Read .dynamic/PT_DYNAMIC.
|
|
return readELFDynamic();
|
|
}
|
|
|
|
void RewriteInstance::adjustCommandLineOptions() {
|
|
if (BC->isAArch64() && !BC->HasRelocations)
|
|
BC->errs() << "BOLT-WARNING: non-relocation mode for AArch64 is not fully "
|
|
"supported\n";
|
|
|
|
if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary())
|
|
RtLibrary->adjustCommandLineOptions(*BC);
|
|
|
|
if (BC->isX86() && BC->MAB->allowAutoPadding()) {
|
|
if (!BC->HasRelocations) {
|
|
BC->errs()
|
|
<< "BOLT-ERROR: cannot apply mitigations for Intel JCC erratum in "
|
|
"non-relocation mode\n";
|
|
exit(1);
|
|
}
|
|
BC->outs()
|
|
<< "BOLT-WARNING: using mitigation for Intel JCC erratum, layout "
|
|
"may take several minutes\n";
|
|
}
|
|
|
|
if (opts::SplitEH && !BC->HasRelocations) {
|
|
BC->errs() << "BOLT-WARNING: disabling -split-eh in non-relocation mode\n";
|
|
opts::SplitEH = false;
|
|
}
|
|
|
|
if (opts::StrictMode && !BC->HasRelocations) {
|
|
BC->errs()
|
|
<< "BOLT-WARNING: disabling strict mode (-strict) in non-relocation "
|
|
"mode\n";
|
|
opts::StrictMode = false;
|
|
}
|
|
|
|
if (BC->HasRelocations && opts::AggregateOnly &&
|
|
!opts::StrictMode.getNumOccurrences()) {
|
|
BC->outs() << "BOLT-INFO: enabling strict relocation mode for aggregation "
|
|
"purposes\n";
|
|
opts::StrictMode = true;
|
|
}
|
|
|
|
if (!BC->HasRelocations &&
|
|
opts::ReorderFunctions != ReorderFunctions::RT_NONE) {
|
|
BC->errs() << "BOLT-ERROR: function reordering only works when "
|
|
<< "relocations are enabled\n";
|
|
exit(1);
|
|
}
|
|
|
|
if (!BC->HasRelocations &&
|
|
opts::ICF == IdenticalCodeFolding::ICFLevel::Safe) {
|
|
BC->errs() << "BOLT-ERROR: binary built without relocations. Safe ICF is "
|
|
"not supported\n";
|
|
exit(1);
|
|
}
|
|
|
|
if (opts::Instrument ||
|
|
(opts::ReorderFunctions != ReorderFunctions::RT_NONE &&
|
|
!opts::HotText.getNumOccurrences())) {
|
|
opts::HotText = true;
|
|
} else if (opts::HotText && !BC->HasRelocations) {
|
|
BC->errs() << "BOLT-WARNING: hot text is disabled in non-relocation mode\n";
|
|
opts::HotText = false;
|
|
}
|
|
|
|
if (opts::Instrument && opts::UseGnuStack) {
|
|
BC->errs() << "BOLT-ERROR: cannot avoid having writeable and executable "
|
|
"segment in instrumented binary if program headers will be "
|
|
"updated in place\n";
|
|
exit(1);
|
|
}
|
|
|
|
if (opts::HotText && opts::HotTextMoveSections.getNumOccurrences() == 0) {
|
|
opts::HotTextMoveSections.addValue(".stub");
|
|
opts::HotTextMoveSections.addValue(".mover");
|
|
opts::HotTextMoveSections.addValue(".never_hugify");
|
|
}
|
|
|
|
if (opts::UseOldText && !BC->OldTextSectionAddress) {
|
|
BC->errs()
|
|
<< "BOLT-WARNING: cannot use old .text as the section was not found"
|
|
"\n";
|
|
opts::UseOldText = false;
|
|
}
|
|
if (opts::UseOldText && !BC->HasRelocations) {
|
|
BC->errs() << "BOLT-WARNING: cannot use old .text in non-relocation mode\n";
|
|
opts::UseOldText = false;
|
|
}
|
|
|
|
if (!opts::AlignText.getNumOccurrences())
|
|
opts::AlignText = BC->PageAlign;
|
|
|
|
if (opts::AlignText < opts::AlignFunctions)
|
|
opts::AlignText = (unsigned)opts::AlignFunctions;
|
|
|
|
if (BC->isX86() && opts::Lite.getNumOccurrences() == 0 && !opts::StrictMode &&
|
|
!opts::UseOldText)
|
|
opts::Lite = true;
|
|
|
|
if (opts::Lite && opts::UseOldText) {
|
|
BC->errs() << "BOLT-WARNING: cannot combine -lite with -use-old-text. "
|
|
"Disabling -use-old-text.\n";
|
|
opts::UseOldText = false;
|
|
}
|
|
|
|
if (opts::Lite && opts::StrictMode) {
|
|
BC->errs()
|
|
<< "BOLT-ERROR: -strict and -lite cannot be used at the same time\n";
|
|
exit(1);
|
|
}
|
|
|
|
if (opts::Lite)
|
|
BC->outs() << "BOLT-INFO: enabling lite mode\n";
|
|
|
|
if (BC->IsLinuxKernel) {
|
|
if (!opts::KeepNops.getNumOccurrences())
|
|
opts::KeepNops = true;
|
|
|
|
// Linux kernel may resume execution after a trap or x86 HLT instruction.
|
|
if (!opts::TerminalHLT.getNumOccurrences())
|
|
opts::TerminalHLT = false;
|
|
if (!opts::TerminalTrap.getNumOccurrences())
|
|
opts::TerminalTrap = false;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
template <typename ELFT>
|
|
int64_t getRelocationAddend(const ELFObjectFile<ELFT> *Obj,
|
|
const RelocationRef &RelRef) {
|
|
using ELFShdrTy = typename ELFT::Shdr;
|
|
using Elf_Rela = typename ELFT::Rela;
|
|
int64_t Addend = 0;
|
|
const ELFFile<ELFT> &EF = Obj->getELFFile();
|
|
DataRefImpl Rel = RelRef.getRawDataRefImpl();
|
|
const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a));
|
|
switch (RelocationSection->sh_type) {
|
|
default:
|
|
llvm_unreachable("unexpected relocation section type");
|
|
case ELF::SHT_REL:
|
|
break;
|
|
case ELF::SHT_RELA: {
|
|
const Elf_Rela *RelA = Obj->getRela(Rel);
|
|
Addend = RelA->r_addend;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return Addend;
|
|
}
|
|
|
|
int64_t getRelocationAddend(const ELFObjectFileBase *Obj,
|
|
const RelocationRef &Rel) {
|
|
return getRelocationAddend(cast<ELF64LEObjectFile>(Obj), Rel);
|
|
}
|
|
|
|
template <typename ELFT>
|
|
uint32_t getRelocationSymbol(const ELFObjectFile<ELFT> *Obj,
|
|
const RelocationRef &RelRef) {
|
|
using ELFShdrTy = typename ELFT::Shdr;
|
|
uint32_t Symbol = 0;
|
|
const ELFFile<ELFT> &EF = Obj->getELFFile();
|
|
DataRefImpl Rel = RelRef.getRawDataRefImpl();
|
|
const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a));
|
|
switch (RelocationSection->sh_type) {
|
|
default:
|
|
llvm_unreachable("unexpected relocation section type");
|
|
case ELF::SHT_REL:
|
|
Symbol = Obj->getRel(Rel)->getSymbol(EF.isMips64EL());
|
|
break;
|
|
case ELF::SHT_RELA:
|
|
Symbol = Obj->getRela(Rel)->getSymbol(EF.isMips64EL());
|
|
break;
|
|
}
|
|
|
|
return Symbol;
|
|
}
|
|
|
|
uint32_t getRelocationSymbol(const ELFObjectFileBase *Obj,
|
|
const RelocationRef &Rel) {
|
|
return getRelocationSymbol(cast<ELF64LEObjectFile>(Obj), Rel);
|
|
}
|
|
} // anonymous namespace
|
|
|
|
bool RewriteInstance::analyzeRelocation(
|
|
const RelocationRef &Rel, uint32_t &RType, std::string &SymbolName,
|
|
bool &IsSectionRelocation, uint64_t &SymbolAddress, int64_t &Addend,
|
|
uint64_t &ExtractedValue, bool &Skip) const {
|
|
Skip = false;
|
|
if (!Relocation::isSupported(RType))
|
|
return false;
|
|
|
|
auto IsWeakReference = [](const SymbolRef &Symbol) {
|
|
Expected<uint32_t> SymFlagsOrErr = Symbol.getFlags();
|
|
if (!SymFlagsOrErr)
|
|
return false;
|
|
return (*SymFlagsOrErr & SymbolRef::SF_Undefined) &&
|
|
(*SymFlagsOrErr & SymbolRef::SF_Weak);
|
|
};
|
|
|
|
const bool IsAArch64 = BC->isAArch64();
|
|
|
|
const size_t RelSize = Relocation::getSizeForType(RType);
|
|
|
|
ErrorOr<uint64_t> Value =
|
|
BC->getUnsignedValueAtAddress(Rel.getOffset(), RelSize);
|
|
assert(Value && "failed to extract relocated value");
|
|
|
|
ExtractedValue = Relocation::extractValue(RType, *Value, Rel.getOffset());
|
|
Addend = getRelocationAddend(InputFile, Rel);
|
|
|
|
const bool IsPCRelative = Relocation::isPCRelative(RType);
|
|
const uint64_t PCRelOffset = IsPCRelative && !IsAArch64 ? Rel.getOffset() : 0;
|
|
bool SkipVerification = false;
|
|
auto SymbolIter = Rel.getSymbol();
|
|
if (SymbolIter == InputFile->symbol_end()) {
|
|
SymbolAddress = ExtractedValue - Addend + PCRelOffset;
|
|
MCSymbol *RelSymbol =
|
|
BC->getOrCreateGlobalSymbol(SymbolAddress, "RELSYMat");
|
|
SymbolName = std::string(RelSymbol->getName());
|
|
IsSectionRelocation = false;
|
|
} else {
|
|
const SymbolRef &Symbol = *SymbolIter;
|
|
SymbolName = std::string(cantFail(Symbol.getName()));
|
|
SymbolAddress = cantFail(Symbol.getAddress());
|
|
SkipVerification = (cantFail(Symbol.getType()) == SymbolRef::ST_Other);
|
|
// Section symbols are marked as ST_Debug.
|
|
IsSectionRelocation = (cantFail(Symbol.getType()) == SymbolRef::ST_Debug);
|
|
// Check for PLT entry registered with symbol name
|
|
if (!SymbolAddress && !IsWeakReference(Symbol) &&
|
|
(IsAArch64 || BC->isRISCV())) {
|
|
const BinaryData *BD = BC->getPLTBinaryDataByName(SymbolName);
|
|
SymbolAddress = BD ? BD->getAddress() : 0;
|
|
}
|
|
}
|
|
// For PIE or dynamic libs, the linker may choose not to put the relocation
|
|
// result at the address if it is a X86_64_64 one because it will emit a
|
|
// dynamic relocation (X86_RELATIVE) for the dynamic linker and loader to
|
|
// resolve it at run time. The static relocation result goes as the addend
|
|
// of the dynamic relocation in this case. We can't verify these cases.
|
|
// FIXME: perhaps we can try to find if it really emitted a corresponding
|
|
// RELATIVE relocation at this offset with the correct value as the addend.
|
|
if (!BC->HasFixedLoadAddress && RelSize == 8)
|
|
SkipVerification = true;
|
|
|
|
if (IsSectionRelocation && !IsAArch64) {
|
|
ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress);
|
|
assert(Section && "section expected for section relocation");
|
|
SymbolName = "section " + std::string(Section->getName());
|
|
// Convert section symbol relocations to regular relocations inside
|
|
// non-section symbols.
|
|
if (Section->containsAddress(ExtractedValue) && !IsPCRelative) {
|
|
SymbolAddress = ExtractedValue;
|
|
Addend = 0;
|
|
} else {
|
|
Addend = ExtractedValue - (SymbolAddress - PCRelOffset);
|
|
}
|
|
}
|
|
|
|
// GOT relocation can cause the underlying instruction to be modified by the
|
|
// linker, resulting in the extracted value being different from the actual
|
|
// symbol. It's also possible to have a GOT entry for a symbol defined in the
|
|
// binary. In the latter case, the instruction can be using the GOT version
|
|
// causing the extracted value mismatch. Similar cases can happen for TLS.
|
|
// Pass the relocation information as is to the disassembler and let it decide
|
|
// how to use it for the operand symbolization.
|
|
if (Relocation::isGOT(RType) || Relocation::isTLS(RType)) {
|
|
SkipVerification = true;
|
|
} else if (!SymbolAddress) {
|
|
assert(!IsSectionRelocation);
|
|
if (ExtractedValue || Addend == 0 || IsPCRelative) {
|
|
SymbolAddress =
|
|
truncateToSize(ExtractedValue - Addend + PCRelOffset, RelSize);
|
|
} else {
|
|
// This is weird case. The extracted value is zero but the addend is
|
|
// non-zero and the relocation is not pc-rel. Using the previous logic,
|
|
// the SymbolAddress would end up as a huge number. Seen in
|
|
// exceptions_pic.test.
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocation @ 0x"
|
|
<< Twine::utohexstr(Rel.getOffset())
|
|
<< " value does not match addend for "
|
|
<< "relocation to undefined symbol.\n");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
auto verifyExtractedValue = [&]() {
|
|
if (SkipVerification)
|
|
return true;
|
|
|
|
if (IsAArch64 || BC->isRISCV())
|
|
return true;
|
|
|
|
if (SymbolName == "__hot_start" || SymbolName == "__hot_end")
|
|
return true;
|
|
|
|
if (RType == ELF::R_X86_64_PLT32)
|
|
return true;
|
|
|
|
return truncateToSize(ExtractedValue, RelSize) ==
|
|
truncateToSize(SymbolAddress + Addend - PCRelOffset, RelSize);
|
|
};
|
|
|
|
(void)verifyExtractedValue;
|
|
assert(verifyExtractedValue() && "mismatched extracted relocation value");
|
|
|
|
return true;
|
|
}
|
|
|
|
void RewriteInstance::processDynamicRelocations() {
|
|
// Read .relr.dyn section containing compressed R_*_RELATIVE relocations.
|
|
if (DynamicRelrSize > 0) {
|
|
ErrorOr<BinarySection &> DynamicRelrSectionOrErr =
|
|
BC->getSectionForAddress(*DynamicRelrAddress);
|
|
if (!DynamicRelrSectionOrErr)
|
|
report_error("unable to find section corresponding to DT_RELR",
|
|
DynamicRelrSectionOrErr.getError());
|
|
if (DynamicRelrSectionOrErr->getSize() != DynamicRelrSize)
|
|
report_error("section size mismatch for DT_RELRSZ",
|
|
errc::executable_format_error);
|
|
readDynamicRelrRelocations(*DynamicRelrSectionOrErr);
|
|
}
|
|
|
|
// Read relocations for PLT - DT_JMPREL.
|
|
if (PLTRelocationsSize > 0) {
|
|
ErrorOr<BinarySection &> PLTRelSectionOrErr =
|
|
BC->getSectionForAddress(*PLTRelocationsAddress);
|
|
if (!PLTRelSectionOrErr)
|
|
report_error("unable to find section corresponding to DT_JMPREL",
|
|
PLTRelSectionOrErr.getError());
|
|
if (PLTRelSectionOrErr->getSize() != PLTRelocationsSize)
|
|
report_error("section size mismatch for DT_PLTRELSZ",
|
|
errc::executable_format_error);
|
|
readDynamicRelocations(PLTRelSectionOrErr->getSectionRef(),
|
|
/*IsJmpRel*/ true);
|
|
}
|
|
|
|
// The rest of dynamic relocations - DT_RELA.
|
|
// The static executable might have .rela.dyn secion and not have PT_DYNAMIC
|
|
if (!DynamicRelocationsSize && BC->IsStaticExecutable) {
|
|
ErrorOr<BinarySection &> DynamicRelSectionOrErr =
|
|
BC->getUniqueSectionByName(getRelaDynSectionName());
|
|
if (DynamicRelSectionOrErr) {
|
|
DynamicRelocationsAddress = DynamicRelSectionOrErr->getAddress();
|
|
DynamicRelocationsSize = DynamicRelSectionOrErr->getSize();
|
|
const SectionRef &SectionRef = DynamicRelSectionOrErr->getSectionRef();
|
|
DynamicRelativeRelocationsCount = std::distance(
|
|
SectionRef.relocation_begin(), SectionRef.relocation_end());
|
|
}
|
|
}
|
|
|
|
if (DynamicRelocationsSize > 0) {
|
|
ErrorOr<BinarySection &> DynamicRelSectionOrErr =
|
|
BC->getSectionForAddress(*DynamicRelocationsAddress);
|
|
if (!DynamicRelSectionOrErr)
|
|
report_error("unable to find section corresponding to DT_RELA",
|
|
DynamicRelSectionOrErr.getError());
|
|
auto DynamicRelSectionSize = DynamicRelSectionOrErr->getSize();
|
|
// On RISC-V DT_RELASZ seems to include both .rela.dyn and .rela.plt
|
|
if (DynamicRelocationsSize == DynamicRelSectionSize + PLTRelocationsSize)
|
|
DynamicRelocationsSize = DynamicRelSectionSize;
|
|
if (DynamicRelSectionSize != DynamicRelocationsSize)
|
|
report_error("section size mismatch for DT_RELASZ",
|
|
errc::executable_format_error);
|
|
readDynamicRelocations(DynamicRelSectionOrErr->getSectionRef(),
|
|
/*IsJmpRel*/ false);
|
|
}
|
|
}
|
|
|
|
void RewriteInstance::processRelocations() {
|
|
if (!BC->HasRelocations)
|
|
return;
|
|
|
|
for (const SectionRef &Section : InputFile->sections()) {
|
|
section_iterator SecIter = cantFail(Section.getRelocatedSection());
|
|
if (SecIter == InputFile->section_end())
|
|
continue;
|
|
if (BinarySection(*BC, Section).isAllocatable())
|
|
continue;
|
|
|
|
readRelocations(Section);
|
|
}
|
|
|
|
if (NumFailedRelocations)
|
|
BC->errs() << "BOLT-WARNING: Failed to analyze " << NumFailedRelocations
|
|
<< " relocations\n";
|
|
}
|
|
|
|
void RewriteInstance::readDynamicRelocations(const SectionRef &Section,
|
|
bool IsJmpRel) {
|
|
assert(BinarySection(*BC, Section).isAllocatable() && "allocatable expected");
|
|
|
|
LLVM_DEBUG({
|
|
StringRef SectionName = cantFail(Section.getName());
|
|
dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName
|
|
<< ":\n";
|
|
});
|
|
|
|
for (const RelocationRef &Rel : Section.relocations()) {
|
|
const uint32_t RType = Relocation::getType(Rel);
|
|
if (Relocation::isNone(RType))
|
|
continue;
|
|
|
|
StringRef SymbolName = "<none>";
|
|
MCSymbol *Symbol = nullptr;
|
|
uint64_t SymbolAddress = 0;
|
|
const uint64_t Addend = getRelocationAddend(InputFile, Rel);
|
|
|
|
symbol_iterator SymbolIter = Rel.getSymbol();
|
|
if (SymbolIter != InputFile->symbol_end()) {
|
|
SymbolName = cantFail(SymbolIter->getName());
|
|
BinaryData *BD = BC->getBinaryDataByName(SymbolName);
|
|
Symbol = BD ? BD->getSymbol()
|
|
: BC->getOrCreateUndefinedGlobalSymbol(SymbolName);
|
|
SymbolAddress = cantFail(SymbolIter->getAddress());
|
|
(void)SymbolAddress;
|
|
}
|
|
|
|
LLVM_DEBUG(
|
|
SmallString<16> TypeName;
|
|
Rel.getTypeName(TypeName);
|
|
dbgs() << "BOLT-DEBUG: dynamic relocation at 0x"
|
|
<< Twine::utohexstr(Rel.getOffset()) << " : " << TypeName
|
|
<< " : " << SymbolName << " : " << Twine::utohexstr(SymbolAddress)
|
|
<< " : + 0x" << Twine::utohexstr(Addend) << '\n'
|
|
);
|
|
|
|
if (IsJmpRel)
|
|
IsJmpRelocation[RType] = true;
|
|
|
|
if (Symbol)
|
|
SymbolIndex[Symbol] = getRelocationSymbol(InputFile, Rel);
|
|
|
|
const uint64_t ReferencedAddress = SymbolAddress + Addend;
|
|
BinaryFunction *Func =
|
|
BC->getBinaryFunctionContainingAddress(ReferencedAddress);
|
|
|
|
if (Relocation::isRelative(RType) && SymbolAddress == 0) {
|
|
if (Func) {
|
|
if (!Func->isInConstantIsland(ReferencedAddress)) {
|
|
if (const uint64_t ReferenceOffset =
|
|
ReferencedAddress - Func->getAddress()) {
|
|
Func->addEntryPointAtOffset(ReferenceOffset);
|
|
}
|
|
} else {
|
|
BC->errs() << "BOLT-ERROR: referenced address at 0x"
|
|
<< Twine::utohexstr(ReferencedAddress)
|
|
<< " is in constant island of function " << *Func << "\n";
|
|
exit(1);
|
|
}
|
|
}
|
|
} else if (Relocation::isRelative(RType) && SymbolAddress != 0) {
|
|
BC->errs() << "BOLT-ERROR: symbol address non zero for RELATIVE "
|
|
"relocation type\n";
|
|
exit(1);
|
|
}
|
|
|
|
BC->addDynamicRelocation(Rel.getOffset(), Symbol, RType, Addend);
|
|
}
|
|
}
|
|
|
|
void RewriteInstance::readDynamicRelrRelocations(BinarySection &Section) {
|
|
assert(Section.isAllocatable() && "allocatable expected");
|
|
|
|
LLVM_DEBUG({
|
|
StringRef SectionName = Section.getName();
|
|
dbgs() << "BOLT-DEBUG: reading relocations in section " << SectionName
|
|
<< ":\n";
|
|
});
|
|
|
|
const uint32_t RType = Relocation::getRelative();
|
|
const uint8_t PSize = BC->AsmInfo->getCodePointerSize();
|
|
const uint64_t MaxDelta = ((CHAR_BIT * DynamicRelrEntrySize) - 1) * PSize;
|
|
|
|
auto ExtractAddendValue = [&](uint64_t Address) -> uint64_t {
|
|
ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address);
|
|
assert(Section && "cannot get section for data address from RELR");
|
|
DataExtractor DE = DataExtractor(Section->getContents(),
|
|
BC->AsmInfo->isLittleEndian(), PSize);
|
|
uint64_t Offset = Address - Section->getAddress();
|
|
return DE.getUnsigned(&Offset, PSize);
|
|
};
|
|
|
|
auto AddRelocation = [&](uint64_t Address) {
|
|
uint64_t Addend = ExtractAddendValue(Address);
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: R_*_RELATIVE relocation at 0x"
|
|
<< Twine::utohexstr(Address) << " to 0x"
|
|
<< Twine::utohexstr(Addend) << '\n';);
|
|
BC->addDynamicRelocation(Address, nullptr, RType, Addend);
|
|
};
|
|
|
|
DataExtractor DE = DataExtractor(Section.getContents(),
|
|
BC->AsmInfo->isLittleEndian(), PSize);
|
|
uint64_t Offset = 0, Address = 0;
|
|
uint64_t RelrCount = DynamicRelrSize / DynamicRelrEntrySize;
|
|
while (RelrCount--) {
|
|
assert(DE.isValidOffset(Offset));
|
|
uint64_t Entry = DE.getUnsigned(&Offset, DynamicRelrEntrySize);
|
|
if ((Entry & 1) == 0) {
|
|
AddRelocation(Entry);
|
|
Address = Entry + PSize;
|
|
} else {
|
|
const uint64_t StartAddress = Address;
|
|
while (Entry >>= 1) {
|
|
if (Entry & 1)
|
|
AddRelocation(Address);
|
|
|
|
Address += PSize;
|
|
}
|
|
|
|
Address = StartAddress + MaxDelta;
|
|
}
|
|
}
|
|
}
|
|
|
|
void RewriteInstance::printRelocationInfo(const RelocationRef &Rel,
|
|
StringRef SymbolName,
|
|
uint64_t SymbolAddress,
|
|
uint64_t Addend,
|
|
uint64_t ExtractedValue) const {
|
|
SmallString<16> TypeName;
|
|
Rel.getTypeName(TypeName);
|
|
const uint64_t Address = SymbolAddress + Addend;
|
|
const uint64_t Offset = Rel.getOffset();
|
|
ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress);
|
|
BinaryFunction *Func =
|
|
BC->getBinaryFunctionContainingAddress(Offset, false, BC->isAArch64());
|
|
dbgs() << formatv("Relocation: offset = {0:x}; type = {1}; value = {2:x}; ",
|
|
Offset, TypeName, ExtractedValue)
|
|
<< formatv("symbol = {0} ({1}); symbol address = {2:x}; ", SymbolName,
|
|
Section ? Section->getName() : "", SymbolAddress)
|
|
<< formatv("addend = {0:x}; address = {1:x}; in = ", Addend, Address);
|
|
if (Func)
|
|
dbgs() << Func->getPrintName();
|
|
else
|
|
dbgs() << BC->getSectionForAddress(Rel.getOffset())->getName();
|
|
dbgs() << '\n';
|
|
}
|
|
|
|
void RewriteInstance::readRelocations(const SectionRef &Section) {
|
|
LLVM_DEBUG({
|
|
StringRef SectionName = cantFail(Section.getName());
|
|
dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName
|
|
<< ":\n";
|
|
});
|
|
if (BinarySection(*BC, Section).isAllocatable()) {
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring runtime relocations\n");
|
|
return;
|
|
}
|
|
section_iterator SecIter = cantFail(Section.getRelocatedSection());
|
|
assert(SecIter != InputFile->section_end() && "relocated section expected");
|
|
SectionRef RelocatedSection = *SecIter;
|
|
|
|
StringRef RelocatedSectionName = cantFail(RelocatedSection.getName());
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocated section is "
|
|
<< RelocatedSectionName << '\n');
|
|
|
|
if (!BinarySection(*BC, RelocatedSection).isAllocatable()) {
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against "
|
|
<< "non-allocatable section\n");
|
|
return;
|
|
}
|
|
const bool SkipRelocs = StringSwitch<bool>(RelocatedSectionName)
|
|
.Cases(".plt", ".rela.plt", ".got.plt",
|
|
".eh_frame", ".gcc_except_table", true)
|
|
.Default(false);
|
|
if (SkipRelocs) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "BOLT-DEBUG: ignoring relocations against known section\n");
|
|
return;
|
|
}
|
|
|
|
for (const RelocationRef &Rel : Section.relocations())
|
|
handleRelocation(RelocatedSection, Rel);
|
|
}
|
|
|
|
void RewriteInstance::handleRelocation(const SectionRef &RelocatedSection,
|
|
const RelocationRef &Rel) {
|
|
const bool IsAArch64 = BC->isAArch64();
|
|
const bool IsX86 = BC->isX86();
|
|
const bool IsFromCode = RelocatedSection.isText();
|
|
const bool IsWritable = BinarySection(*BC, RelocatedSection).isWritable();
|
|
|
|
SmallString<16> TypeName;
|
|
Rel.getTypeName(TypeName);
|
|
uint32_t RType = Relocation::getType(Rel);
|
|
if (Relocation::skipRelocationType(RType))
|
|
return;
|
|
|
|
// Adjust the relocation type as the linker might have skewed it.
|
|
if (IsX86 && (RType & ELF::R_X86_64_converted_reloc_bit)) {
|
|
if (opts::Verbosity >= 1)
|
|
dbgs() << "BOLT-WARNING: ignoring R_X86_64_converted_reloc_bit\n";
|
|
RType &= ~ELF::R_X86_64_converted_reloc_bit;
|
|
}
|
|
|
|
if (Relocation::isTLS(RType)) {
|
|
// No special handling required for TLS relocations on X86.
|
|
if (IsX86)
|
|
return;
|
|
|
|
// The non-got related TLS relocations on AArch64 and RISC-V also could be
|
|
// skipped.
|
|
if (!Relocation::isGOT(RType))
|
|
return;
|
|
}
|
|
|
|
if (!IsAArch64 && BC->getDynamicRelocationAt(Rel.getOffset())) {
|
|
LLVM_DEBUG({
|
|
dbgs() << formatv("BOLT-DEBUG: address {0:x} has a ", Rel.getOffset())
|
|
<< "dynamic relocation against it. Ignoring static relocation.\n";
|
|
});
|
|
return;
|
|
}
|
|
|
|
std::string SymbolName;
|
|
uint64_t SymbolAddress;
|
|
int64_t Addend;
|
|
uint64_t ExtractedValue;
|
|
bool IsSectionRelocation;
|
|
bool Skip;
|
|
if (!analyzeRelocation(Rel, RType, SymbolName, IsSectionRelocation,
|
|
SymbolAddress, Addend, ExtractedValue, Skip)) {
|
|
LLVM_DEBUG({
|
|
dbgs() << "BOLT-WARNING: failed to analyze relocation @ offset = "
|
|
<< formatv("{0:x}; type name = {1}\n", Rel.getOffset(), TypeName);
|
|
});
|
|
++NumFailedRelocations;
|
|
return;
|
|
}
|
|
|
|
if (Skip) {
|
|
LLVM_DEBUG({
|
|
dbgs() << "BOLT-DEBUG: skipping relocation @ offset = "
|
|
<< formatv("{0:x}; type name = {1}\n", Rel.getOffset(), TypeName);
|
|
});
|
|
return;
|
|
}
|
|
|
|
if (!IsFromCode && !IsWritable && (IsX86 || IsAArch64) &&
|
|
Relocation::isPCRelative(RType)) {
|
|
BinaryData *BD = BC->getBinaryDataContainingAddress(Rel.getOffset());
|
|
if (BD && (BD->nameStartsWith("_ZTV") || // vtable
|
|
BD->nameStartsWith("_ZTCN"))) { // construction vtable
|
|
BinaryFunction *BF = BC->getBinaryFunctionContainingAddress(
|
|
SymbolAddress, /*CheckPastEnd*/ false, /*UseMaxSize*/ true);
|
|
if (BF) {
|
|
if (BF->getAddress() != SymbolAddress) {
|
|
BC->errs()
|
|
<< "BOLT-ERROR: the virtual function table entry at offset 0x"
|
|
<< Twine::utohexstr(Rel.getOffset())
|
|
<< " points to the middle of a function @ 0x"
|
|
<< Twine::utohexstr(BF->getAddress()) << "\n";
|
|
exit(1);
|
|
}
|
|
BC->addRelocation(Rel.getOffset(), BF->getSymbol(), RType, Addend,
|
|
ExtractedValue);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
const uint64_t Address = SymbolAddress + Addend;
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "BOLT-DEBUG: ";
|
|
printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend, ExtractedValue);
|
|
});
|
|
|
|
BinaryFunction *ContainingBF = nullptr;
|
|
if (IsFromCode) {
|
|
ContainingBF =
|
|
BC->getBinaryFunctionContainingAddress(Rel.getOffset(),
|
|
/*CheckPastEnd*/ false,
|
|
/*UseMaxSize*/ true);
|
|
assert(ContainingBF && "cannot find function for address in code");
|
|
if (!IsAArch64 && !ContainingBF->containsAddress(Rel.getOffset())) {
|
|
if (opts::Verbosity >= 1)
|
|
BC->outs() << formatv(
|
|
"BOLT-INFO: {0} has relocations in padding area\n", *ContainingBF);
|
|
ContainingBF->setSize(ContainingBF->getMaxSize());
|
|
ContainingBF->setSimple(false);
|
|
return;
|
|
}
|
|
}
|
|
|
|
MCSymbol *ReferencedSymbol = nullptr;
|
|
if (!IsSectionRelocation) {
|
|
if (BinaryData *BD = BC->getBinaryDataByName(SymbolName)) {
|
|
ReferencedSymbol = BD->getSymbol();
|
|
} else if (BC->isGOTSymbol(SymbolName)) {
|
|
if (BinaryData *BD = BC->getGOTSymbol())
|
|
ReferencedSymbol = BD->getSymbol();
|
|
} else if (BinaryData *BD = BC->getBinaryDataAtAddress(SymbolAddress)) {
|
|
ReferencedSymbol = BD->getSymbol();
|
|
}
|
|
}
|
|
|
|
ErrorOr<BinarySection &> ReferencedSection{std::errc::bad_address};
|
|
symbol_iterator SymbolIter = Rel.getSymbol();
|
|
if (SymbolIter != InputFile->symbol_end()) {
|
|
SymbolRef Symbol = *SymbolIter;
|
|
section_iterator Section =
|
|
cantFail(Symbol.getSection(), "cannot get symbol section");
|
|
if (Section != InputFile->section_end()) {
|
|
Expected<StringRef> SectionName = Section->getName();
|
|
if (SectionName && !SectionName->empty())
|
|
ReferencedSection = BC->getUniqueSectionByName(*SectionName);
|
|
} else if (BC->isRISCV() && ReferencedSymbol && ContainingBF &&
|
|
(cantFail(Symbol.getFlags()) & SymbolRef::SF_Absolute)) {
|
|
// This might be a relocation for an ABS symbols like __global_pointer$ on
|
|
// RISC-V
|
|
ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol,
|
|
Relocation::getType(Rel), 0,
|
|
cantFail(Symbol.getValue()));
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!ReferencedSection)
|
|
ReferencedSection = BC->getSectionForAddress(SymbolAddress);
|
|
|
|
const bool IsToCode = ReferencedSection && ReferencedSection->isText();
|
|
|
|
// Special handling of PC-relative relocations.
|
|
if (IsX86 && Relocation::isPCRelative(RType)) {
|
|
if (!IsFromCode && IsToCode) {
|
|
// PC-relative relocations from data to code are tricky since the
|
|
// original information is typically lost after linking, even with
|
|
// '--emit-relocs'. Such relocations are normally used by PIC-style
|
|
// jump tables and they reference both the jump table and jump
|
|
// targets by computing the difference between the two. If we blindly
|
|
// apply the relocation, it will appear that it references an arbitrary
|
|
// location in the code, possibly in a different function from the one
|
|
// containing the jump table.
|
|
//
|
|
// For that reason, we only register the fact that there is a
|
|
// PC-relative relocation at a given address against the code.
|
|
// The actual referenced label/address will be determined during jump
|
|
// table analysis.
|
|
BC->addPCRelativeDataRelocation(Rel.getOffset());
|
|
} else if (ContainingBF && !IsSectionRelocation && ReferencedSymbol) {
|
|
// If we know the referenced symbol, register the relocation from
|
|
// the code. It's required to properly handle cases where
|
|
// "symbol + addend" references an object different from "symbol".
|
|
ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType,
|
|
Addend, ExtractedValue);
|
|
} else {
|
|
LLVM_DEBUG({
|
|
dbgs() << "BOLT-DEBUG: not creating PC-relative relocation at"
|
|
<< formatv("{0:x} for {1}\n", Rel.getOffset(), SymbolName);
|
|
});
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
bool ForceRelocation = BC->forceSymbolRelocations(SymbolName);
|
|
if ((BC->isAArch64() || BC->isRISCV()) && Relocation::isGOT(RType))
|
|
ForceRelocation = true;
|
|
|
|
if (!ReferencedSection && !ForceRelocation) {
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: cannot determine referenced section.\n");
|
|
return;
|
|
}
|
|
|
|
// Occasionally we may see a reference past the last byte of the function
|
|
// typically as a result of __builtin_unreachable(). Check it here.
|
|
BinaryFunction *ReferencedBF = BC->getBinaryFunctionContainingAddress(
|
|
Address, /*CheckPastEnd*/ true, /*UseMaxSize*/ IsAArch64);
|
|
|
|
if (!IsSectionRelocation) {
|
|
if (BinaryFunction *BF =
|
|
BC->getBinaryFunctionContainingAddress(SymbolAddress)) {
|
|
if (BF != ReferencedBF) {
|
|
// It's possible we are referencing a function without referencing any
|
|
// code, e.g. when taking a bitmask action on a function address.
|
|
BC->errs()
|
|
<< "BOLT-WARNING: non-standard function reference (e.g. bitmask)"
|
|
<< formatv(" detected against function {0} from ", *BF);
|
|
if (IsFromCode)
|
|
BC->errs() << formatv("function {0}\n", *ContainingBF);
|
|
else
|
|
BC->errs() << formatv("data section at {0:x}\n", Rel.getOffset());
|
|
LLVM_DEBUG(printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend,
|
|
ExtractedValue));
|
|
ReferencedBF = BF;
|
|
}
|
|
}
|
|
} else if (ReferencedBF) {
|
|
assert(ReferencedSection && "section expected for section relocation");
|
|
if (*ReferencedBF->getOriginSection() != *ReferencedSection) {
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring false function reference\n");
|
|
ReferencedBF = nullptr;
|
|
}
|
|
}
|
|
|
|
// Workaround for a member function pointer de-virtualization bug. We check
|
|
// if a non-pc-relative relocation in the code is pointing to (fptr - 1).
|
|
if (IsToCode && ContainingBF && !Relocation::isPCRelative(RType) &&
|
|
(!ReferencedBF || (ReferencedBF->getAddress() != Address))) {
|
|
if (const BinaryFunction *RogueBF =
|
|
BC->getBinaryFunctionAtAddress(Address + 1)) {
|
|
// Do an extra check that the function was referenced previously.
|
|
// It's a linear search, but it should rarely happen.
|
|
auto CheckReloc = [&](const Relocation &Rel) {
|
|
return Rel.Symbol == RogueBF->getSymbol() &&
|
|
!Relocation::isPCRelative(Rel.Type);
|
|
};
|
|
bool Found = llvm::any_of(
|
|
llvm::make_second_range(ContainingBF->Relocations), CheckReloc);
|
|
|
|
if (Found) {
|
|
BC->errs()
|
|
<< "BOLT-WARNING: detected possible compiler de-virtualization "
|
|
"bug: -1 addend used with non-pc-relative relocation against "
|
|
<< formatv("function {0} in function {1}\n", *RogueBF,
|
|
*ContainingBF);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ForceRelocation && !ReferencedBF) {
|
|
// Create the relocation symbol if it's not defined in the binary.
|
|
if (SymbolAddress == 0)
|
|
ReferencedSymbol = BC->registerNameAtAddress(SymbolName, 0, 0, 0);
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "BOLT-DEBUG: forcing relocation against symbol "
|
|
<< (ReferencedSymbol ? ReferencedSymbol->getName() : "<none>")
|
|
<< " with addend " << Addend << '\n');
|
|
} else if (ReferencedBF) {
|
|
ReferencedSymbol = ReferencedBF->getSymbol();
|
|
uint64_t RefFunctionOffset = 0;
|
|
|
|
// Adjust the point of reference to a code location inside a function.
|
|
if (ReferencedBF->containsAddress(Address, /*UseMaxSize = */ true)) {
|
|
RefFunctionOffset = Address - ReferencedBF->getAddress();
|
|
if (Relocation::isInstructionReference(RType)) {
|
|
// Instruction labels are created while disassembling so we just leave
|
|
// the symbol empty for now. Since the extracted value is typically
|
|
// unrelated to the referenced symbol (e.g., %pcrel_lo in RISC-V
|
|
// references an instruction but the patched value references the low
|
|
// bits of a data address), we set the extracted value to the symbol
|
|
// address in order to be able to correctly reconstruct the reference
|
|
// later.
|
|
ReferencedSymbol = nullptr;
|
|
ExtractedValue = Address;
|
|
} else if (RefFunctionOffset) {
|
|
if (ContainingBF && ContainingBF != ReferencedBF) {
|
|
ReferencedSymbol =
|
|
ReferencedBF->addEntryPointAtOffset(RefFunctionOffset);
|
|
} else {
|
|
ReferencedSymbol =
|
|
ReferencedBF->getOrCreateLocalLabel(Address,
|
|
/*CreatePastEnd =*/true);
|
|
|
|
// If ContainingBF != nullptr, it equals ReferencedBF (see
|
|
// if-condition above) so we're handling a relocation from a function
|
|
// to itself. RISC-V uses such relocations for branches, for example.
|
|
// These should not be registered as externally references offsets.
|
|
if (!ContainingBF)
|
|
ReferencedBF->registerReferencedOffset(RefFunctionOffset);
|
|
}
|
|
if (opts::Verbosity > 1 &&
|
|
BinarySection(*BC, RelocatedSection).isWritable())
|
|
BC->errs()
|
|
<< "BOLT-WARNING: writable reference into the middle of the "
|
|
<< formatv("function {0} detected at address {1:x}\n",
|
|
*ReferencedBF, Rel.getOffset());
|
|
}
|
|
SymbolAddress = Address;
|
|
Addend = 0;
|
|
}
|
|
LLVM_DEBUG({
|
|
dbgs() << " referenced function " << *ReferencedBF;
|
|
if (Address != ReferencedBF->getAddress())
|
|
dbgs() << formatv(" at offset {0:x}", RefFunctionOffset);
|
|
dbgs() << '\n';
|
|
});
|
|
} else {
|
|
if (IsToCode && SymbolAddress) {
|
|
// This can happen e.g. with PIC-style jump tables.
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: no corresponding function for "
|
|
"relocation against code\n");
|
|
}
|
|
|
|
// In AArch64 there are zero reasons to keep a reference to the
|
|
// "original" symbol plus addend. The original symbol is probably just a
|
|
// section symbol. If we are here, this means we are probably accessing
|
|
// data, so it is imperative to keep the original address.
|
|
if (IsAArch64) {
|
|
SymbolName = formatv("SYMBOLat{0:x}", Address);
|
|
SymbolAddress = Address;
|
|
Addend = 0;
|
|
}
|
|
|
|
if (BinaryData *BD = BC->getBinaryDataContainingAddress(SymbolAddress)) {
|
|
// Note: this assertion is trying to check sanity of BinaryData objects
|
|
// but AArch64 and RISCV has inferred and incomplete object locations
|
|
// coming from GOT/TLS or any other non-trivial relocation (that requires
|
|
// creation of sections and whose symbol address is not really what should
|
|
// be encoded in the instruction). So we essentially disabled this check
|
|
// for AArch64 and live with bogus names for objects.
|
|
assert((IsAArch64 || BC->isRISCV() || IsSectionRelocation ||
|
|
BD->nameStartsWith(SymbolName) ||
|
|
BD->nameStartsWith("PG" + SymbolName) ||
|
|
(BD->nameStartsWith("ANONYMOUS") &&
|
|
(BD->getSectionName().starts_with(".plt") ||
|
|
BD->getSectionName().ends_with(".plt")))) &&
|
|
"BOLT symbol names of all non-section relocations must match up "
|
|
"with symbol names referenced in the relocation");
|
|
|
|
if (IsSectionRelocation)
|
|
BC->markAmbiguousRelocations(*BD, Address);
|
|
|
|
ReferencedSymbol = BD->getSymbol();
|
|
Addend += (SymbolAddress - BD->getAddress());
|
|
SymbolAddress = BD->getAddress();
|
|
assert(Address == SymbolAddress + Addend);
|
|
} else {
|
|
// These are mostly local data symbols but undefined symbols
|
|
// in relocation sections can get through here too, from .plt.
|
|
assert(
|
|
(IsAArch64 || BC->isRISCV() || IsSectionRelocation ||
|
|
BC->getSectionNameForAddress(SymbolAddress)->starts_with(".plt")) &&
|
|
"known symbols should not resolve to anonymous locals");
|
|
|
|
if (IsSectionRelocation) {
|
|
ReferencedSymbol =
|
|
BC->getOrCreateGlobalSymbol(SymbolAddress, "SYMBOLat");
|
|
} else {
|
|
SymbolRef Symbol = *Rel.getSymbol();
|
|
const uint64_t SymbolSize =
|
|
IsAArch64 ? 0 : ELFSymbolRef(Symbol).getSize();
|
|
const uint64_t SymbolAlignment = IsAArch64 ? 1 : Symbol.getAlignment();
|
|
const uint32_t SymbolFlags = cantFail(Symbol.getFlags());
|
|
std::string Name;
|
|
if (SymbolFlags & SymbolRef::SF_Global) {
|
|
Name = SymbolName;
|
|
} else {
|
|
if (StringRef(SymbolName)
|
|
.starts_with(BC->AsmInfo->getPrivateGlobalPrefix()))
|
|
Name = NR.uniquify("PG" + SymbolName);
|
|
else
|
|
Name = NR.uniquify(SymbolName);
|
|
}
|
|
ReferencedSymbol = BC->registerNameAtAddress(
|
|
Name, SymbolAddress, SymbolSize, SymbolAlignment, SymbolFlags);
|
|
}
|
|
|
|
if (IsSectionRelocation) {
|
|
BinaryData *BD = BC->getBinaryDataByName(ReferencedSymbol->getName());
|
|
BC->markAmbiguousRelocations(*BD, Address);
|
|
}
|
|
}
|
|
}
|
|
|
|
auto checkMaxDataRelocations = [&]() {
|
|
++NumDataRelocations;
|
|
LLVM_DEBUG(if (opts::MaxDataRelocations &&
|
|
NumDataRelocations + 1 == opts::MaxDataRelocations) {
|
|
dbgs() << "BOLT-DEBUG: processing ending on data relocation "
|
|
<< NumDataRelocations << ": ";
|
|
printRelocationInfo(Rel, ReferencedSymbol->getName(), SymbolAddress,
|
|
Addend, ExtractedValue);
|
|
});
|
|
|
|
return (!opts::MaxDataRelocations ||
|
|
NumDataRelocations < opts::MaxDataRelocations);
|
|
};
|
|
|
|
if ((ReferencedSection && refersToReorderedSection(ReferencedSection)) ||
|
|
(opts::ForceToDataRelocations && checkMaxDataRelocations()) ||
|
|
// RISC-V has ADD/SUB data-to-data relocations
|
|
BC->isRISCV())
|
|
ForceRelocation = true;
|
|
|
|
if (IsFromCode)
|
|
ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType,
|
|
Addend, ExtractedValue);
|
|
else if (IsToCode || ForceRelocation)
|
|
BC->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, Addend,
|
|
ExtractedValue);
|
|
else
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocation from data to data\n");
|
|
}
|
|
|
|
static BinaryFunction *getInitFunctionIfStaticBinary(BinaryContext &BC) {
|
|
// Workaround for https://github.com/llvm/llvm-project/issues/100096
|
|
// ("[BOLT] GOT array pointer incorrectly rewritten"). In aarch64
|
|
// static glibc binaries, the .init section's _init function pointer can
|
|
// alias with a data pointer for the end of an array. GOT rewriting
|
|
// currently can't detect this and updates the data pointer to the
|
|
// moved _init, causing a runtime crash. Skipping _init on the other
|
|
// hand should be harmless.
|
|
if (!BC.IsStaticExecutable)
|
|
return nullptr;
|
|
const BinaryData *BD = BC.getBinaryDataByName("_init");
|
|
if (!BD || BD->getSectionName() != ".init")
|
|
return nullptr;
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: skip _init in for GOT workaround.\n");
|
|
return BC.getBinaryFunctionAtAddress(BD->getAddress());
|
|
}
|
|
|
|
void RewriteInstance::selectFunctionsToProcess() {
|
|
// Extend the list of functions to process or skip from a file.
|
|
auto populateFunctionNames = [](cl::opt<std::string> &FunctionNamesFile,
|
|
cl::list<std::string> &FunctionNames) {
|
|
if (FunctionNamesFile.empty())
|
|
return;
|
|
std::ifstream FuncsFile(FunctionNamesFile, std::ios::in);
|
|
std::string FuncName;
|
|
while (std::getline(FuncsFile, FuncName))
|
|
FunctionNames.push_back(FuncName);
|
|
};
|
|
populateFunctionNames(opts::FunctionNamesFile, opts::ForceFunctionNames);
|
|
populateFunctionNames(opts::SkipFunctionNamesFile, opts::SkipFunctionNames);
|
|
populateFunctionNames(opts::FunctionNamesFileNR, opts::ForceFunctionNamesNR);
|
|
|
|
// Make a set of functions to process to speed up lookups.
|
|
std::unordered_set<std::string> ForceFunctionsNR(
|
|
opts::ForceFunctionNamesNR.begin(), opts::ForceFunctionNamesNR.end());
|
|
|
|
if ((!opts::ForceFunctionNames.empty() ||
|
|
!opts::ForceFunctionNamesNR.empty()) &&
|
|
!opts::SkipFunctionNames.empty()) {
|
|
BC->errs()
|
|
<< "BOLT-ERROR: cannot select functions to process and skip at the "
|
|
"same time. Please use only one type of selection.\n";
|
|
exit(1);
|
|
}
|
|
|
|
uint64_t LiteThresholdExecCount = 0;
|
|
if (opts::LiteThresholdPct) {
|
|
if (opts::LiteThresholdPct > 100)
|
|
opts::LiteThresholdPct = 100;
|
|
|
|
std::vector<const BinaryFunction *> TopFunctions;
|
|
for (auto &BFI : BC->getBinaryFunctions()) {
|
|
const BinaryFunction &Function = BFI.second;
|
|
if (ProfileReader->mayHaveProfileData(Function))
|
|
TopFunctions.push_back(&Function);
|
|
}
|
|
llvm::sort(
|
|
TopFunctions, [](const BinaryFunction *A, const BinaryFunction *B) {
|
|
return A->getKnownExecutionCount() < B->getKnownExecutionCount();
|
|
});
|
|
|
|
size_t Index = TopFunctions.size() * opts::LiteThresholdPct / 100;
|
|
if (Index)
|
|
--Index;
|
|
LiteThresholdExecCount = TopFunctions[Index]->getKnownExecutionCount();
|
|
BC->outs() << "BOLT-INFO: limiting processing to functions with at least "
|
|
<< LiteThresholdExecCount << " invocations\n";
|
|
}
|
|
LiteThresholdExecCount = std::max(
|
|
LiteThresholdExecCount, static_cast<uint64_t>(opts::LiteThresholdCount));
|
|
|
|
StringSet<> ReorderFunctionsUserSet;
|
|
StringSet<> ReorderFunctionsLTOCommonSet;
|
|
if (opts::ReorderFunctions == ReorderFunctions::RT_USER) {
|
|
std::vector<std::string> FunctionNames;
|
|
BC->logBOLTErrorsAndQuitOnFatal(
|
|
ReorderFunctions::readFunctionOrderFile(FunctionNames));
|
|
for (const std::string &Function : FunctionNames) {
|
|
ReorderFunctionsUserSet.insert(Function);
|
|
if (std::optional<StringRef> LTOCommonName = getLTOCommonName(Function))
|
|
ReorderFunctionsLTOCommonSet.insert(*LTOCommonName);
|
|
}
|
|
}
|
|
|
|
uint64_t NumFunctionsToProcess = 0;
|
|
auto mustSkip = [&](const BinaryFunction &Function) {
|
|
if (opts::MaxFunctions.getNumOccurrences() &&
|
|
NumFunctionsToProcess >= opts::MaxFunctions)
|
|
return true;
|
|
for (std::string &Name : opts::SkipFunctionNames)
|
|
if (Function.hasNameRegex(Name))
|
|
return true;
|
|
|
|
return false;
|
|
};
|
|
|
|
auto shouldProcess = [&](const BinaryFunction &Function) {
|
|
if (mustSkip(Function))
|
|
return false;
|
|
|
|
// If the list is not empty, only process functions from the list.
|
|
if (!opts::ForceFunctionNames.empty() || !ForceFunctionsNR.empty()) {
|
|
// Regex check (-funcs and -funcs-file options).
|
|
for (std::string &Name : opts::ForceFunctionNames)
|
|
if (Function.hasNameRegex(Name))
|
|
return true;
|
|
|
|
// Non-regex check (-funcs-no-regex and -funcs-file-no-regex).
|
|
for (const StringRef Name : Function.getNames())
|
|
if (ForceFunctionsNR.count(Name.str()))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
if (opts::Lite) {
|
|
// Forcibly include functions specified in the -function-order file.
|
|
if (opts::ReorderFunctions == ReorderFunctions::RT_USER) {
|
|
for (const StringRef Name : Function.getNames())
|
|
if (ReorderFunctionsUserSet.contains(Name))
|
|
return true;
|
|
for (const StringRef Name : Function.getNames())
|
|
if (std::optional<StringRef> LTOCommonName = getLTOCommonName(Name))
|
|
if (ReorderFunctionsLTOCommonSet.contains(*LTOCommonName))
|
|
return true;
|
|
}
|
|
|
|
if (ProfileReader && !ProfileReader->mayHaveProfileData(Function))
|
|
return false;
|
|
|
|
if (Function.getKnownExecutionCount() < LiteThresholdExecCount)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
if (BinaryFunction *Init = getInitFunctionIfStaticBinary(*BC))
|
|
Init->setIgnored();
|
|
|
|
for (auto &BFI : BC->getBinaryFunctions()) {
|
|
BinaryFunction &Function = BFI.second;
|
|
|
|
// Pseudo functions are explicitly marked by us not to be processed.
|
|
if (Function.isPseudo()) {
|
|
Function.IsIgnored = true;
|
|
Function.HasExternalRefRelocations = true;
|
|
continue;
|
|
}
|
|
|
|
// Decide what to do with fragments after parent functions are processed.
|
|
if (Function.isFragment())
|
|
continue;
|
|
|
|
if (!shouldProcess(Function)) {
|
|
if (opts::Verbosity >= 1) {
|
|
BC->outs() << "BOLT-INFO: skipping processing " << Function
|
|
<< " per user request\n";
|
|
}
|
|
Function.setIgnored();
|
|
} else {
|
|
++NumFunctionsToProcess;
|
|
if (opts::MaxFunctions.getNumOccurrences() &&
|
|
NumFunctionsToProcess == opts::MaxFunctions)
|
|
BC->outs() << "BOLT-INFO: processing ending on " << Function << '\n';
|
|
}
|
|
}
|
|
|
|
if (!BC->HasSplitFunctions)
|
|
return;
|
|
|
|
// Fragment overrides:
|
|
// - If the fragment must be skipped, then the parent must be skipped as well.
|
|
// Otherwise, fragment should follow the parent function:
|
|
// - if the parent is skipped, skip fragment,
|
|
// - if the parent is processed, process the fragment(s) as well.
|
|
for (auto &BFI : BC->getBinaryFunctions()) {
|
|
BinaryFunction &Function = BFI.second;
|
|
if (!Function.isFragment())
|
|
continue;
|
|
if (mustSkip(Function)) {
|
|
for (BinaryFunction *Parent : Function.ParentFragments) {
|
|
if (opts::Verbosity >= 1) {
|
|
BC->outs() << "BOLT-INFO: skipping processing " << *Parent
|
|
<< " together with fragment function\n";
|
|
}
|
|
Parent->setIgnored();
|
|
--NumFunctionsToProcess;
|
|
}
|
|
Function.setIgnored();
|
|
continue;
|
|
}
|
|
|
|
bool IgnoredParent =
|
|
llvm::any_of(Function.ParentFragments, [&](BinaryFunction *Parent) {
|
|
return Parent->isIgnored();
|
|
});
|
|
if (IgnoredParent) {
|
|
if (opts::Verbosity >= 1) {
|
|
BC->outs() << "BOLT-INFO: skipping processing " << Function
|
|
<< " together with parent function\n";
|
|
}
|
|
Function.setIgnored();
|
|
} else {
|
|
++NumFunctionsToProcess;
|
|
if (opts::Verbosity >= 1) {
|
|
BC->outs() << "BOLT-INFO: processing " << Function
|
|
<< " as a sibling of non-ignored function\n";
|
|
}
|
|
if (opts::MaxFunctions && NumFunctionsToProcess == opts::MaxFunctions)
|
|
BC->outs() << "BOLT-INFO: processing ending on " << Function << '\n';
|
|
}
|
|
}
|
|
}
|
|
|
|
void RewriteInstance::readDebugInfo() {
|
|
NamedRegionTimer T("readDebugInfo", "read debug info", TimerGroupName,
|
|
TimerGroupDesc, opts::TimeRewrite);
|
|
if (!opts::UpdateDebugSections)
|
|
return;
|
|
|
|
BC->preprocessDebugInfo();
|
|
}
|
|
|
|
void RewriteInstance::preprocessProfileData() {
|
|
if (!ProfileReader)
|
|
return;
|
|
|
|
NamedRegionTimer T("preprocessprofile", "pre-process profile data",
|
|
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
|
|
|
|
BC->outs() << "BOLT-INFO: pre-processing profile using "
|
|
<< ProfileReader->getReaderName() << '\n';
|
|
|
|
if (BAT->enabledFor(InputFile)) {
|
|
BC->outs() << "BOLT-INFO: profile collection done on a binary already "
|
|
"processed by BOLT\n";
|
|
ProfileReader->setBAT(&*BAT);
|
|
}
|
|
|
|
if (Error E = ProfileReader->preprocessProfile(*BC))
|
|
report_error("cannot pre-process profile", std::move(E));
|
|
|
|
if (!BC->hasSymbolsWithFileName() && ProfileReader->hasLocalsWithFileName() &&
|
|
!opts::AllowStripped) {
|
|
BC->errs()
|
|
<< "BOLT-ERROR: input binary does not have local file symbols "
|
|
"but profile data includes function names with embedded file "
|
|
"names. It appears that the input binary was stripped while a "
|
|
"profiled binary was not. If you know what you are doing and "
|
|
"wish to proceed, use -allow-stripped option.\n";
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
void RewriteInstance::initializeMetadataManager() {
|
|
if (BC->IsLinuxKernel)
|
|
MetadataManager.registerRewriter(createLinuxKernelRewriter(*BC));
|
|
|
|
MetadataManager.registerRewriter(createBuildIDRewriter(*BC));
|
|
|
|
MetadataManager.registerRewriter(createPseudoProbeRewriter(*BC));
|
|
|
|
MetadataManager.registerRewriter(createSDTRewriter(*BC));
|
|
}
|
|
|
|
void RewriteInstance::processSectionMetadata() {
|
|
NamedRegionTimer T("processmetadata-section", "process section metadata",
|
|
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
|
|
initializeMetadataManager();
|
|
|
|
MetadataManager.runSectionInitializers();
|
|
}
|
|
|
|
void RewriteInstance::processMetadataPreCFG() {
|
|
NamedRegionTimer T("processmetadata-precfg", "process metadata pre-CFG",
|
|
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
|
|
MetadataManager.runInitializersPreCFG();
|
|
|
|
processProfileDataPreCFG();
|
|
}
|
|
|
|
void RewriteInstance::processMetadataPostCFG() {
|
|
NamedRegionTimer T("processmetadata-postcfg", "process metadata post-CFG",
|
|
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
|
|
MetadataManager.runInitializersPostCFG();
|
|
}
|
|
|
|
void RewriteInstance::processProfileDataPreCFG() {
|
|
if (!ProfileReader)
|
|
return;
|
|
|
|
NamedRegionTimer T("processprofile-precfg", "process profile data pre-CFG",
|
|
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
|
|
|
|
if (Error E = ProfileReader->readProfilePreCFG(*BC))
|
|
report_error("cannot read profile pre-CFG", std::move(E));
|
|
}
|
|
|
|
void RewriteInstance::processProfileData() {
|
|
if (!ProfileReader)
|
|
return;
|
|
|
|
NamedRegionTimer T("processprofile", "process profile data", TimerGroupName,
|
|
TimerGroupDesc, opts::TimeRewrite);
|
|
|
|
if (Error E = ProfileReader->readProfile(*BC))
|
|
report_error("cannot read profile", std::move(E));
|
|
|
|
if (opts::PrintProfile || opts::PrintAll) {
|
|
for (auto &BFI : BC->getBinaryFunctions()) {
|
|
BinaryFunction &Function = BFI.second;
|
|
if (Function.empty())
|
|
continue;
|
|
|
|
Function.print(BC->outs(), "after attaching profile");
|
|
}
|
|
}
|
|
|
|
if (!opts::SaveProfile.empty() && !BAT->enabledFor(InputFile)) {
|
|
YAMLProfileWriter PW(opts::SaveProfile);
|
|
PW.writeProfile(*this);
|
|
}
|
|
if (opts::AggregateOnly &&
|
|
opts::ProfileFormat == opts::ProfileFormatKind::PF_YAML &&
|
|
!BAT->enabledFor(InputFile)) {
|
|
YAMLProfileWriter PW(opts::OutputFilename);
|
|
PW.writeProfile(*this);
|
|
}
|
|
|
|
// Release memory used by profile reader.
|
|
ProfileReader.reset();
|
|
|
|
if (opts::AggregateOnly) {
|
|
PrintProgramStats PPS(&*BAT);
|
|
BC->logBOLTErrorsAndQuitOnFatal(PPS.runOnFunctions(*BC));
|
|
TimerGroup::printAll(outs());
|
|
exit(0);
|
|
}
|
|
}
|
|
|
|
void RewriteInstance::disassembleFunctions() {
|
|
NamedRegionTimer T("disassembleFunctions", "disassemble functions",
|
|
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
|
|
for (auto &BFI : BC->getBinaryFunctions()) {
|
|
BinaryFunction &Function = BFI.second;
|
|
|
|
ErrorOr<ArrayRef<uint8_t>> FunctionData = Function.getData();
|
|
if (!FunctionData) {
|
|
BC->errs() << "BOLT-ERROR: corresponding section is non-executable or "
|
|
<< "empty for function " << Function << '\n';
|
|
exit(1);
|
|
}
|
|
|
|
// Treat zero-sized functions as non-simple ones.
|
|
if (Function.getSize() == 0) {
|
|
Function.setSimple(false);
|
|
continue;
|
|
}
|
|
|
|
// Offset of the function in the file.
|
|
const auto *FileBegin =
|
|
reinterpret_cast<const uint8_t *>(InputFile->getData().data());
|
|
Function.setFileOffset(FunctionData->begin() - FileBegin);
|
|
|
|
if (!shouldDisassemble(Function)) {
|
|
NamedRegionTimer T("scan", "scan functions", "buildfuncs",
|
|
"Scan Binary Functions", opts::TimeBuild);
|
|
Function.scanExternalRefs();
|
|
Function.setSimple(false);
|
|
continue;
|
|
}
|
|
|
|
bool DisasmFailed{false};
|
|
handleAllErrors(Function.disassemble(), [&](const BOLTError &E) {
|
|
DisasmFailed = true;
|
|
if (E.isFatal()) {
|
|
E.log(BC->errs());
|
|
exit(1);
|
|
}
|
|
if (opts::processAllFunctions()) {
|
|
BC->errs() << BC->generateBugReportMessage(
|
|
"function cannot be properly disassembled. "
|
|
"Unable to continue in relocation mode.",
|
|
Function);
|
|
exit(1);
|
|
}
|
|
if (opts::Verbosity >= 1)
|
|
BC->outs() << "BOLT-INFO: could not disassemble function " << Function
|
|
<< ". Will ignore.\n";
|
|
// Forcefully ignore the function.
|
|
Function.scanExternalRefs();
|
|
Function.setIgnored();
|
|
});
|
|
|
|
if (DisasmFailed)
|
|
continue;
|
|
|
|
if (opts::PrintAll || opts::PrintDisasm)
|
|
Function.print(BC->outs(), "after disassembly");
|
|
}
|
|
|
|
BC->processInterproceduralReferences();
|
|
BC->populateJumpTables();
|
|
|
|
for (auto &BFI : BC->getBinaryFunctions()) {
|
|
BinaryFunction &Function = BFI.second;
|
|
|
|
if (!shouldDisassemble(Function))
|
|
continue;
|
|
|
|
Function.postProcessEntryPoints();
|
|
Function.postProcessJumpTables();
|
|
}
|
|
|
|
BC->clearJumpTableTempData();
|
|
BC->adjustCodePadding();
|
|
|
|
for (auto &BFI : BC->getBinaryFunctions()) {
|
|
BinaryFunction &Function = BFI.second;
|
|
|
|
if (!shouldDisassemble(Function))
|
|
continue;
|
|
|
|
if (!Function.isSimple()) {
|
|
assert((!BC->HasRelocations || Function.getSize() == 0 ||
|
|
Function.hasIndirectTargetToSplitFragment()) &&
|
|
"unexpected non-simple function in relocation mode");
|
|
continue;
|
|
}
|
|
|
|
// Fill in CFI information for this function
|
|
if (!Function.trapsOnEntry() && !CFIRdWrt->fillCFIInfoFor(Function)) {
|
|
if (BC->HasRelocations) {
|
|
BC->errs() << BC->generateBugReportMessage("unable to fill CFI.",
|
|
Function);
|
|
exit(1);
|
|
} else {
|
|
BC->errs() << "BOLT-WARNING: unable to fill CFI for function "
|
|
<< Function << ". Skipping.\n";
|
|
Function.setSimple(false);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Parse LSDA.
|
|
if (Function.getLSDAAddress() != 0 &&
|
|
!BC->getFragmentsToSkip().count(&Function)) {
|
|
ErrorOr<BinarySection &> LSDASection =
|
|
BC->getSectionForAddress(Function.getLSDAAddress());
|
|
check_error(LSDASection.getError(), "failed to get LSDA section");
|
|
ArrayRef<uint8_t> LSDAData = ArrayRef<uint8_t>(
|
|
LSDASection->getData(), LSDASection->getContents().size());
|
|
BC->logBOLTErrorsAndQuitOnFatal(
|
|
Function.parseLSDA(LSDAData, LSDASection->getAddress()));
|
|
}
|
|
}
|
|
}
|
|
|
|
void RewriteInstance::buildFunctionsCFG() {
|
|
NamedRegionTimer T("buildCFG", "buildCFG", "buildfuncs",
|
|
"Build Binary Functions", opts::TimeBuild);
|
|
|
|
// Create annotation indices to allow lock-free execution
|
|
BC->MIB->getOrCreateAnnotationIndex("JTIndexReg");
|
|
BC->MIB->getOrCreateAnnotationIndex("NOP");
|
|
|
|
ParallelUtilities::WorkFuncWithAllocTy WorkFun =
|
|
[&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId) {
|
|
bool HadErrors{false};
|
|
handleAllErrors(BF.buildCFG(AllocId), [&](const BOLTError &E) {
|
|
if (!E.getMessage().empty())
|
|
E.log(BC->errs());
|
|
if (E.isFatal())
|
|
exit(1);
|
|
HadErrors = true;
|
|
});
|
|
|
|
if (HadErrors)
|
|
return;
|
|
|
|
if (opts::PrintAll) {
|
|
auto L = BC->scopeLock();
|
|
BF.print(BC->outs(), "while building cfg");
|
|
}
|
|
};
|
|
|
|
ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) {
|
|
return !shouldDisassemble(BF) || !BF.isSimple();
|
|
};
|
|
|
|
ParallelUtilities::runOnEachFunctionWithUniqueAllocId(
|
|
*BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun,
|
|
SkipPredicate, "disassembleFunctions-buildCFG",
|
|
/*ForceSequential*/ opts::SequentialDisassembly || opts::PrintAll);
|
|
|
|
BC->postProcessSymbolTable();
|
|
}
|
|
|
|
void RewriteInstance::postProcessFunctions() {
|
|
// We mark fragments as non-simple here, not during disassembly,
|
|
// So we can build their CFGs.
|
|
BC->skipMarkedFragments();
|
|
BC->clearFragmentsToSkip();
|
|
|
|
BC->TotalScore = 0;
|
|
BC->SumExecutionCount = 0;
|
|
for (auto &BFI : BC->getBinaryFunctions()) {
|
|
BinaryFunction &Function = BFI.second;
|
|
|
|
// Set function as non-simple if it has dynamic relocations
|
|
// in constant island, we don't want this function to be optimized
|
|
// e.g. function splitting is unsupported.
|
|
if (Function.hasDynamicRelocationAtIsland())
|
|
Function.setSimple(false);
|
|
|
|
if (Function.empty())
|
|
continue;
|
|
|
|
Function.postProcessCFG();
|
|
|
|
if (opts::PrintAll || opts::PrintCFG)
|
|
Function.print(BC->outs(), "after building cfg");
|
|
|
|
if (opts::DumpDotAll)
|
|
Function.dumpGraphForPass("00_build-cfg");
|
|
|
|
if (opts::PrintLoopInfo) {
|
|
Function.calculateLoopInfo();
|
|
Function.printLoopInfo(BC->outs());
|
|
}
|
|
|
|
BC->TotalScore += Function.getFunctionScore();
|
|
BC->SumExecutionCount += Function.getKnownExecutionCount();
|
|
}
|
|
|
|
if (opts::PrintGlobals) {
|
|
BC->outs() << "BOLT-INFO: Global symbols:\n";
|
|
BC->printGlobalSymbols(BC->outs());
|
|
}
|
|
}
|
|
|
|
void RewriteInstance::runOptimizationPasses() {
|
|
NamedRegionTimer T("runOptimizationPasses", "run optimization passes",
|
|
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
|
|
BC->logBOLTErrorsAndQuitOnFatal(BinaryFunctionPassManager::runAllPasses(*BC));
|
|
}
|
|
|
|
void RewriteInstance::runBinaryAnalyses() {
|
|
NamedRegionTimer T("runBinaryAnalyses", "run binary analysis passes",
|
|
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
|
|
BinaryFunctionPassManager Manager(*BC);
|
|
// FIXME: add a pass that warns about which functions do not have CFG,
|
|
// and therefore, analysis is most likely to be less accurate.
|
|
using GSK = opts::GadgetScannerKind;
|
|
using PAuthScanner = PAuthGadgetScanner::Analysis;
|
|
|
|
// If no command line option was given, act as if "all" was specified.
|
|
bool RunAll = !opts::GadgetScannersToRun.getBits() ||
|
|
opts::GadgetScannersToRun.isSet(GSK::GS_ALL);
|
|
|
|
if (RunAll || opts::GadgetScannersToRun.isSet(GSK::GS_PAUTH)) {
|
|
Manager.registerPass(
|
|
std::make_unique<PAuthScanner>(/*OnlyPacRetChecks=*/false));
|
|
} else if (RunAll || opts::GadgetScannersToRun.isSet(GSK::GS_PACRET)) {
|
|
Manager.registerPass(
|
|
std::make_unique<PAuthScanner>(/*OnlyPacRetChecks=*/true));
|
|
}
|
|
|
|
BC->logBOLTErrorsAndQuitOnFatal(Manager.runPasses());
|
|
}
|
|
|
|
void RewriteInstance::preregisterSections() {
|
|
// Preregister sections before emission to set their order in the output.
|
|
const unsigned ROFlags = BinarySection::getFlags(/*IsReadOnly*/ true,
|
|
/*IsText*/ false,
|
|
/*IsAllocatable*/ true);
|
|
if (BinarySection *EHFrameSection = getSection(getEHFrameSectionName())) {
|
|
// New .eh_frame.
|
|
BC->registerOrUpdateSection(getNewSecPrefix() + getEHFrameSectionName(),
|
|
ELF::SHT_PROGBITS, ROFlags);
|
|
// Fully register a relocatable copy of the original .eh_frame.
|
|
BC->registerSection(".relocated.eh_frame", *EHFrameSection);
|
|
}
|
|
BC->registerOrUpdateSection(getNewSecPrefix() + ".gcc_except_table",
|
|
ELF::SHT_PROGBITS, ROFlags);
|
|
BC->registerOrUpdateSection(getNewSecPrefix() + ".rodata", ELF::SHT_PROGBITS,
|
|
ROFlags);
|
|
BC->registerOrUpdateSection(getNewSecPrefix() + ".rodata.cold",
|
|
ELF::SHT_PROGBITS, ROFlags);
|
|
}
|
|
|
|
void RewriteInstance::emitAndLink() {
|
|
NamedRegionTimer T("emitAndLink", "emit and link", TimerGroupName,
|
|
TimerGroupDesc, opts::TimeRewrite);
|
|
|
|
SmallString<0> ObjectBuffer;
|
|
raw_svector_ostream OS(ObjectBuffer);
|
|
|
|
// Implicitly MCObjectStreamer takes ownership of MCAsmBackend (MAB)
|
|
// and MCCodeEmitter (MCE). ~MCObjectStreamer() will delete these
|
|
// two instances.
|
|
std::unique_ptr<MCStreamer> Streamer = BC->createStreamer(OS);
|
|
|
|
if (EHFrameSection) {
|
|
if (opts::UseOldText || opts::StrictMode) {
|
|
// The section is going to be regenerated from scratch.
|
|
// Empty the contents, but keep the section reference.
|
|
EHFrameSection->clearContents();
|
|
} else {
|
|
// Make .eh_frame relocatable.
|
|
relocateEHFrameSection();
|
|
}
|
|
}
|
|
|
|
emitBinaryContext(*Streamer, *BC, getOrgSecPrefix());
|
|
|
|
Streamer->finish();
|
|
if (Streamer->getContext().hadError()) {
|
|
BC->errs() << "BOLT-ERROR: Emission failed.\n";
|
|
exit(1);
|
|
}
|
|
|
|
if (opts::KeepTmp) {
|
|
SmallString<128> OutObjectPath;
|
|
sys::fs::getPotentiallyUniqueTempFileName("output", "o", OutObjectPath);
|
|
std::error_code EC;
|
|
raw_fd_ostream FOS(OutObjectPath, EC);
|
|
check_error(EC, "cannot create output object file");
|
|
FOS << ObjectBuffer;
|
|
BC->outs()
|
|
<< "BOLT-INFO: intermediary output object file saved for debugging "
|
|
"purposes: "
|
|
<< OutObjectPath << "\n";
|
|
}
|
|
|
|
ErrorOr<BinarySection &> TextSection =
|
|
BC->getUniqueSectionByName(BC->getMainCodeSectionName());
|
|
if (BC->HasRelocations && TextSection)
|
|
BC->renameSection(*TextSection,
|
|
getOrgSecPrefix() + BC->getMainCodeSectionName());
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// Assign addresses to new sections.
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Get output object as ObjectFile.
|
|
std::unique_ptr<MemoryBuffer> ObjectMemBuffer =
|
|
MemoryBuffer::getMemBuffer(ObjectBuffer, "in-memory object file", false);
|
|
|
|
auto EFMM = std::make_unique<ExecutableFileMemoryManager>(*BC);
|
|
EFMM->setNewSecPrefix(getNewSecPrefix());
|
|
EFMM->setOrgSecPrefix(getOrgSecPrefix());
|
|
|
|
Linker = std::make_unique<JITLinkLinker>(*BC, std::move(EFMM));
|
|
Linker->loadObject(ObjectMemBuffer->getMemBufferRef(),
|
|
[this](auto MapSection) { mapFileSections(MapSection); });
|
|
|
|
// Update output addresses based on the new section map and
|
|
// layout. Only do this for the object created by ourselves.
|
|
updateOutputValues(*Linker);
|
|
|
|
if (opts::UpdateDebugSections) {
|
|
DebugInfoRewriter->updateLineTableOffsets(
|
|
static_cast<MCObjectStreamer &>(*Streamer).getAssembler());
|
|
}
|
|
|
|
if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) {
|
|
StartLinkingRuntimeLib = true;
|
|
RtLibrary->link(*BC, ToolPath, *Linker, [this](auto MapSection) {
|
|
// Map newly registered sections.
|
|
this->mapAllocatableSections(MapSection);
|
|
});
|
|
}
|
|
|
|
// Once the code is emitted, we can rename function sections to actual
|
|
// output sections and de-register sections used for emission.
|
|
for (BinaryFunction *Function : BC->getAllBinaryFunctions()) {
|
|
ErrorOr<BinarySection &> Section = Function->getCodeSection();
|
|
if (Section &&
|
|
(Function->getImageAddress() == 0 || Function->getImageSize() == 0))
|
|
continue;
|
|
|
|
// Restore origin section for functions that were emitted or supposed to
|
|
// be emitted to patch sections.
|
|
if (Section)
|
|
BC->deregisterSection(*Section);
|
|
assert(Function->getOriginSectionName() && "expected origin section");
|
|
Function->CodeSectionName = Function->getOriginSectionName()->str();
|
|
for (const FunctionFragment &FF :
|
|
Function->getLayout().getSplitFragments()) {
|
|
if (ErrorOr<BinarySection &> ColdSection =
|
|
Function->getCodeSection(FF.getFragmentNum()))
|
|
BC->deregisterSection(*ColdSection);
|
|
}
|
|
if (Function->getLayout().isSplit())
|
|
Function->setColdCodeSectionName(getBOLTTextSectionName());
|
|
}
|
|
|
|
if (opts::PrintCacheMetrics) {
|
|
BC->outs() << "BOLT-INFO: cache metrics after emitting functions:\n";
|
|
CacheMetrics::printAll(BC->outs(), BC->getSortedFunctions());
|
|
}
|
|
}
|
|
|
|
void RewriteInstance::finalizeMetadataPreEmit() {
|
|
NamedRegionTimer T("finalizemetadata-preemit", "finalize metadata pre-emit",
|
|
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
|
|
MetadataManager.runFinalizersPreEmit();
|
|
}
|
|
|
|
void RewriteInstance::updateMetadata() {
|
|
NamedRegionTimer T("updatemetadata-postemit", "update metadata post-emit",
|
|
TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
|
|
MetadataManager.runFinalizersAfterEmit();
|
|
|
|
if (opts::UpdateDebugSections) {
|
|
NamedRegionTimer T("updateDebugInfo", "update debug info", TimerGroupName,
|
|
TimerGroupDesc, opts::TimeRewrite);
|
|
DebugInfoRewriter->updateDebugInfo();
|
|
}
|
|
|
|
if (opts::WriteBoltInfoSection)
|
|
addBoltInfoSection();
|
|
}
|
|
|
|
void RewriteInstance::mapFileSections(BOLTLinker::SectionMapper MapSection) {
|
|
BC->deregisterUnusedSections();
|
|
|
|
// If no new .eh_frame was written, remove relocated original .eh_frame.
|
|
BinarySection *RelocatedEHFrameSection =
|
|
getSection(".relocated" + getEHFrameSectionName());
|
|
if (RelocatedEHFrameSection && RelocatedEHFrameSection->hasValidSectionID()) {
|
|
BinarySection *NewEHFrameSection =
|
|
getSection(getNewSecPrefix() + getEHFrameSectionName());
|
|
if (!NewEHFrameSection || !NewEHFrameSection->isFinalized()) {
|
|
// JITLink will still have to process relocations for the section, hence
|
|
// we need to assign it the address that wouldn't result in relocation
|
|
// processing failure.
|
|
MapSection(*RelocatedEHFrameSection, NextAvailableAddress);
|
|
BC->deregisterSection(*RelocatedEHFrameSection);
|
|
}
|
|
}
|
|
|
|
mapCodeSections(MapSection);
|
|
|
|
// Map the rest of the sections.
|
|
mapAllocatableSections(MapSection);
|
|
|
|
if (!BC->BOLTReserved.empty()) {
|
|
const uint64_t AllocatedSize =
|
|
NextAvailableAddress - BC->BOLTReserved.start();
|
|
if (BC->BOLTReserved.size() < AllocatedSize) {
|
|
BC->errs() << "BOLT-ERROR: reserved space (" << BC->BOLTReserved.size()
|
|
<< " byte" << (BC->BOLTReserved.size() == 1 ? "" : "s")
|
|
<< ") is smaller than required for new allocations ("
|
|
<< AllocatedSize << " bytes)\n";
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<BinarySection *> RewriteInstance::getCodeSections() {
|
|
std::vector<BinarySection *> CodeSections;
|
|
for (BinarySection &Section : BC->textSections())
|
|
if (Section.hasValidSectionID())
|
|
CodeSections.emplace_back(&Section);
|
|
|
|
auto compareSections = [&](const BinarySection *A, const BinarySection *B) {
|
|
// If both A and B have names starting with ".text.cold", then
|
|
// - if opts::HotFunctionsAtEnd is true, we want order
|
|
// ".text.cold.T", ".text.cold.T-1", ... ".text.cold.1", ".text.cold"
|
|
// - if opts::HotFunctionsAtEnd is false, we want order
|
|
// ".text.cold", ".text.cold.1", ... ".text.cold.T-1", ".text.cold.T"
|
|
if (A->getName().starts_with(BC->getColdCodeSectionName()) &&
|
|
B->getName().starts_with(BC->getColdCodeSectionName())) {
|
|
if (A->getName().size() != B->getName().size())
|
|
return (opts::HotFunctionsAtEnd)
|
|
? (A->getName().size() > B->getName().size())
|
|
: (A->getName().size() < B->getName().size());
|
|
return (opts::HotFunctionsAtEnd) ? (A->getName() > B->getName())
|
|
: (A->getName() < B->getName());
|
|
}
|
|
|
|
// Place movers before anything else.
|
|
if (A->getName() == BC->getHotTextMoverSectionName())
|
|
return true;
|
|
if (B->getName() == BC->getHotTextMoverSectionName())
|
|
return false;
|
|
|
|
// Depending on opts::HotFunctionsAtEnd, place main and warm sections in
|
|
// order.
|
|
if (opts::HotFunctionsAtEnd) {
|
|
if (B->getName() == BC->getMainCodeSectionName())
|
|
return true;
|
|
if (A->getName() == BC->getMainCodeSectionName())
|
|
return false;
|
|
return (B->getName() == BC->getWarmCodeSectionName());
|
|
} else {
|
|
if (A->getName() == BC->getMainCodeSectionName())
|
|
return true;
|
|
if (B->getName() == BC->getMainCodeSectionName())
|
|
return false;
|
|
return (A->getName() == BC->getWarmCodeSectionName());
|
|
}
|
|
};
|
|
|
|
// Determine the order of sections.
|
|
llvm::stable_sort(CodeSections, compareSections);
|
|
|
|
return CodeSections;
|
|
}
|
|
|
|
void RewriteInstance::mapCodeSections(BOLTLinker::SectionMapper MapSection) {
|
|
if (!BC->HasRelocations) {
|
|
mapCodeSectionsInPlace(MapSection);
|
|
return;
|
|
}
|
|
|
|
// Map sections for functions with pre-assigned addresses.
|
|
for (BinaryFunction *InjectedFunction : BC->getInjectedBinaryFunctions()) {
|
|
const uint64_t OutputAddress = InjectedFunction->getOutputAddress();
|
|
if (!OutputAddress)
|
|
continue;
|
|
|
|
ErrorOr<BinarySection &> FunctionSection =
|
|
InjectedFunction->getCodeSection();
|
|
assert(FunctionSection && "function should have section");
|
|
FunctionSection->setOutputAddress(OutputAddress);
|
|
MapSection(*FunctionSection, OutputAddress);
|
|
InjectedFunction->setImageAddress(FunctionSection->getAllocAddress());
|
|
InjectedFunction->setImageSize(FunctionSection->getOutputSize());
|
|
}
|
|
|
|
// Populate the list of sections to be allocated.
|
|
std::vector<BinarySection *> CodeSections = getCodeSections();
|
|
|
|
// Remove sections that were pre-allocated (patch sections).
|
|
llvm::erase_if(CodeSections, [](BinarySection *Section) {
|
|
return Section->getOutputAddress();
|
|
});
|
|
LLVM_DEBUG(dbgs() << "Code sections in the order of output:\n";
|
|
for (const BinarySection *Section : CodeSections) dbgs()
|
|
<< Section->getName() << '\n';);
|
|
|
|
uint64_t PaddingSize = 0; // size of padding required at the end
|
|
|
|
// Allocate sections starting at a given Address.
|
|
auto allocateAt = [&](uint64_t Address) {
|
|
const char *LastNonColdSectionName = BC->HasWarmSection
|
|
? BC->getWarmCodeSectionName()
|
|
: BC->getMainCodeSectionName();
|
|
for (BinarySection *Section : CodeSections) {
|
|
Address = alignTo(Address, Section->getAlignment());
|
|
Section->setOutputAddress(Address);
|
|
Address += Section->getOutputSize();
|
|
|
|
// Hugify: Additional huge page from right side due to
|
|
// weird ASLR mapping addresses (4KB aligned)
|
|
if (opts::Hugify && !BC->HasFixedLoadAddress &&
|
|
Section->getName() == LastNonColdSectionName)
|
|
Address = alignTo(Address, Section->getAlignment());
|
|
}
|
|
|
|
// Make sure we allocate enough space for huge pages.
|
|
ErrorOr<BinarySection &> TextSection =
|
|
BC->getUniqueSectionByName(LastNonColdSectionName);
|
|
if (opts::HotText && TextSection && TextSection->hasValidSectionID()) {
|
|
uint64_t HotTextEnd =
|
|
TextSection->getOutputAddress() + TextSection->getOutputSize();
|
|
HotTextEnd = alignTo(HotTextEnd, BC->PageAlign);
|
|
if (HotTextEnd > Address) {
|
|
PaddingSize = HotTextEnd - Address;
|
|
Address = HotTextEnd;
|
|
}
|
|
}
|
|
return Address;
|
|
};
|
|
|
|
// Try to allocate sections before the \p Address and return an address for
|
|
// the allocation of the first section, or 0 if [0, Address) range is not
|
|
// big enough to fit all sections.
|
|
auto allocateBefore = [&](uint64_t Address) -> uint64_t {
|
|
for (BinarySection *Section : llvm::reverse(CodeSections)) {
|
|
if (Section->getOutputSize() > Address)
|
|
return 0;
|
|
Address -= Section->getOutputSize();
|
|
Address = alignDown(Address, Section->getAlignment());
|
|
Section->setOutputAddress(Address);
|
|
}
|
|
return Address;
|
|
};
|
|
|
|
// Check if we can fit code in the original .text
|
|
bool AllocationDone = false;
|
|
if (opts::UseOldText) {
|
|
uint64_t StartAddress;
|
|
uint64_t EndAddress;
|
|
if (opts::HotFunctionsAtEnd) {
|
|
EndAddress = BC->OldTextSectionAddress + BC->OldTextSectionSize;
|
|
StartAddress = allocateBefore(EndAddress);
|
|
} else {
|
|
StartAddress = BC->OldTextSectionAddress;
|
|
EndAddress = allocateAt(BC->OldTextSectionAddress);
|
|
}
|
|
|
|
const uint64_t CodeSize = EndAddress - StartAddress;
|
|
if (CodeSize <= BC->OldTextSectionSize) {
|
|
BC->outs() << "BOLT-INFO: using original .text for new code with 0x"
|
|
<< Twine::utohexstr(opts::AlignText) << " alignment";
|
|
if (StartAddress != BC->OldTextSectionAddress)
|
|
BC->outs() << " at 0x" << Twine::utohexstr(StartAddress);
|
|
BC->outs() << '\n';
|
|
AllocationDone = true;
|
|
} else {
|
|
BC->errs() << "BOLT-WARNING: original .text too small to fit the new code"
|
|
<< " using 0x" << Twine::utohexstr(opts::AlignText)
|
|
<< " alignment. " << CodeSize << " bytes needed, have "
|
|
<< BC->OldTextSectionSize << " bytes available.\n";
|
|
opts::UseOldText = false;
|
|
}
|
|
}
|
|
|
|
if (!AllocationDone)
|
|
NextAvailableAddress = allocateAt(NextAvailableAddress);
|
|
|
|
// Do the mapping for ORC layer based on the allocation.
|
|
for (BinarySection *Section : CodeSections) {
|
|
LLVM_DEBUG(dbgs() << "BOLT: mapping " << Section->getName() << " at 0x"
|
|
<< Twine::utohexstr(Section->getAllocAddress())
|
|
<< " to 0x"
|
|
<< Twine::utohexstr(Section->getOutputAddress()) << '\n');
|
|
MapSection(*Section, Section->getOutputAddress());
|
|
Section->setOutputFileOffset(
|
|
getFileOffsetForAddress(Section->getOutputAddress()));
|
|
}
|
|
|
|
// Check if we need to insert a padding section for hot text.
|
|
if (PaddingSize && !opts::UseOldText)
|
|
BC->outs() << "BOLT-INFO: padding code to 0x"
|
|
<< Twine::utohexstr(NextAvailableAddress)
|
|
<< " to accommodate hot text\n";
|
|
}
|
|
|
|
void RewriteInstance::mapCodeSectionsInPlace(
|
|
BOLTLinker::SectionMapper MapSection) {
|
|
// Processing in non-relocation mode.
|
|
uint64_t NewTextSectionStartAddress = NextAvailableAddress;
|
|
|
|
for (auto &BFI : BC->getBinaryFunctions()) {
|
|
BinaryFunction &Function = BFI.second;
|
|
if (!Function.isEmitted())
|
|
continue;
|
|
|
|
ErrorOr<BinarySection &> FuncSection = Function.getCodeSection();
|
|
assert(FuncSection && "cannot find section for function");
|
|
FuncSection->setOutputAddress(Function.getAddress());
|
|
LLVM_DEBUG(dbgs() << "BOLT: mapping 0x"
|
|
<< Twine::utohexstr(FuncSection->getAllocAddress())
|
|
<< " to 0x" << Twine::utohexstr(Function.getAddress())
|
|
<< '\n');
|
|
MapSection(*FuncSection, Function.getAddress());
|
|
Function.setImageAddress(FuncSection->getAllocAddress());
|
|
Function.setImageSize(FuncSection->getOutputSize());
|
|
assert(Function.getImageSize() <= Function.getMaxSize() &&
|
|
"Unexpected large function");
|
|
|
|
if (!Function.isSplit())
|
|
continue;
|
|
|
|
assert(Function.getLayout().isHotColdSplit() &&
|
|
"Cannot allocate more than two fragments per function in "
|
|
"non-relocation mode.");
|
|
|
|
FunctionFragment &FF =
|
|
Function.getLayout().getFragment(FragmentNum::cold());
|
|
ErrorOr<BinarySection &> ColdSection =
|
|
Function.getCodeSection(FF.getFragmentNum());
|
|
assert(ColdSection && "cannot find section for cold part");
|
|
// Cold fragments are aligned at 16 bytes.
|
|
NextAvailableAddress = alignTo(NextAvailableAddress, 16);
|
|
FF.setAddress(NextAvailableAddress);
|
|
FF.setImageAddress(ColdSection->getAllocAddress());
|
|
FF.setImageSize(ColdSection->getOutputSize());
|
|
FF.setFileOffset(getFileOffsetForAddress(NextAvailableAddress));
|
|
ColdSection->setOutputAddress(FF.getAddress());
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << formatv(
|
|
"BOLT: mapping cold fragment {0:x+} to {1:x+} with size {2:x+}\n",
|
|
FF.getImageAddress(), FF.getAddress(), FF.getImageSize()));
|
|
MapSection(*ColdSection, FF.getAddress());
|
|
|
|
NextAvailableAddress += FF.getImageSize();
|
|
}
|
|
|
|
// Add the new text section aggregating all existing code sections.
|
|
// This is pseudo-section that serves a purpose of creating a corresponding
|
|
// entry in section header table.
|
|
const uint64_t NewTextSectionSize =
|
|
NextAvailableAddress - NewTextSectionStartAddress;
|
|
if (NewTextSectionSize) {
|
|
const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true,
|
|
/*IsText=*/true,
|
|
/*IsAllocatable=*/true);
|
|
BinarySection &Section =
|
|
BC->registerOrUpdateSection(getBOLTTextSectionName(),
|
|
ELF::SHT_PROGBITS,
|
|
Flags,
|
|
/*Data=*/nullptr,
|
|
NewTextSectionSize,
|
|
16);
|
|
Section.setOutputAddress(NewTextSectionStartAddress);
|
|
Section.setOutputFileOffset(
|
|
getFileOffsetForAddress(NewTextSectionStartAddress));
|
|
}
|
|
}
|
|
|
|
void RewriteInstance::mapAllocatableSections(
|
|
BOLTLinker::SectionMapper MapSection) {
|
|
|
|
if (opts::UseOldText || opts::StrictMode) {
|
|
auto tryRewriteSection = [&](BinarySection &OldSection,
|
|
BinarySection &NewSection) {
|
|
if (OldSection.getSize() < NewSection.getOutputSize())
|
|
return;
|
|
|
|
BC->outs() << "BOLT-INFO: rewriting " << OldSection.getName()
|
|
<< " in-place\n";
|
|
|
|
NewSection.setOutputAddress(OldSection.getAddress());
|
|
NewSection.setOutputFileOffset(OldSection.getInputFileOffset());
|
|
MapSection(NewSection, OldSection.getAddress());
|
|
|
|
// Pad contents with zeros.
|
|
NewSection.addPadding(OldSection.getSize() - NewSection.getOutputSize());
|
|
|
|
// Prevent the original section name from appearing in the section header
|
|
// table.
|
|
OldSection.setAnonymous(true);
|
|
};
|
|
|
|
if (EHFrameSection) {
|
|
BinarySection *NewEHFrameSection =
|
|
getSection(getNewSecPrefix() + getEHFrameSectionName());
|
|
assert(NewEHFrameSection && "New contents expected for .eh_frame");
|
|
tryRewriteSection(*EHFrameSection, *NewEHFrameSection);
|
|
}
|
|
BinarySection *EHSection = getSection(".gcc_except_table");
|
|
BinarySection *NewEHSection =
|
|
getSection(getNewSecPrefix() + ".gcc_except_table");
|
|
if (EHSection) {
|
|
assert(NewEHSection && "New contents expected for .gcc_except_table");
|
|
tryRewriteSection(*EHSection, *NewEHSection);
|
|
}
|
|
}
|
|
|
|
// Allocate read-only sections first, then writable sections.
|
|
enum : uint8_t { ST_READONLY, ST_READWRITE };
|
|
for (uint8_t SType = ST_READONLY; SType <= ST_READWRITE; ++SType) {
|
|
const uint64_t LastNextAvailableAddress = NextAvailableAddress;
|
|
if (SType == ST_READWRITE) {
|
|
// Align R+W segment to regular page size
|
|
NextAvailableAddress = alignTo(NextAvailableAddress, BC->RegularPageSize);
|
|
NewWritableSegmentAddress = NextAvailableAddress;
|
|
}
|
|
|
|
for (BinarySection &Section : BC->allocatableSections()) {
|
|
if (Section.isLinkOnly())
|
|
continue;
|
|
|
|
if (!Section.hasValidSectionID())
|
|
continue;
|
|
|
|
if (Section.isWritable() == (SType == ST_READONLY))
|
|
continue;
|
|
|
|
if (Section.getOutputAddress()) {
|
|
LLVM_DEBUG({
|
|
dbgs() << "BOLT-DEBUG: section " << Section.getName()
|
|
<< " is already mapped at 0x"
|
|
<< Twine::utohexstr(Section.getOutputAddress()) << '\n';
|
|
});
|
|
continue;
|
|
}
|
|
|
|
if (Section.hasSectionRef()) {
|
|
LLVM_DEBUG({
|
|
dbgs() << "BOLT-DEBUG: mapping original section " << Section.getName()
|
|
<< " to 0x" << Twine::utohexstr(Section.getAddress()) << '\n';
|
|
});
|
|
Section.setOutputAddress(Section.getAddress());
|
|
Section.setOutputFileOffset(Section.getInputFileOffset());
|
|
MapSection(Section, Section.getAddress());
|
|
} else {
|
|
uint64_t Alignment = Section.getAlignment();
|
|
if (opts::Instrument && StartLinkingRuntimeLib) {
|
|
Alignment = BC->RegularPageSize;
|
|
StartLinkingRuntimeLib = false;
|
|
}
|
|
NextAvailableAddress = alignTo(NextAvailableAddress, Alignment);
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "BOLT-DEBUG: mapping section " << Section.getName()
|
|
<< " (0x" << Twine::utohexstr(Section.getAllocAddress())
|
|
<< ") to 0x" << Twine::utohexstr(NextAvailableAddress) << ":0x"
|
|
<< Twine::utohexstr(NextAvailableAddress +
|
|
Section.getOutputSize())
|
|
<< '\n';
|
|
});
|
|
|
|
MapSection(Section, NextAvailableAddress);
|
|
Section.setOutputAddress(NextAvailableAddress);
|
|
Section.setOutputFileOffset(
|
|
getFileOffsetForAddress(NextAvailableAddress));
|
|
|
|
NextAvailableAddress += Section.getOutputSize();
|
|
}
|
|
}
|
|
|
|
if (SType == ST_READONLY) {
|
|
if (NewTextSegmentAddress)
|
|
NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress;
|
|
} else if (SType == ST_READWRITE) {
|
|
NewWritableSegmentSize = NextAvailableAddress - NewWritableSegmentAddress;
|
|
// Restore NextAvailableAddress if no new writable sections
|
|
if (!NewWritableSegmentSize)
|
|
NextAvailableAddress = LastNextAvailableAddress;
|
|
}
|
|
}
|
|
}
|
|
|
|
void RewriteInstance::updateOutputValues(const BOLTLinker &Linker) {
|
|
if (std::optional<AddressMap> Map = AddressMap::parse(*BC))
|
|
BC->setIOAddressMap(std::move(*Map));
|
|
|
|
for (BinaryFunction *Function : BC->getAllBinaryFunctions())
|
|
Function->updateOutputValues(Linker);
|
|
}
|
|
|
|
void RewriteInstance::updateSegmentInfo() {
|
|
// NOTE Currently .eh_frame_hdr appends to the last segment, recalculate
|
|
// last segments size based on the NextAvailableAddress variable.
|
|
if (!NewWritableSegmentSize) {
|
|
if (NewTextSegmentAddress)
|
|
NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress;
|
|
} else {
|
|
NewWritableSegmentSize = NextAvailableAddress - NewWritableSegmentAddress;
|
|
}
|
|
|
|
if (NewTextSegmentSize) {
|
|
SegmentInfo TextSegment = {NewTextSegmentAddress,
|
|
NewTextSegmentSize,
|
|
NewTextSegmentOffset,
|
|
NewTextSegmentSize,
|
|
BC->PageAlign,
|
|
true,
|
|
false};
|
|
if (!opts::Instrument) {
|
|
BC->NewSegments.push_back(TextSegment);
|
|
} else {
|
|
ErrorOr<BinarySection &> Sec =
|
|
BC->getUniqueSectionByName(".bolt.instr.counters");
|
|
assert(Sec && "expected one and only one `.bolt.instr.counters` section");
|
|
const uint64_t Addr = Sec->getOutputAddress();
|
|
const uint64_t Offset = Sec->getOutputFileOffset();
|
|
const uint64_t Size = Sec->getOutputSize();
|
|
assert(Addr > TextSegment.Address &&
|
|
Addr + Size < TextSegment.Address + TextSegment.Size &&
|
|
"`.bolt.instr.counters` section is expected to be included in the "
|
|
"new text segment");
|
|
|
|
// Set correct size for the previous header since we are breaking the
|
|
// new text segment into three segments.
|
|
uint64_t Delta = Addr - TextSegment.Address;
|
|
TextSegment.Size = Delta;
|
|
TextSegment.FileSize = Delta;
|
|
BC->NewSegments.push_back(TextSegment);
|
|
|
|
// Create RW segment that includes the `.bolt.instr.counters` section.
|
|
SegmentInfo RWSegment = {Addr, Size, Offset, Size, BC->RegularPageSize,
|
|
false, true};
|
|
BC->NewSegments.push_back(RWSegment);
|
|
|
|
// Create RX segment that includes all RX sections from runtime library.
|
|
const uint64_t AddrRX = alignTo(Addr + Size, BC->RegularPageSize);
|
|
const uint64_t OffsetRX = alignTo(Offset + Size, BC->RegularPageSize);
|
|
const uint64_t SizeRX =
|
|
NewTextSegmentSize - (AddrRX - TextSegment.Address);
|
|
SegmentInfo RXSegment = {
|
|
AddrRX, SizeRX, OffsetRX, SizeRX, BC->RegularPageSize, true, false};
|
|
BC->NewSegments.push_back(RXSegment);
|
|
}
|
|
}
|
|
|
|
if (NewWritableSegmentSize) {
|
|
SegmentInfo DataSegmentInfo = {
|
|
NewWritableSegmentAddress,
|
|
NewWritableSegmentSize,
|
|
getFileOffsetForAddress(NewWritableSegmentAddress),
|
|
NewWritableSegmentSize,
|
|
BC->RegularPageSize,
|
|
false,
|
|
true};
|
|
BC->NewSegments.push_back(DataSegmentInfo);
|
|
}
|
|
}
|
|
|
|
void RewriteInstance::patchELFPHDRTable() {
|
|
auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile);
|
|
const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
|
|
raw_fd_ostream &OS = Out->os();
|
|
|
|
Phnum = Obj.getHeader().e_phnum;
|
|
|
|
if (BC->NewSegments.empty()) {
|
|
BC->outs() << "BOLT-INFO: not adding new segments\n";
|
|
return;
|
|
}
|
|
|
|
if (opts::UseGnuStack) {
|
|
assert(!PHDRTableAddress && "unexpected address for program header table");
|
|
if (BC->NewSegments.size() > 1) {
|
|
BC->errs() << "BOLT-ERROR: unable to add writable segment\n";
|
|
exit(1);
|
|
}
|
|
} else {
|
|
Phnum += BC->NewSegments.size();
|
|
}
|
|
|
|
if (!PHDRTableOffset)
|
|
PHDRTableOffset = Obj.getHeader().e_phoff;
|
|
|
|
const uint64_t SavedPos = OS.tell();
|
|
OS.seek(PHDRTableOffset);
|
|
|
|
auto createPhdr = [](const SegmentInfo &SI) {
|
|
ELF64LEPhdrTy Phdr;
|
|
Phdr.p_type = ELF::PT_LOAD;
|
|
Phdr.p_offset = SI.FileOffset;
|
|
Phdr.p_vaddr = SI.Address;
|
|
Phdr.p_paddr = SI.Address;
|
|
Phdr.p_filesz = SI.FileSize;
|
|
Phdr.p_memsz = SI.Size;
|
|
Phdr.p_flags = ELF::PF_R;
|
|
if (SI.IsExecutable)
|
|
Phdr.p_flags |= ELF::PF_X;
|
|
if (SI.IsWritable)
|
|
Phdr.p_flags |= ELF::PF_W;
|
|
Phdr.p_align = SI.Alignment;
|
|
|
|
return Phdr;
|
|
};
|
|
|
|
auto writeNewSegmentPhdrs = [&]() {
|
|
for (const SegmentInfo &SI : BC->NewSegments) {
|
|
ELF64LEPhdrTy Phdr = createPhdr(SI);
|
|
OS.write(reinterpret_cast<const char *>(&Phdr), sizeof(Phdr));
|
|
}
|
|
};
|
|
|
|
bool ModdedGnuStack = false;
|
|
bool AddedSegment = false;
|
|
|
|
// Copy existing program headers with modifications.
|
|
for (const ELF64LE::Phdr &Phdr : cantFail(Obj.program_headers())) {
|
|
ELF64LE::Phdr NewPhdr = Phdr;
|
|
switch (Phdr.p_type) {
|
|
case ELF::PT_PHDR:
|
|
if (PHDRTableAddress) {
|
|
NewPhdr.p_offset = PHDRTableOffset;
|
|
NewPhdr.p_vaddr = PHDRTableAddress;
|
|
NewPhdr.p_paddr = PHDRTableAddress;
|
|
NewPhdr.p_filesz = sizeof(NewPhdr) * Phnum;
|
|
NewPhdr.p_memsz = sizeof(NewPhdr) * Phnum;
|
|
}
|
|
break;
|
|
case ELF::PT_GNU_EH_FRAME: {
|
|
ErrorOr<BinarySection &> EHFrameHdrSec = BC->getUniqueSectionByName(
|
|
getNewSecPrefix() + getEHFrameHdrSectionName());
|
|
if (EHFrameHdrSec && EHFrameHdrSec->isAllocatable() &&
|
|
EHFrameHdrSec->isFinalized()) {
|
|
NewPhdr.p_offset = EHFrameHdrSec->getOutputFileOffset();
|
|
NewPhdr.p_vaddr = EHFrameHdrSec->getOutputAddress();
|
|
NewPhdr.p_paddr = EHFrameHdrSec->getOutputAddress();
|
|
NewPhdr.p_filesz = EHFrameHdrSec->getOutputSize();
|
|
NewPhdr.p_memsz = EHFrameHdrSec->getOutputSize();
|
|
}
|
|
break;
|
|
}
|
|
case ELF::PT_GNU_STACK:
|
|
if (opts::UseGnuStack) {
|
|
// Overwrite the header with the new segment header.
|
|
assert(BC->NewSegments.size() == 1 &&
|
|
"Expected exactly one new segment");
|
|
NewPhdr = createPhdr(BC->NewSegments.front());
|
|
ModdedGnuStack = true;
|
|
}
|
|
break;
|
|
case ELF::PT_DYNAMIC:
|
|
if (!opts::UseGnuStack) {
|
|
// Insert new headers before DYNAMIC.
|
|
writeNewSegmentPhdrs();
|
|
AddedSegment = true;
|
|
}
|
|
break;
|
|
}
|
|
OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr));
|
|
}
|
|
|
|
if (!opts::UseGnuStack && !AddedSegment) {
|
|
// Append new headers to the end of the table.
|
|
writeNewSegmentPhdrs();
|
|
}
|
|
|
|
if (opts::UseGnuStack && !ModdedGnuStack) {
|
|
BC->errs()
|
|
<< "BOLT-ERROR: could not find PT_GNU_STACK program header to modify\n";
|
|
exit(1);
|
|
}
|
|
|
|
OS.seek(SavedPos);
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Write padding to \p OS such that its current \p Offset becomes aligned
|
|
/// at \p Alignment. Return new (aligned) offset.
|
|
uint64_t appendPadding(raw_pwrite_stream &OS, uint64_t Offset,
|
|
uint64_t Alignment) {
|
|
if (!Alignment)
|
|
return Offset;
|
|
|
|
const uint64_t PaddingSize =
|
|
offsetToAlignment(Offset, llvm::Align(Alignment));
|
|
for (unsigned I = 0; I < PaddingSize; ++I)
|
|
OS.write((unsigned char)0);
|
|
return Offset + PaddingSize;
|
|
}
|
|
|
|
}
|
|
|
|
void RewriteInstance::rewriteNoteSections() {
|
|
auto ELF64LEFile = cast<ELF64LEObjectFile>(InputFile);
|
|
const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
|
|
raw_fd_ostream &OS = Out->os();
|
|
|
|
uint64_t NextAvailableOffset = std::max(
|
|
getFileOffsetForAddress(NextAvailableAddress), FirstNonAllocatableOffset);
|
|
OS.seek(NextAvailableOffset);
|
|
|
|
// Copy over non-allocatable section contents and update file offsets.
|
|
for (const ELF64LE::Shdr &Section : cantFail(Obj.sections())) {
|
|
if (Section.sh_type == ELF::SHT_NULL)
|
|
continue;
|
|
if (Section.sh_flags & ELF::SHF_ALLOC)
|
|
continue;
|
|
|
|
SectionRef SecRef = ELF64LEFile->toSectionRef(&Section);
|
|
BinarySection *BSec = BC->getSectionForSectionRef(SecRef);
|
|
assert(BSec && !BSec->isAllocatable() &&
|
|
"Matching non-allocatable BinarySection should exist.");
|
|
|
|
StringRef SectionName =
|
|
cantFail(Obj.getSectionName(Section), "cannot get section name");
|
|
if (shouldStrip(Section, SectionName))
|
|
continue;
|
|
|
|
// Insert padding as needed.
|
|
NextAvailableOffset =
|
|
appendPadding(OS, NextAvailableOffset, Section.sh_addralign);
|
|
|
|
// New section size.
|
|
uint64_t Size = 0;
|
|
bool DataWritten = false;
|
|
// Copy over section contents unless it's one of the sections we overwrite.
|
|
if (!willOverwriteSection(SectionName)) {
|
|
Size = Section.sh_size;
|
|
StringRef Dataref = InputFile->getData().substr(Section.sh_offset, Size);
|
|
std::string Data;
|
|
if (BSec->getPatcher()) {
|
|
Data = BSec->getPatcher()->patchBinary(Dataref);
|
|
Dataref = StringRef(Data);
|
|
}
|
|
|
|
// Section was expanded, so need to treat it as overwrite.
|
|
if (Size != Dataref.size()) {
|
|
BSec = &BC->registerOrUpdateNoteSection(
|
|
SectionName, copyByteArray(Dataref), Dataref.size());
|
|
Size = 0;
|
|
} else {
|
|
OS << Dataref;
|
|
DataWritten = true;
|
|
|
|
// Add padding as the section extension might rely on the alignment.
|
|
Size = appendPadding(OS, Size, Section.sh_addralign);
|
|
}
|
|
}
|
|
|
|
// Perform section post-processing.
|
|
assert(BSec->getAlignment() <= Section.sh_addralign &&
|
|
"alignment exceeds value in file");
|
|
|
|
if (BSec->getAllocAddress()) {
|
|
assert(!DataWritten && "Writing section twice.");
|
|
(void)DataWritten;
|
|
Size += BSec->write(OS);
|
|
}
|
|
|
|
BSec->setOutputFileOffset(NextAvailableOffset);
|
|
BSec->flushPendingRelocations(OS, [this](const MCSymbol *S) {
|
|
return getNewValueForSymbol(S->getName());
|
|
});
|
|
|
|
// Section contents are no longer needed, but we need to update the size so
|
|
// that it will be reflected in the section header table.
|
|
BSec->updateContents(nullptr, Size);
|
|
|
|
NextAvailableOffset += Size;
|
|
}
|
|
|
|
// Write new note sections.
|
|
for (BinarySection &Section : BC->nonAllocatableSections()) {
|
|
if (Section.getOutputFileOffset() || !Section.getAllocAddress())
|
|
continue;
|
|
|
|
assert(!Section.hasPendingRelocations() && "cannot have pending relocs");
|
|
|
|
NextAvailableOffset =
|
|
appendPadding(OS, NextAvailableOffset, Section.getAlignment());
|
|
Section.setOutputFileOffset(NextAvailableOffset);
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "BOLT-DEBUG: writing out new section " << Section.getName()
|
|
<< " of size " << Section.getOutputSize() << " at offset 0x"
|
|
<< Twine::utohexstr(Section.getOutputFileOffset()) << '\n');
|
|
|
|
NextAvailableOffset += Section.write(OS);
|
|
}
|
|
}
|
|
|
|
template <typename ELFT>
|
|
void RewriteInstance::finalizeSectionStringTable(ELFObjectFile<ELFT> *File) {
|
|
// Pre-populate section header string table.
|
|
for (const BinarySection &Section : BC->sections())
|
|
if (!Section.isAnonymous())
|
|
SHStrTab.add(Section.getOutputName());
|
|
SHStrTab.finalize();
|
|
|
|
const size_t SHStrTabSize = SHStrTab.getSize();
|
|
uint8_t *DataCopy = new uint8_t[SHStrTabSize];
|
|
memset(DataCopy, 0, SHStrTabSize);
|
|
SHStrTab.write(DataCopy);
|
|
BC->registerOrUpdateNoteSection(".shstrtab",
|
|
DataCopy,
|
|
SHStrTabSize,
|
|
/*Alignment=*/1,
|
|
/*IsReadOnly=*/true,
|
|
ELF::SHT_STRTAB);
|
|
}
|
|
|
|
void RewriteInstance::addBoltInfoSection() {
|
|
std::string DescStr;
|
|
raw_string_ostream DescOS(DescStr);
|
|
|
|
DescOS << "BOLT revision: " << BoltRevision << ", "
|
|
<< "command line:";
|
|
for (int I = 0; I < Argc; ++I)
|
|
DescOS << " " << Argv[I];
|
|
|
|
// Encode as GNU GOLD VERSION so it is easily printable by 'readelf -n'
|
|
const std::string BoltInfo =
|
|
BinarySection::encodeELFNote("GNU", DescStr, 4 /*NT_GNU_GOLD_VERSION*/);
|
|
BC->registerOrUpdateNoteSection(".note.bolt_info", copyByteArray(BoltInfo),
|
|
BoltInfo.size(),
|
|
/*Alignment=*/1,
|
|
/*IsReadOnly=*/true, ELF::SHT_NOTE);
|
|
}
|
|
|
|
void RewriteInstance::addBATSection() {
|
|
BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, nullptr,
|
|
0,
|
|
/*Alignment=*/1,
|
|
/*IsReadOnly=*/true, ELF::SHT_NOTE);
|
|
}
|
|
|
|
void RewriteInstance::encodeBATSection() {
|
|
std::string DescStr;
|
|
raw_string_ostream DescOS(DescStr);
|
|
|
|
BAT->write(*BC, DescOS);
|
|
|
|
const std::string BoltInfo =
|
|
BinarySection::encodeELFNote("BOLT", DescStr, BinarySection::NT_BOLT_BAT);
|
|
BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME,
|
|
copyByteArray(BoltInfo), BoltInfo.size(),
|
|
/*Alignment=*/1,
|
|
/*IsReadOnly=*/true, ELF::SHT_NOTE);
|
|
BC->outs() << "BOLT-INFO: BAT section size (bytes): " << BoltInfo.size()
|
|
<< '\n';
|
|
}
|
|
|
|
template <typename ELFShdrTy>
|
|
bool RewriteInstance::shouldStrip(const ELFShdrTy &Section,
|
|
StringRef SectionName) {
|
|
// Strip non-allocatable relocation sections.
|
|
if (!(Section.sh_flags & ELF::SHF_ALLOC) && Section.sh_type == ELF::SHT_RELA)
|
|
return true;
|
|
|
|
// Strip debug sections if not updating them.
|
|
if (isDebugSection(SectionName) && !opts::UpdateDebugSections)
|
|
return true;
|
|
|
|
// Strip symtab section if needed
|
|
if (opts::RemoveSymtab && Section.sh_type == ELF::SHT_SYMTAB)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
template <typename ELFT>
|
|
std::vector<typename object::ELFObjectFile<ELFT>::Elf_Shdr>
|
|
RewriteInstance::getOutputSections(ELFObjectFile<ELFT> *File,
|
|
std::vector<uint32_t> &NewSectionIndex) {
|
|
using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
|
|
const ELFFile<ELFT> &Obj = File->getELFFile();
|
|
typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
|
|
|
|
// Keep track of section header entries attached to the corresponding section.
|
|
std::vector<std::pair<BinarySection *, ELFShdrTy>> OutputSections;
|
|
auto addSection = [&](const ELFShdrTy &Section, BinarySection &BinSec) {
|
|
ELFShdrTy NewSection = Section;
|
|
NewSection.sh_name = SHStrTab.getOffset(BinSec.getOutputName());
|
|
OutputSections.emplace_back(&BinSec, std::move(NewSection));
|
|
};
|
|
|
|
// Copy over entries for original allocatable sections using modified name.
|
|
for (const ELFShdrTy &Section : Sections) {
|
|
// Always ignore this section.
|
|
if (Section.sh_type == ELF::SHT_NULL) {
|
|
OutputSections.emplace_back(nullptr, Section);
|
|
continue;
|
|
}
|
|
|
|
if (!(Section.sh_flags & ELF::SHF_ALLOC))
|
|
continue;
|
|
|
|
SectionRef SecRef = File->toSectionRef(&Section);
|
|
BinarySection *BinSec = BC->getSectionForSectionRef(SecRef);
|
|
assert(BinSec && "Matching BinarySection should exist.");
|
|
|
|
// Exclude anonymous sections.
|
|
if (BinSec->isAnonymous())
|
|
continue;
|
|
|
|
addSection(Section, *BinSec);
|
|
}
|
|
|
|
for (BinarySection &Section : BC->allocatableSections()) {
|
|
if (!Section.isFinalized())
|
|
continue;
|
|
|
|
if (Section.hasSectionRef() || Section.isAnonymous()) {
|
|
if (opts::Verbosity)
|
|
BC->outs() << "BOLT-INFO: not writing section header for section "
|
|
<< Section.getOutputName() << '\n';
|
|
continue;
|
|
}
|
|
|
|
if (opts::Verbosity >= 1)
|
|
BC->outs() << "BOLT-INFO: writing section header for "
|
|
<< Section.getOutputName() << '\n';
|
|
ELFShdrTy NewSection;
|
|
NewSection.sh_type = ELF::SHT_PROGBITS;
|
|
NewSection.sh_addr = Section.getOutputAddress();
|
|
NewSection.sh_offset = Section.getOutputFileOffset();
|
|
NewSection.sh_size = Section.getOutputSize();
|
|
NewSection.sh_entsize = 0;
|
|
NewSection.sh_flags = Section.getELFFlags();
|
|
NewSection.sh_link = 0;
|
|
NewSection.sh_info = 0;
|
|
NewSection.sh_addralign = Section.getAlignment();
|
|
addSection(NewSection, Section);
|
|
}
|
|
|
|
// Sort all allocatable sections by their offset.
|
|
llvm::stable_sort(OutputSections, [](const auto &A, const auto &B) {
|
|
return A.second.sh_offset < B.second.sh_offset;
|
|
});
|
|
|
|
// Fix section sizes to prevent overlapping.
|
|
ELFShdrTy *PrevSection = nullptr;
|
|
BinarySection *PrevBinSec = nullptr;
|
|
for (auto &SectionKV : OutputSections) {
|
|
ELFShdrTy &Section = SectionKV.second;
|
|
|
|
// Ignore NOBITS sections as they don't take any space in the file.
|
|
if (Section.sh_type == ELF::SHT_NOBITS)
|
|
continue;
|
|
|
|
// Note that address continuity is not guaranteed as sections could be
|
|
// placed in different loadable segments.
|
|
if (PrevSection &&
|
|
PrevSection->sh_offset + PrevSection->sh_size > Section.sh_offset) {
|
|
if (opts::Verbosity > 1)
|
|
BC->outs() << "BOLT-INFO: adjusting size for section "
|
|
<< PrevBinSec->getOutputName() << '\n';
|
|
PrevSection->sh_size = Section.sh_offset - PrevSection->sh_offset;
|
|
}
|
|
|
|
PrevSection = &Section;
|
|
PrevBinSec = SectionKV.first;
|
|
}
|
|
|
|
uint64_t LastFileOffset = 0;
|
|
|
|
// Copy over entries for non-allocatable sections performing necessary
|
|
// adjustments.
|
|
for (const ELFShdrTy &Section : Sections) {
|
|
if (Section.sh_type == ELF::SHT_NULL)
|
|
continue;
|
|
if (Section.sh_flags & ELF::SHF_ALLOC)
|
|
continue;
|
|
|
|
StringRef SectionName =
|
|
cantFail(Obj.getSectionName(Section), "cannot get section name");
|
|
|
|
if (shouldStrip(Section, SectionName))
|
|
continue;
|
|
|
|
SectionRef SecRef = File->toSectionRef(&Section);
|
|
BinarySection *BinSec = BC->getSectionForSectionRef(SecRef);
|
|
assert(BinSec && "Matching BinarySection should exist.");
|
|
|
|
ELFShdrTy NewSection = Section;
|
|
NewSection.sh_offset = BinSec->getOutputFileOffset();
|
|
NewSection.sh_size = BinSec->getOutputSize();
|
|
|
|
if (NewSection.sh_type == ELF::SHT_SYMTAB)
|
|
NewSection.sh_info = NumLocalSymbols;
|
|
|
|
addSection(NewSection, *BinSec);
|
|
|
|
LastFileOffset = BinSec->getOutputFileOffset();
|
|
}
|
|
|
|
// Create entries for new non-allocatable sections.
|
|
for (BinarySection &Section : BC->nonAllocatableSections()) {
|
|
if (Section.getOutputFileOffset() <= LastFileOffset)
|
|
continue;
|
|
|
|
if (opts::Verbosity >= 1)
|
|
BC->outs() << "BOLT-INFO: writing section header for "
|
|
<< Section.getOutputName() << '\n';
|
|
|
|
ELFShdrTy NewSection;
|
|
NewSection.sh_type = Section.getELFType();
|
|
NewSection.sh_addr = 0;
|
|
NewSection.sh_offset = Section.getOutputFileOffset();
|
|
NewSection.sh_size = Section.getOutputSize();
|
|
NewSection.sh_entsize = 0;
|
|
NewSection.sh_flags = Section.getELFFlags();
|
|
NewSection.sh_link = 0;
|
|
NewSection.sh_info = 0;
|
|
NewSection.sh_addralign = Section.getAlignment();
|
|
|
|
addSection(NewSection, Section);
|
|
}
|
|
|
|
// Assign indices to sections.
|
|
for (uint32_t Index = 1; Index < OutputSections.size(); ++Index)
|
|
OutputSections[Index].first->setIndex(Index);
|
|
|
|
// Update section index mapping
|
|
NewSectionIndex.clear();
|
|
NewSectionIndex.resize(Sections.size(), 0);
|
|
for (const ELFShdrTy &Section : Sections) {
|
|
if (Section.sh_type == ELF::SHT_NULL)
|
|
continue;
|
|
|
|
size_t OrgIndex = std::distance(Sections.begin(), &Section);
|
|
|
|
SectionRef SecRef = File->toSectionRef(&Section);
|
|
BinarySection *BinSec = BC->getSectionForSectionRef(SecRef);
|
|
assert(BinSec && "BinarySection should exist for an input section.");
|
|
|
|
// Some sections are stripped
|
|
if (!BinSec->hasValidIndex())
|
|
continue;
|
|
|
|
NewSectionIndex[OrgIndex] = BinSec->getIndex();
|
|
}
|
|
|
|
std::vector<ELFShdrTy> SectionsOnly(OutputSections.size());
|
|
llvm::copy(llvm::make_second_range(OutputSections), SectionsOnly.begin());
|
|
|
|
return SectionsOnly;
|
|
}
|
|
|
|
// Rewrite section header table inserting new entries as needed. The sections
|
|
// header table size itself may affect the offsets of other sections,
|
|
// so we are placing it at the end of the binary.
|
|
//
|
|
// As we rewrite entries we need to track how many sections were inserted
|
|
// as it changes the sh_link value. We map old indices to new ones for
|
|
// existing sections.
|
|
template <typename ELFT>
|
|
void RewriteInstance::patchELFSectionHeaderTable(ELFObjectFile<ELFT> *File) {
|
|
using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
|
|
using ELFEhdrTy = typename ELFObjectFile<ELFT>::Elf_Ehdr;
|
|
raw_fd_ostream &OS = Out->os();
|
|
const ELFFile<ELFT> &Obj = File->getELFFile();
|
|
|
|
// Mapping from old section indices to new ones
|
|
std::vector<uint32_t> NewSectionIndex;
|
|
std::vector<ELFShdrTy> OutputSections =
|
|
getOutputSections(File, NewSectionIndex);
|
|
LLVM_DEBUG(
|
|
dbgs() << "BOLT-DEBUG: old to new section index mapping:\n";
|
|
for (uint64_t I = 0; I < NewSectionIndex.size(); ++I)
|
|
dbgs() << " " << I << " -> " << NewSectionIndex[I] << '\n';
|
|
);
|
|
|
|
// Align starting address for section header table. There's no architecutal
|
|
// need to align this, it is just for pleasant human readability.
|
|
uint64_t SHTOffset = OS.tell();
|
|
SHTOffset = appendPadding(OS, SHTOffset, 16);
|
|
|
|
// Write all section header entries while patching section references.
|
|
for (ELFShdrTy &Section : OutputSections) {
|
|
Section.sh_link = NewSectionIndex[Section.sh_link];
|
|
if (Section.sh_type == ELF::SHT_REL || Section.sh_type == ELF::SHT_RELA)
|
|
Section.sh_info = NewSectionIndex[Section.sh_info];
|
|
OS.write(reinterpret_cast<const char *>(&Section), sizeof(Section));
|
|
}
|
|
|
|
// Fix ELF header.
|
|
ELFEhdrTy NewEhdr = Obj.getHeader();
|
|
|
|
if (BC->HasRelocations) {
|
|
if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary())
|
|
NewEhdr.e_entry = RtLibrary->getRuntimeStartAddress();
|
|
else
|
|
NewEhdr.e_entry = getNewFunctionAddress(NewEhdr.e_entry);
|
|
assert((NewEhdr.e_entry || !Obj.getHeader().e_entry) &&
|
|
"cannot find new address for entry point");
|
|
}
|
|
if (PHDRTableOffset) {
|
|
NewEhdr.e_phoff = PHDRTableOffset;
|
|
NewEhdr.e_phnum = Phnum;
|
|
}
|
|
NewEhdr.e_shoff = SHTOffset;
|
|
NewEhdr.e_shnum = OutputSections.size();
|
|
NewEhdr.e_shstrndx = NewSectionIndex[NewEhdr.e_shstrndx];
|
|
OS.pwrite(reinterpret_cast<const char *>(&NewEhdr), sizeof(NewEhdr), 0);
|
|
}
|
|
|
|
template <typename ELFT, typename WriteFuncTy, typename StrTabFuncTy>
|
|
void RewriteInstance::updateELFSymbolTable(
|
|
ELFObjectFile<ELFT> *File, bool IsDynSym,
|
|
const typename object::ELFObjectFile<ELFT>::Elf_Shdr &SymTabSection,
|
|
const std::vector<uint32_t> &NewSectionIndex, WriteFuncTy Write,
|
|
StrTabFuncTy AddToStrTab) {
|
|
const ELFFile<ELFT> &Obj = File->getELFFile();
|
|
using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym;
|
|
|
|
StringRef StringSection =
|
|
cantFail(Obj.getStringTableForSymtab(SymTabSection));
|
|
|
|
unsigned NumHotTextSymsUpdated = 0;
|
|
unsigned NumHotDataSymsUpdated = 0;
|
|
|
|
std::map<const BinaryFunction *, uint64_t> IslandSizes;
|
|
auto getConstantIslandSize = [&IslandSizes](const BinaryFunction &BF) {
|
|
auto Itr = IslandSizes.find(&BF);
|
|
if (Itr != IslandSizes.end())
|
|
return Itr->second;
|
|
return IslandSizes[&BF] = BF.estimateConstantIslandSize();
|
|
};
|
|
|
|
// Symbols for the new symbol table.
|
|
std::vector<ELFSymTy> Symbols;
|
|
|
|
bool EmittedColdFileSymbol = false;
|
|
|
|
auto getNewSectionIndex = [&](uint32_t OldIndex) {
|
|
// For dynamic symbol table, the section index could be wrong on the input,
|
|
// and its value is ignored by the runtime if it's different from
|
|
// SHN_UNDEF and SHN_ABS.
|
|
// However, we still need to update dynamic symbol table, so return a
|
|
// section index, even though the index is broken.
|
|
if (IsDynSym && OldIndex >= NewSectionIndex.size())
|
|
return OldIndex;
|
|
|
|
assert(OldIndex < NewSectionIndex.size() && "section index out of bounds");
|
|
const uint32_t NewIndex = NewSectionIndex[OldIndex];
|
|
|
|
// We may have stripped the section that dynsym was referencing due to
|
|
// the linker bug. In that case return the old index avoiding marking
|
|
// the symbol as undefined.
|
|
if (IsDynSym && NewIndex != OldIndex && NewIndex == ELF::SHN_UNDEF)
|
|
return OldIndex;
|
|
return NewIndex;
|
|
};
|
|
|
|
// Get the extra symbol name of a split fragment; used in addExtraSymbols.
|
|
auto getSplitSymbolName = [&](const FunctionFragment &FF,
|
|
const ELFSymTy &FunctionSymbol) {
|
|
SmallString<256> SymbolName;
|
|
if (BC->HasWarmSection)
|
|
SymbolName =
|
|
formatv("{0}.{1}", cantFail(FunctionSymbol.getName(StringSection)),
|
|
FF.getFragmentNum() == FragmentNum::warm() ? "warm" : "cold");
|
|
else
|
|
SymbolName = formatv("{0}.cold.{1}",
|
|
cantFail(FunctionSymbol.getName(StringSection)),
|
|
FF.getFragmentNum().get() - 1);
|
|
return SymbolName;
|
|
};
|
|
|
|
// Add extra symbols for the function.
|
|
//
|
|
// Note that addExtraSymbols() could be called multiple times for the same
|
|
// function with different FunctionSymbol matching the main function entry
|
|
// point.
|
|
auto addExtraSymbols = [&](const BinaryFunction &Function,
|
|
const ELFSymTy &FunctionSymbol) {
|
|
if (Function.isFolded()) {
|
|
BinaryFunction *ICFParent = Function.getFoldedIntoFunction();
|
|
while (ICFParent->isFolded())
|
|
ICFParent = ICFParent->getFoldedIntoFunction();
|
|
ELFSymTy ICFSymbol = FunctionSymbol;
|
|
SmallVector<char, 256> Buf;
|
|
ICFSymbol.st_name =
|
|
AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection)))
|
|
.concat(".icf.0")
|
|
.toStringRef(Buf));
|
|
ICFSymbol.st_value = ICFParent->getOutputAddress();
|
|
ICFSymbol.st_size = ICFParent->getOutputSize();
|
|
ICFSymbol.st_shndx = ICFParent->getCodeSection()->getIndex();
|
|
Symbols.emplace_back(ICFSymbol);
|
|
}
|
|
if (Function.isSplit()) {
|
|
// Prepend synthetic FILE symbol to prevent local cold fragments from
|
|
// colliding with existing symbols with the same name.
|
|
if (!EmittedColdFileSymbol &&
|
|
FunctionSymbol.getBinding() == ELF::STB_GLOBAL) {
|
|
ELFSymTy FileSymbol;
|
|
FileSymbol.st_shndx = ELF::SHN_ABS;
|
|
FileSymbol.st_name = AddToStrTab(getBOLTFileSymbolName());
|
|
FileSymbol.st_value = 0;
|
|
FileSymbol.st_size = 0;
|
|
FileSymbol.st_other = 0;
|
|
FileSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FILE);
|
|
Symbols.emplace_back(FileSymbol);
|
|
EmittedColdFileSymbol = true;
|
|
}
|
|
for (const FunctionFragment &FF :
|
|
Function.getLayout().getSplitFragments()) {
|
|
if (FF.getAddress()) {
|
|
ELFSymTy NewColdSym = FunctionSymbol;
|
|
const SmallString<256> SymbolName =
|
|
getSplitSymbolName(FF, FunctionSymbol);
|
|
NewColdSym.st_name = AddToStrTab(SymbolName);
|
|
NewColdSym.st_shndx =
|
|
Function.getCodeSection(FF.getFragmentNum())->getIndex();
|
|
NewColdSym.st_value = FF.getAddress();
|
|
NewColdSym.st_size = FF.getImageSize();
|
|
NewColdSym.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC);
|
|
Symbols.emplace_back(NewColdSym);
|
|
}
|
|
}
|
|
}
|
|
if (Function.hasConstantIsland()) {
|
|
uint64_t DataMark = Function.getOutputDataAddress();
|
|
uint64_t CISize = getConstantIslandSize(Function);
|
|
uint64_t CodeMark = DataMark + CISize;
|
|
ELFSymTy DataMarkSym = FunctionSymbol;
|
|
DataMarkSym.st_name = AddToStrTab("$d");
|
|
DataMarkSym.st_value = DataMark;
|
|
DataMarkSym.st_size = 0;
|
|
DataMarkSym.setType(ELF::STT_NOTYPE);
|
|
DataMarkSym.setBinding(ELF::STB_LOCAL);
|
|
ELFSymTy CodeMarkSym = DataMarkSym;
|
|
CodeMarkSym.st_name = AddToStrTab("$x");
|
|
CodeMarkSym.st_value = CodeMark;
|
|
Symbols.emplace_back(DataMarkSym);
|
|
Symbols.emplace_back(CodeMarkSym);
|
|
}
|
|
if (Function.hasConstantIsland() && Function.isSplit()) {
|
|
uint64_t DataMark = Function.getOutputColdDataAddress();
|
|
uint64_t CISize = getConstantIslandSize(Function);
|
|
uint64_t CodeMark = DataMark + CISize;
|
|
ELFSymTy DataMarkSym = FunctionSymbol;
|
|
DataMarkSym.st_name = AddToStrTab("$d");
|
|
DataMarkSym.st_value = DataMark;
|
|
DataMarkSym.st_size = 0;
|
|
DataMarkSym.setType(ELF::STT_NOTYPE);
|
|
DataMarkSym.setBinding(ELF::STB_LOCAL);
|
|
ELFSymTy CodeMarkSym = DataMarkSym;
|
|
CodeMarkSym.st_name = AddToStrTab("$x");
|
|
CodeMarkSym.st_value = CodeMark;
|
|
Symbols.emplace_back(DataMarkSym);
|
|
Symbols.emplace_back(CodeMarkSym);
|
|
}
|
|
};
|
|
|
|
// For regular (non-dynamic) symbol table, exclude symbols referring
|
|
// to non-allocatable sections.
|
|
auto shouldStrip = [&](const ELFSymTy &Symbol) {
|
|
if (Symbol.isAbsolute() || !Symbol.isDefined())
|
|
return false;
|
|
|
|
// If we cannot link the symbol to a section, leave it as is.
|
|
Expected<const typename ELFT::Shdr *> Section =
|
|
Obj.getSection(Symbol.st_shndx);
|
|
if (!Section)
|
|
return false;
|
|
|
|
// Remove the section symbol iif the corresponding section was stripped.
|
|
if (Symbol.getType() == ELF::STT_SECTION) {
|
|
if (!getNewSectionIndex(Symbol.st_shndx))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Symbols in non-allocatable sections are typically remnants of relocations
|
|
// emitted under "-emit-relocs" linker option. Delete those as we delete
|
|
// relocations against non-allocatable sections.
|
|
if (!((*Section)->sh_flags & ELF::SHF_ALLOC))
|
|
return true;
|
|
|
|
return false;
|
|
};
|
|
|
|
for (const ELFSymTy &Symbol : cantFail(Obj.symbols(&SymTabSection))) {
|
|
// For regular (non-dynamic) symbol table strip unneeded symbols.
|
|
if (!IsDynSym && shouldStrip(Symbol))
|
|
continue;
|
|
|
|
const BinaryFunction *Function =
|
|
BC->getBinaryFunctionAtAddress(Symbol.st_value);
|
|
// Ignore false function references, e.g. when the section address matches
|
|
// the address of the function.
|
|
if (Function && Symbol.getType() == ELF::STT_SECTION)
|
|
Function = nullptr;
|
|
|
|
// For non-dynamic symtab, make sure the symbol section matches that of
|
|
// the function. It can mismatch e.g. if the symbol is a section marker
|
|
// in which case we treat the symbol separately from the function.
|
|
// For dynamic symbol table, the section index could be wrong on the input,
|
|
// and its value is ignored by the runtime if it's different from
|
|
// SHN_UNDEF and SHN_ABS.
|
|
if (!IsDynSym && Function &&
|
|
Symbol.st_shndx !=
|
|
Function->getOriginSection()->getSectionRef().getIndex())
|
|
Function = nullptr;
|
|
|
|
// Create a new symbol based on the existing symbol.
|
|
ELFSymTy NewSymbol = Symbol;
|
|
|
|
// Handle special symbols based on their name.
|
|
Expected<StringRef> SymbolName = Symbol.getName(StringSection);
|
|
assert(SymbolName && "cannot get symbol name");
|
|
|
|
auto updateSymbolValue = [&](const StringRef Name,
|
|
std::optional<uint64_t> Value = std::nullopt) {
|
|
NewSymbol.st_value = Value ? *Value : getNewValueForSymbol(Name);
|
|
NewSymbol.st_shndx = ELF::SHN_ABS;
|
|
BC->outs() << "BOLT-INFO: setting " << Name << " to 0x"
|
|
<< Twine::utohexstr(NewSymbol.st_value) << '\n';
|
|
};
|
|
|
|
if (*SymbolName == "__hot_start" || *SymbolName == "__hot_end") {
|
|
if (opts::HotText) {
|
|
updateSymbolValue(*SymbolName);
|
|
++NumHotTextSymsUpdated;
|
|
}
|
|
goto registerSymbol;
|
|
}
|
|
|
|
if (*SymbolName == "__hot_data_start" || *SymbolName == "__hot_data_end") {
|
|
if (opts::HotData) {
|
|
updateSymbolValue(*SymbolName);
|
|
++NumHotDataSymsUpdated;
|
|
}
|
|
goto registerSymbol;
|
|
}
|
|
|
|
if (*SymbolName == "_end") {
|
|
if (NextAvailableAddress > Symbol.st_value)
|
|
updateSymbolValue(*SymbolName, NextAvailableAddress);
|
|
goto registerSymbol;
|
|
}
|
|
|
|
if (Function) {
|
|
// If the symbol matched a function that was not emitted, update the
|
|
// corresponding section index but otherwise leave it unchanged.
|
|
if (Function->isEmitted()) {
|
|
NewSymbol.st_value = Function->getOutputAddress();
|
|
NewSymbol.st_size = Function->getOutputSize();
|
|
NewSymbol.st_shndx = Function->getCodeSection()->getIndex();
|
|
} else if (Symbol.st_shndx < ELF::SHN_LORESERVE) {
|
|
NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx);
|
|
}
|
|
|
|
// Add new symbols to the symbol table if necessary.
|
|
if (!IsDynSym)
|
|
addExtraSymbols(*Function, NewSymbol);
|
|
} else {
|
|
// Check if the function symbol matches address inside a function, i.e.
|
|
// it marks a secondary entry point.
|
|
Function =
|
|
(Symbol.getType() == ELF::STT_FUNC)
|
|
? BC->getBinaryFunctionContainingAddress(Symbol.st_value,
|
|
/*CheckPastEnd=*/false,
|
|
/*UseMaxSize=*/true)
|
|
: nullptr;
|
|
|
|
if (Function && Function->isEmitted()) {
|
|
assert(Function->getLayout().isHotColdSplit() &&
|
|
"Adding symbols based on cold fragment when there are more than "
|
|
"2 fragments");
|
|
const uint64_t OutputAddress =
|
|
Function->translateInputToOutputAddress(Symbol.st_value);
|
|
|
|
NewSymbol.st_value = OutputAddress;
|
|
// Force secondary entry points to have zero size.
|
|
NewSymbol.st_size = 0;
|
|
|
|
// Find fragment containing entrypoint
|
|
FunctionLayout::fragment_const_iterator FF = llvm::find_if(
|
|
Function->getLayout().fragments(), [&](const FunctionFragment &FF) {
|
|
uint64_t Lo = FF.getAddress();
|
|
uint64_t Hi = Lo + FF.getImageSize();
|
|
return Lo <= OutputAddress && OutputAddress < Hi;
|
|
});
|
|
|
|
if (FF == Function->getLayout().fragment_end()) {
|
|
assert(
|
|
OutputAddress >= Function->getCodeSection()->getOutputAddress() &&
|
|
OutputAddress < (Function->getCodeSection()->getOutputAddress() +
|
|
Function->getCodeSection()->getOutputSize()) &&
|
|
"Cannot locate fragment containing secondary entrypoint");
|
|
FF = Function->getLayout().fragment_begin();
|
|
}
|
|
|
|
NewSymbol.st_shndx =
|
|
Function->getCodeSection(FF->getFragmentNum())->getIndex();
|
|
} else {
|
|
// Check if the symbol belongs to moved data object and update it.
|
|
BinaryData *BD = opts::ReorderData.empty()
|
|
? nullptr
|
|
: BC->getBinaryDataAtAddress(Symbol.st_value);
|
|
if (BD && BD->isMoved() && !BD->isJumpTable()) {
|
|
assert((!BD->getSize() || !Symbol.st_size ||
|
|
Symbol.st_size == BD->getSize()) &&
|
|
"sizes must match");
|
|
|
|
BinarySection &OutputSection = BD->getOutputSection();
|
|
assert(OutputSection.getIndex());
|
|
LLVM_DEBUG(dbgs()
|
|
<< "BOLT-DEBUG: moving " << BD->getName() << " from "
|
|
<< *BC->getSectionNameForAddress(Symbol.st_value) << " ("
|
|
<< Symbol.st_shndx << ") to " << OutputSection.getName()
|
|
<< " (" << OutputSection.getIndex() << ")\n");
|
|
NewSymbol.st_shndx = OutputSection.getIndex();
|
|
NewSymbol.st_value = BD->getOutputAddress();
|
|
} else {
|
|
// Otherwise just update the section for the symbol.
|
|
if (Symbol.st_shndx < ELF::SHN_LORESERVE)
|
|
NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx);
|
|
}
|
|
|
|
// Detect local syms in the text section that we didn't update
|
|
// and that were preserved by the linker to support relocations against
|
|
// .text. Remove them from the symtab.
|
|
if (Symbol.getType() == ELF::STT_NOTYPE &&
|
|
Symbol.getBinding() == ELF::STB_LOCAL && Symbol.st_size == 0) {
|
|
if (BC->getBinaryFunctionContainingAddress(Symbol.st_value,
|
|
/*CheckPastEnd=*/false,
|
|
/*UseMaxSize=*/true)) {
|
|
// Can only delete the symbol if not patching. Such symbols should
|
|
// not exist in the dynamic symbol table.
|
|
assert(!IsDynSym && "cannot delete symbol");
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
registerSymbol:
|
|
if (IsDynSym)
|
|
Write((&Symbol - cantFail(Obj.symbols(&SymTabSection)).begin()) *
|
|
sizeof(ELFSymTy),
|
|
NewSymbol);
|
|
else
|
|
Symbols.emplace_back(NewSymbol);
|
|
}
|
|
|
|
if (IsDynSym) {
|
|
assert(Symbols.empty());
|
|
return;
|
|
}
|
|
|
|
// Add symbols of injected functions
|
|
for (BinaryFunction *Function : BC->getInjectedBinaryFunctions()) {
|
|
if (Function->isAnonymous())
|
|
continue;
|
|
ELFSymTy NewSymbol;
|
|
BinarySection *OriginSection = Function->getOriginSection();
|
|
NewSymbol.st_shndx =
|
|
OriginSection
|
|
? getNewSectionIndex(OriginSection->getSectionRef().getIndex())
|
|
: Function->getCodeSection()->getIndex();
|
|
NewSymbol.st_value = Function->getOutputAddress();
|
|
NewSymbol.st_name = AddToStrTab(Function->getOneName());
|
|
NewSymbol.st_size = Function->getOutputSize();
|
|
NewSymbol.st_other = 0;
|
|
NewSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC);
|
|
Symbols.emplace_back(NewSymbol);
|
|
|
|
if (Function->isSplit()) {
|
|
assert(Function->getLayout().isHotColdSplit() &&
|
|
"Adding symbols based on cold fragment when there are more than "
|
|
"2 fragments");
|
|
ELFSymTy NewColdSym = NewSymbol;
|
|
NewColdSym.setType(ELF::STT_NOTYPE);
|
|
SmallVector<char, 256> Buf;
|
|
NewColdSym.st_name = AddToStrTab(
|
|
Twine(Function->getPrintName()).concat(".cold.0").toStringRef(Buf));
|
|
const FunctionFragment &ColdFF =
|
|
Function->getLayout().getFragment(FragmentNum::cold());
|
|
NewColdSym.st_value = ColdFF.getAddress();
|
|
NewColdSym.st_size = ColdFF.getImageSize();
|
|
Symbols.emplace_back(NewColdSym);
|
|
}
|
|
}
|
|
|
|
auto AddSymbol = [&](const StringRef &Name, uint64_t Address) {
|
|
if (!Address)
|
|
return;
|
|
|
|
ELFSymTy Symbol;
|
|
Symbol.st_value = Address;
|
|
Symbol.st_shndx = ELF::SHN_ABS;
|
|
Symbol.st_name = AddToStrTab(Name);
|
|
Symbol.st_size = 0;
|
|
Symbol.st_other = 0;
|
|
Symbol.setBindingAndType(ELF::STB_WEAK, ELF::STT_NOTYPE);
|
|
|
|
BC->outs() << "BOLT-INFO: setting " << Name << " to 0x"
|
|
<< Twine::utohexstr(Symbol.st_value) << '\n';
|
|
|
|
Symbols.emplace_back(Symbol);
|
|
};
|
|
|
|
// Add runtime library start and fini address symbols
|
|
if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) {
|
|
AddSymbol("__bolt_runtime_start", RtLibrary->getRuntimeStartAddress());
|
|
AddSymbol("__bolt_runtime_fini", RtLibrary->getRuntimeFiniAddress());
|
|
}
|
|
|
|
assert((!NumHotTextSymsUpdated || NumHotTextSymsUpdated == 2) &&
|
|
"either none or both __hot_start/__hot_end symbols were expected");
|
|
assert((!NumHotDataSymsUpdated || NumHotDataSymsUpdated == 2) &&
|
|
"either none or both __hot_data_start/__hot_data_end symbols were "
|
|
"expected");
|
|
|
|
auto AddEmittedSymbol = [&](const StringRef &Name) {
|
|
AddSymbol(Name, getNewValueForSymbol(Name));
|
|
};
|
|
|
|
if (opts::HotText && !NumHotTextSymsUpdated) {
|
|
AddEmittedSymbol("__hot_start");
|
|
AddEmittedSymbol("__hot_end");
|
|
}
|
|
|
|
if (opts::HotData && !NumHotDataSymsUpdated) {
|
|
AddEmittedSymbol("__hot_data_start");
|
|
AddEmittedSymbol("__hot_data_end");
|
|
}
|
|
|
|
// Put local symbols at the beginning.
|
|
llvm::stable_sort(Symbols, [](const ELFSymTy &A, const ELFSymTy &B) {
|
|
if (A.getBinding() == ELF::STB_LOCAL && B.getBinding() != ELF::STB_LOCAL)
|
|
return true;
|
|
return false;
|
|
});
|
|
|
|
for (const ELFSymTy &Symbol : Symbols)
|
|
Write(0, Symbol);
|
|
}
|
|
|
|
template <typename ELFT>
|
|
void RewriteInstance::patchELFSymTabs(ELFObjectFile<ELFT> *File) {
|
|
const ELFFile<ELFT> &Obj = File->getELFFile();
|
|
using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
|
|
using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym;
|
|
|
|
// Compute a preview of how section indices will change after rewriting, so
|
|
// we can properly update the symbol table based on new section indices.
|
|
std::vector<uint32_t> NewSectionIndex;
|
|
getOutputSections(File, NewSectionIndex);
|
|
|
|
// Update dynamic symbol table.
|
|
const ELFShdrTy *DynSymSection = nullptr;
|
|
for (const ELFShdrTy &Section : cantFail(Obj.sections())) {
|
|
if (Section.sh_type == ELF::SHT_DYNSYM) {
|
|
DynSymSection = &Section;
|
|
break;
|
|
}
|
|
}
|
|
assert((DynSymSection || BC->IsStaticExecutable) &&
|
|
"dynamic symbol table expected");
|
|
if (DynSymSection) {
|
|
updateELFSymbolTable(
|
|
File,
|
|
/*IsDynSym=*/true,
|
|
*DynSymSection,
|
|
NewSectionIndex,
|
|
[&](size_t Offset, const ELFSymTy &Sym) {
|
|
Out->os().pwrite(reinterpret_cast<const char *>(&Sym),
|
|
sizeof(ELFSymTy),
|
|
DynSymSection->sh_offset + Offset);
|
|
},
|
|
[](StringRef) -> size_t { return 0; });
|
|
}
|
|
|
|
if (opts::RemoveSymtab)
|
|
return;
|
|
|
|
// (re)create regular symbol table.
|
|
const ELFShdrTy *SymTabSection = nullptr;
|
|
for (const ELFShdrTy &Section : cantFail(Obj.sections())) {
|
|
if (Section.sh_type == ELF::SHT_SYMTAB) {
|
|
SymTabSection = &Section;
|
|
break;
|
|
}
|
|
}
|
|
if (!SymTabSection) {
|
|
BC->errs() << "BOLT-WARNING: no symbol table found\n";
|
|
return;
|
|
}
|
|
|
|
const ELFShdrTy *StrTabSection =
|
|
cantFail(Obj.getSection(SymTabSection->sh_link));
|
|
std::string NewContents;
|
|
std::string NewStrTab = std::string(
|
|
File->getData().substr(StrTabSection->sh_offset, StrTabSection->sh_size));
|
|
StringRef SecName = cantFail(Obj.getSectionName(*SymTabSection));
|
|
StringRef StrSecName = cantFail(Obj.getSectionName(*StrTabSection));
|
|
|
|
NumLocalSymbols = 0;
|
|
updateELFSymbolTable(
|
|
File,
|
|
/*IsDynSym=*/false,
|
|
*SymTabSection,
|
|
NewSectionIndex,
|
|
[&](size_t Offset, const ELFSymTy &Sym) {
|
|
if (Sym.getBinding() == ELF::STB_LOCAL)
|
|
++NumLocalSymbols;
|
|
NewContents.append(reinterpret_cast<const char *>(&Sym),
|
|
sizeof(ELFSymTy));
|
|
},
|
|
[&](StringRef Str) {
|
|
size_t Idx = NewStrTab.size();
|
|
NewStrTab.append(NameResolver::restore(Str).str());
|
|
NewStrTab.append(1, '\0');
|
|
return Idx;
|
|
});
|
|
|
|
BC->registerOrUpdateNoteSection(SecName,
|
|
copyByteArray(NewContents),
|
|
NewContents.size(),
|
|
/*Alignment=*/1,
|
|
/*IsReadOnly=*/true,
|
|
ELF::SHT_SYMTAB);
|
|
|
|
BC->registerOrUpdateNoteSection(StrSecName,
|
|
copyByteArray(NewStrTab),
|
|
NewStrTab.size(),
|
|
/*Alignment=*/1,
|
|
/*IsReadOnly=*/true,
|
|
ELF::SHT_STRTAB);
|
|
}
|
|
|
|
template <typename ELFT>
|
|
void RewriteInstance::patchELFAllocatableRelrSection(
|
|
ELFObjectFile<ELFT> *File) {
|
|
if (!DynamicRelrAddress)
|
|
return;
|
|
|
|
raw_fd_ostream &OS = Out->os();
|
|
const uint8_t PSize = BC->AsmInfo->getCodePointerSize();
|
|
const uint64_t MaxDelta = ((CHAR_BIT * DynamicRelrEntrySize) - 1) * PSize;
|
|
|
|
auto FixAddend = [&](const BinarySection &Section, const Relocation &Rel,
|
|
uint64_t FileOffset) {
|
|
// Fix relocation symbol value in place if no static relocation found
|
|
// on the same address. We won't check the BF relocations here since it
|
|
// is rare case and no optimization is required.
|
|
if (Section.getRelocationAt(Rel.Offset))
|
|
return;
|
|
|
|
// No fixup needed if symbol address was not changed
|
|
const uint64_t Addend = getNewFunctionOrDataAddress(Rel.Addend);
|
|
if (!Addend)
|
|
return;
|
|
|
|
OS.pwrite(reinterpret_cast<const char *>(&Addend), PSize, FileOffset);
|
|
};
|
|
|
|
// Fill new relative relocation offsets set
|
|
std::set<uint64_t> RelOffsets;
|
|
for (const BinarySection &Section : BC->allocatableSections()) {
|
|
const uint64_t SectionInputAddress = Section.getAddress();
|
|
uint64_t SectionAddress = Section.getOutputAddress();
|
|
if (!SectionAddress)
|
|
SectionAddress = SectionInputAddress;
|
|
|
|
for (const Relocation &Rel : Section.dynamicRelocations()) {
|
|
if (!Rel.isRelative())
|
|
continue;
|
|
|
|
uint64_t RelOffset =
|
|
getNewFunctionOrDataAddress(SectionInputAddress + Rel.Offset);
|
|
|
|
RelOffset = RelOffset == 0 ? SectionAddress + Rel.Offset : RelOffset;
|
|
assert((RelOffset & 1) == 0 && "Wrong relocation offset");
|
|
RelOffsets.emplace(RelOffset);
|
|
FixAddend(Section, Rel, RelOffset);
|
|
}
|
|
}
|
|
|
|
ErrorOr<BinarySection &> Section =
|
|
BC->getSectionForAddress(*DynamicRelrAddress);
|
|
assert(Section && "cannot get .relr.dyn section");
|
|
assert(Section->isRelr() && "Expected section to be SHT_RELR type");
|
|
uint64_t RelrDynOffset = Section->getInputFileOffset();
|
|
const uint64_t RelrDynEndOffset = RelrDynOffset + Section->getSize();
|
|
|
|
auto WriteRelr = [&](uint64_t Value) {
|
|
if (RelrDynOffset + DynamicRelrEntrySize > RelrDynEndOffset) {
|
|
BC->errs() << "BOLT-ERROR: Offset overflow for relr.dyn section\n";
|
|
exit(1);
|
|
}
|
|
|
|
OS.pwrite(reinterpret_cast<const char *>(&Value), DynamicRelrEntrySize,
|
|
RelrDynOffset);
|
|
RelrDynOffset += DynamicRelrEntrySize;
|
|
};
|
|
|
|
for (auto RelIt = RelOffsets.begin(); RelIt != RelOffsets.end();) {
|
|
WriteRelr(*RelIt);
|
|
uint64_t Base = *RelIt++ + PSize;
|
|
while (1) {
|
|
uint64_t Bitmap = 0;
|
|
for (; RelIt != RelOffsets.end(); ++RelIt) {
|
|
const uint64_t Delta = *RelIt - Base;
|
|
if (Delta >= MaxDelta || Delta % PSize)
|
|
break;
|
|
|
|
Bitmap |= (1ULL << (Delta / PSize));
|
|
}
|
|
|
|
if (!Bitmap)
|
|
break;
|
|
|
|
WriteRelr((Bitmap << 1) | 1);
|
|
Base += MaxDelta;
|
|
}
|
|
}
|
|
|
|
// Fill the rest of the section with empty bitmap value
|
|
while (RelrDynOffset != RelrDynEndOffset)
|
|
WriteRelr(1);
|
|
}
|
|
|
|
template <typename ELFT>
|
|
void
|
|
RewriteInstance::patchELFAllocatableRelaSections(ELFObjectFile<ELFT> *File) {
|
|
using Elf_Rela = typename ELFT::Rela;
|
|
raw_fd_ostream &OS = Out->os();
|
|
const ELFFile<ELFT> &EF = File->getELFFile();
|
|
|
|
uint64_t RelDynOffset = 0, RelDynEndOffset = 0;
|
|
uint64_t RelPltOffset = 0, RelPltEndOffset = 0;
|
|
|
|
auto setSectionFileOffsets = [&](uint64_t Address, uint64_t &Start,
|
|
uint64_t &End) {
|
|
ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address);
|
|
assert(Section && "cannot get relocation section");
|
|
Start = Section->getInputFileOffset();
|
|
End = Start + Section->getSize();
|
|
};
|
|
|
|
if (!DynamicRelocationsAddress && !PLTRelocationsAddress)
|
|
return;
|
|
|
|
if (DynamicRelocationsAddress)
|
|
setSectionFileOffsets(*DynamicRelocationsAddress, RelDynOffset,
|
|
RelDynEndOffset);
|
|
|
|
if (PLTRelocationsAddress)
|
|
setSectionFileOffsets(*PLTRelocationsAddress, RelPltOffset,
|
|
RelPltEndOffset);
|
|
|
|
DynamicRelativeRelocationsCount = 0;
|
|
|
|
auto writeRela = [&OS](const Elf_Rela *RelA, uint64_t &Offset) {
|
|
OS.pwrite(reinterpret_cast<const char *>(RelA), sizeof(*RelA), Offset);
|
|
Offset += sizeof(*RelA);
|
|
};
|
|
|
|
auto writeRelocations = [&](bool PatchRelative) {
|
|
for (BinarySection &Section : BC->allocatableSections()) {
|
|
const uint64_t SectionInputAddress = Section.getAddress();
|
|
uint64_t SectionAddress = Section.getOutputAddress();
|
|
if (!SectionAddress)
|
|
SectionAddress = SectionInputAddress;
|
|
|
|
for (const Relocation &Rel : Section.dynamicRelocations()) {
|
|
const bool IsRelative = Rel.isRelative();
|
|
if (PatchRelative != IsRelative)
|
|
continue;
|
|
|
|
if (IsRelative)
|
|
++DynamicRelativeRelocationsCount;
|
|
|
|
Elf_Rela NewRelA;
|
|
MCSymbol *Symbol = Rel.Symbol;
|
|
uint32_t SymbolIdx = 0;
|
|
uint64_t Addend = Rel.Addend;
|
|
uint64_t RelOffset =
|
|
getNewFunctionOrDataAddress(SectionInputAddress + Rel.Offset);
|
|
|
|
RelOffset = RelOffset == 0 ? SectionAddress + Rel.Offset : RelOffset;
|
|
if (Rel.Symbol) {
|
|
SymbolIdx = getOutputDynamicSymbolIndex(Symbol);
|
|
} else {
|
|
// Usually this case is used for R_*_(I)RELATIVE relocations
|
|
const uint64_t Address = getNewFunctionOrDataAddress(Addend);
|
|
if (Address)
|
|
Addend = Address;
|
|
}
|
|
|
|
NewRelA.setSymbolAndType(SymbolIdx, Rel.Type, EF.isMips64EL());
|
|
NewRelA.r_offset = RelOffset;
|
|
NewRelA.r_addend = Addend;
|
|
|
|
const bool IsJmpRel = IsJmpRelocation.contains(Rel.Type);
|
|
uint64_t &Offset = IsJmpRel ? RelPltOffset : RelDynOffset;
|
|
const uint64_t &EndOffset =
|
|
IsJmpRel ? RelPltEndOffset : RelDynEndOffset;
|
|
if (!Offset || !EndOffset) {
|
|
BC->errs() << "BOLT-ERROR: Invalid offsets for dynamic relocation\n";
|
|
exit(1);
|
|
}
|
|
|
|
if (Offset + sizeof(NewRelA) > EndOffset) {
|
|
BC->errs() << "BOLT-ERROR: Offset overflow for dynamic relocation\n";
|
|
exit(1);
|
|
}
|
|
|
|
writeRela(&NewRelA, Offset);
|
|
}
|
|
}
|
|
};
|
|
|
|
// Place R_*_RELATIVE relocations in RELA section if RELR is not presented.
|
|
// The dynamic linker expects all R_*_RELATIVE relocations in RELA
|
|
// to be emitted first.
|
|
if (!DynamicRelrAddress)
|
|
writeRelocations(/* PatchRelative */ true);
|
|
writeRelocations(/* PatchRelative */ false);
|
|
|
|
auto fillNone = [&](uint64_t &Offset, uint64_t EndOffset) {
|
|
if (!Offset)
|
|
return;
|
|
|
|
typename ELFObjectFile<ELFT>::Elf_Rela RelA;
|
|
RelA.setSymbolAndType(0, Relocation::getNone(), EF.isMips64EL());
|
|
RelA.r_offset = 0;
|
|
RelA.r_addend = 0;
|
|
while (Offset < EndOffset)
|
|
writeRela(&RelA, Offset);
|
|
|
|
assert(Offset == EndOffset && "Unexpected section overflow");
|
|
};
|
|
|
|
// Fill the rest of the sections with R_*_NONE relocations
|
|
fillNone(RelDynOffset, RelDynEndOffset);
|
|
fillNone(RelPltOffset, RelPltEndOffset);
|
|
}
|
|
|
|
template <typename ELFT>
|
|
void RewriteInstance::patchELFGOT(ELFObjectFile<ELFT> *File) {
|
|
raw_fd_ostream &OS = Out->os();
|
|
|
|
SectionRef GOTSection;
|
|
for (const SectionRef &Section : File->sections()) {
|
|
StringRef SectionName = cantFail(Section.getName());
|
|
if (SectionName == ".got") {
|
|
GOTSection = Section;
|
|
break;
|
|
}
|
|
}
|
|
if (!GOTSection.getObject()) {
|
|
if (!BC->IsStaticExecutable)
|
|
BC->errs() << "BOLT-INFO: no .got section found\n";
|
|
return;
|
|
}
|
|
|
|
StringRef GOTContents = cantFail(GOTSection.getContents());
|
|
for (const uint64_t *GOTEntry =
|
|
reinterpret_cast<const uint64_t *>(GOTContents.data());
|
|
GOTEntry < reinterpret_cast<const uint64_t *>(GOTContents.data() +
|
|
GOTContents.size());
|
|
++GOTEntry) {
|
|
if (uint64_t NewAddress = getNewFunctionAddress(*GOTEntry)) {
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching GOT entry 0x"
|
|
<< Twine::utohexstr(*GOTEntry) << " with 0x"
|
|
<< Twine::utohexstr(NewAddress) << '\n');
|
|
OS.pwrite(reinterpret_cast<const char *>(&NewAddress), sizeof(NewAddress),
|
|
reinterpret_cast<const char *>(GOTEntry) -
|
|
File->getData().data());
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename ELFT>
|
|
void RewriteInstance::patchELFDynamic(ELFObjectFile<ELFT> *File) {
|
|
if (BC->IsStaticExecutable)
|
|
return;
|
|
|
|
const ELFFile<ELFT> &Obj = File->getELFFile();
|
|
raw_fd_ostream &OS = Out->os();
|
|
|
|
using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr;
|
|
using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn;
|
|
|
|
// Locate DYNAMIC by looking through program headers.
|
|
uint64_t DynamicOffset = 0;
|
|
const Elf_Phdr *DynamicPhdr = nullptr;
|
|
for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) {
|
|
if (Phdr.p_type == ELF::PT_DYNAMIC) {
|
|
DynamicOffset = Phdr.p_offset;
|
|
DynamicPhdr = &Phdr;
|
|
assert(Phdr.p_memsz == Phdr.p_filesz && "dynamic sizes should match");
|
|
break;
|
|
}
|
|
}
|
|
assert(DynamicPhdr && "missing dynamic in ELF binary");
|
|
|
|
bool ZNowSet = false;
|
|
|
|
// Go through all dynamic entries and patch functions addresses with
|
|
// new ones.
|
|
typename ELFT::DynRange DynamicEntries =
|
|
cantFail(Obj.dynamicEntries(), "error accessing dynamic table");
|
|
auto DTB = DynamicEntries.begin();
|
|
for (const Elf_Dyn &Dyn : DynamicEntries) {
|
|
Elf_Dyn NewDE = Dyn;
|
|
bool ShouldPatch = true;
|
|
switch (Dyn.d_tag) {
|
|
default:
|
|
ShouldPatch = false;
|
|
break;
|
|
case ELF::DT_RELACOUNT:
|
|
NewDE.d_un.d_val = DynamicRelativeRelocationsCount;
|
|
break;
|
|
case ELF::DT_INIT:
|
|
case ELF::DT_FINI: {
|
|
if (BC->HasRelocations) {
|
|
if (uint64_t NewAddress = getNewFunctionAddress(Dyn.getPtr())) {
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching dynamic entry of type "
|
|
<< Dyn.getTag() << '\n');
|
|
NewDE.d_un.d_ptr = NewAddress;
|
|
}
|
|
}
|
|
RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary();
|
|
if (RtLibrary && Dyn.getTag() == ELF::DT_FINI) {
|
|
if (uint64_t Addr = RtLibrary->getRuntimeFiniAddress())
|
|
NewDE.d_un.d_ptr = Addr;
|
|
}
|
|
if (RtLibrary && Dyn.getTag() == ELF::DT_INIT && !BC->HasInterpHeader) {
|
|
if (auto Addr = RtLibrary->getRuntimeStartAddress()) {
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set DT_INIT to 0x"
|
|
<< Twine::utohexstr(Addr) << '\n');
|
|
NewDE.d_un.d_ptr = Addr;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ELF::DT_FLAGS:
|
|
if (BC->RequiresZNow) {
|
|
NewDE.d_un.d_val |= ELF::DF_BIND_NOW;
|
|
ZNowSet = true;
|
|
}
|
|
break;
|
|
case ELF::DT_FLAGS_1:
|
|
if (BC->RequiresZNow) {
|
|
NewDE.d_un.d_val |= ELF::DF_1_NOW;
|
|
ZNowSet = true;
|
|
}
|
|
break;
|
|
}
|
|
if (ShouldPatch)
|
|
OS.pwrite(reinterpret_cast<const char *>(&NewDE), sizeof(NewDE),
|
|
DynamicOffset + (&Dyn - DTB) * sizeof(Dyn));
|
|
}
|
|
|
|
if (BC->RequiresZNow && !ZNowSet) {
|
|
BC->errs()
|
|
<< "BOLT-ERROR: output binary requires immediate relocation "
|
|
"processing which depends on DT_FLAGS or DT_FLAGS_1 presence in "
|
|
".dynamic. Please re-link the binary with -znow.\n";
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
template <typename ELFT>
|
|
Error RewriteInstance::readELFDynamic(ELFObjectFile<ELFT> *File) {
|
|
const ELFFile<ELFT> &Obj = File->getELFFile();
|
|
|
|
using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr;
|
|
using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn;
|
|
|
|
// Locate DYNAMIC by looking through program headers.
|
|
const Elf_Phdr *DynamicPhdr = nullptr;
|
|
for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) {
|
|
if (Phdr.p_type == ELF::PT_DYNAMIC) {
|
|
DynamicPhdr = &Phdr;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!DynamicPhdr) {
|
|
BC->outs() << "BOLT-INFO: static input executable detected\n";
|
|
// TODO: static PIE executable might have dynamic header
|
|
BC->IsStaticExecutable = true;
|
|
return Error::success();
|
|
}
|
|
|
|
if (DynamicPhdr->p_memsz != DynamicPhdr->p_filesz)
|
|
return createStringError(errc::executable_format_error,
|
|
"dynamic section sizes should match");
|
|
|
|
// Go through all dynamic entries to locate entries of interest.
|
|
auto DynamicEntriesOrErr = Obj.dynamicEntries();
|
|
if (!DynamicEntriesOrErr)
|
|
return DynamicEntriesOrErr.takeError();
|
|
typename ELFT::DynRange DynamicEntries = DynamicEntriesOrErr.get();
|
|
|
|
for (const Elf_Dyn &Dyn : DynamicEntries) {
|
|
switch (Dyn.d_tag) {
|
|
case ELF::DT_INIT:
|
|
if (!BC->HasInterpHeader) {
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set start function address\n");
|
|
BC->StartFunctionAddress = Dyn.getPtr();
|
|
}
|
|
break;
|
|
case ELF::DT_FINI:
|
|
BC->FiniAddress = Dyn.getPtr();
|
|
break;
|
|
case ELF::DT_FINI_ARRAY:
|
|
BC->FiniArrayAddress = Dyn.getPtr();
|
|
break;
|
|
case ELF::DT_FINI_ARRAYSZ:
|
|
BC->FiniArraySize = Dyn.getPtr();
|
|
break;
|
|
case ELF::DT_RELA:
|
|
DynamicRelocationsAddress = Dyn.getPtr();
|
|
break;
|
|
case ELF::DT_RELASZ:
|
|
DynamicRelocationsSize = Dyn.getVal();
|
|
break;
|
|
case ELF::DT_JMPREL:
|
|
PLTRelocationsAddress = Dyn.getPtr();
|
|
break;
|
|
case ELF::DT_PLTRELSZ:
|
|
PLTRelocationsSize = Dyn.getVal();
|
|
break;
|
|
case ELF::DT_RELACOUNT:
|
|
DynamicRelativeRelocationsCount = Dyn.getVal();
|
|
break;
|
|
case ELF::DT_RELR:
|
|
DynamicRelrAddress = Dyn.getPtr();
|
|
break;
|
|
case ELF::DT_RELRSZ:
|
|
DynamicRelrSize = Dyn.getVal();
|
|
break;
|
|
case ELF::DT_RELRENT:
|
|
DynamicRelrEntrySize = Dyn.getVal();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!DynamicRelocationsAddress || !DynamicRelocationsSize) {
|
|
DynamicRelocationsAddress.reset();
|
|
DynamicRelocationsSize = 0;
|
|
}
|
|
|
|
if (!PLTRelocationsAddress || !PLTRelocationsSize) {
|
|
PLTRelocationsAddress.reset();
|
|
PLTRelocationsSize = 0;
|
|
}
|
|
|
|
if (!DynamicRelrAddress || !DynamicRelrSize) {
|
|
DynamicRelrAddress.reset();
|
|
DynamicRelrSize = 0;
|
|
} else if (!DynamicRelrEntrySize) {
|
|
BC->errs() << "BOLT-ERROR: expected DT_RELRENT to be presented "
|
|
<< "in DYNAMIC section\n";
|
|
exit(1);
|
|
} else if (DynamicRelrSize % DynamicRelrEntrySize) {
|
|
BC->errs() << "BOLT-ERROR: expected RELR table size to be divisible "
|
|
<< "by RELR entry size\n";
|
|
exit(1);
|
|
}
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
uint64_t RewriteInstance::getNewFunctionAddress(uint64_t OldAddress) {
|
|
const BinaryFunction *Function = BC->getBinaryFunctionAtAddress(OldAddress);
|
|
if (!Function)
|
|
return 0;
|
|
|
|
return Function->getOutputAddress();
|
|
}
|
|
|
|
uint64_t RewriteInstance::getNewFunctionOrDataAddress(uint64_t OldAddress) {
|
|
if (uint64_t Function = getNewFunctionAddress(OldAddress))
|
|
return Function;
|
|
|
|
const BinaryData *BD = BC->getBinaryDataAtAddress(OldAddress);
|
|
if (BD && BD->isMoved())
|
|
return BD->getOutputAddress();
|
|
|
|
if (const BinaryFunction *BF =
|
|
BC->getBinaryFunctionContainingAddress(OldAddress)) {
|
|
if (BF->isEmitted()) {
|
|
// If OldAddress is the another entry point of
|
|
// the function, then BOLT could get the new address.
|
|
if (BF->isMultiEntry()) {
|
|
for (const BinaryBasicBlock &BB : *BF)
|
|
if (BB.isEntryPoint() &&
|
|
(BF->getAddress() + BB.getOffset()) == OldAddress)
|
|
return BB.getOutputStartAddress();
|
|
}
|
|
BC->errs() << "BOLT-ERROR: unable to get new address corresponding to "
|
|
"input address 0x"
|
|
<< Twine::utohexstr(OldAddress) << " in function " << *BF
|
|
<< ". Consider adding this function to --skip-funcs=...\n";
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void RewriteInstance::rewriteFile() {
|
|
std::error_code EC;
|
|
Out = std::make_unique<ToolOutputFile>(opts::OutputFilename, EC,
|
|
sys::fs::OF_None);
|
|
check_error(EC, "cannot create output executable file");
|
|
|
|
raw_fd_ostream &OS = Out->os();
|
|
|
|
// Copy allocatable part of the input.
|
|
OS << InputFile->getData().substr(0, FirstNonAllocatableOffset);
|
|
|
|
auto Streamer = BC->createStreamer(OS);
|
|
// Make sure output stream has enough reserved space, otherwise
|
|
// pwrite() will fail.
|
|
uint64_t Offset = std::max(getFileOffsetForAddress(NextAvailableAddress),
|
|
FirstNonAllocatableOffset);
|
|
Offset = OS.seek(Offset);
|
|
assert((Offset != (uint64_t)-1) && "Error resizing output file");
|
|
|
|
// Overwrite functions with fixed output address. This is mostly used by
|
|
// non-relocation mode, with one exception: injected functions are covered
|
|
// here in both modes.
|
|
uint64_t CountOverwrittenFunctions = 0;
|
|
uint64_t OverwrittenScore = 0;
|
|
for (BinaryFunction *Function : BC->getAllBinaryFunctions()) {
|
|
if (Function->getImageAddress() == 0 || Function->getImageSize() == 0)
|
|
continue;
|
|
|
|
assert(Function->getImageSize() <= Function->getMaxSize() &&
|
|
"Unexpected large function");
|
|
|
|
const auto HasAddress = [](const FunctionFragment &FF) {
|
|
return FF.empty() ||
|
|
(FF.getImageAddress() != 0 && FF.getImageSize() != 0);
|
|
};
|
|
const bool SplitFragmentsHaveAddress =
|
|
llvm::all_of(Function->getLayout().getSplitFragments(), HasAddress);
|
|
if (Function->isSplit() && !SplitFragmentsHaveAddress) {
|
|
const auto HasNoAddress = [](const FunctionFragment &FF) {
|
|
return FF.getImageAddress() == 0 && FF.getImageSize() == 0;
|
|
};
|
|
assert(llvm::all_of(Function->getLayout().getSplitFragments(),
|
|
HasNoAddress) &&
|
|
"Some split fragments have an address while others do not");
|
|
(void)HasNoAddress;
|
|
continue;
|
|
}
|
|
|
|
OverwrittenScore += Function->getFunctionScore();
|
|
++CountOverwrittenFunctions;
|
|
|
|
// Overwrite function in the output file.
|
|
if (opts::Verbosity >= 2)
|
|
BC->outs() << "BOLT: rewriting function \"" << *Function << "\"\n";
|
|
|
|
OS.pwrite(reinterpret_cast<char *>(Function->getImageAddress()),
|
|
Function->getImageSize(), Function->getFileOffset());
|
|
|
|
// Write nops at the end of the function.
|
|
if (Function->getMaxSize() != std::numeric_limits<uint64_t>::max()) {
|
|
uint64_t Pos = OS.tell();
|
|
OS.seek(Function->getFileOffset() + Function->getImageSize());
|
|
BC->MAB->writeNopData(
|
|
OS, Function->getMaxSize() - Function->getImageSize(), &*BC->STI);
|
|
|
|
OS.seek(Pos);
|
|
}
|
|
|
|
if (!Function->isSplit())
|
|
continue;
|
|
|
|
// Write cold part
|
|
if (opts::Verbosity >= 2) {
|
|
BC->outs() << formatv("BOLT: rewriting function \"{0}\" (split parts)\n",
|
|
*Function);
|
|
}
|
|
|
|
for (const FunctionFragment &FF :
|
|
Function->getLayout().getSplitFragments()) {
|
|
OS.pwrite(reinterpret_cast<char *>(FF.getImageAddress()),
|
|
FF.getImageSize(), FF.getFileOffset());
|
|
}
|
|
}
|
|
|
|
// Print function statistics for non-relocation mode.
|
|
if (!BC->HasRelocations) {
|
|
BC->outs() << "BOLT: " << CountOverwrittenFunctions << " out of "
|
|
<< BC->getBinaryFunctions().size()
|
|
<< " functions were overwritten.\n";
|
|
if (BC->TotalScore != 0) {
|
|
double Coverage = OverwrittenScore / (double)BC->TotalScore * 100.0;
|
|
BC->outs() << format("BOLT-INFO: rewritten functions cover %.2lf",
|
|
Coverage)
|
|
<< "% of the execution count of simple functions of "
|
|
"this binary\n";
|
|
}
|
|
}
|
|
|
|
if (BC->HasRelocations && opts::TrapOldCode) {
|
|
uint64_t SavedPos = OS.tell();
|
|
// Overwrite function body to make sure we never execute these instructions.
|
|
for (auto &BFI : BC->getBinaryFunctions()) {
|
|
BinaryFunction &BF = BFI.second;
|
|
if (!BF.getFileOffset() || !BF.isEmitted())
|
|
continue;
|
|
OS.seek(BF.getFileOffset());
|
|
StringRef TrapInstr = BC->MIB->getTrapFillValue();
|
|
unsigned NInstr = BF.getMaxSize() / TrapInstr.size();
|
|
for (unsigned I = 0; I < NInstr; ++I)
|
|
OS.write(TrapInstr.data(), TrapInstr.size());
|
|
}
|
|
OS.seek(SavedPos);
|
|
}
|
|
|
|
// Write all allocatable sections - reloc-mode text is written here as well
|
|
for (BinarySection &Section : BC->allocatableSections()) {
|
|
if (!Section.isFinalized() || !Section.getOutputData()) {
|
|
LLVM_DEBUG(if (opts::Verbosity > 1) {
|
|
dbgs() << "BOLT-INFO: new section is finalized or !getOutputData, skip "
|
|
<< Section.getName() << '\n';
|
|
});
|
|
continue;
|
|
}
|
|
if (Section.isLinkOnly()) {
|
|
LLVM_DEBUG(if (opts::Verbosity > 1) {
|
|
dbgs() << "BOLT-INFO: new section is link only, skip "
|
|
<< Section.getName() << '\n';
|
|
});
|
|
continue;
|
|
}
|
|
|
|
if (opts::Verbosity >= 1)
|
|
BC->outs() << "BOLT: writing new section " << Section.getName()
|
|
<< "\n data at 0x"
|
|
<< Twine::utohexstr(Section.getAllocAddress()) << "\n of size "
|
|
<< Section.getOutputSize() << "\n at offset "
|
|
<< Section.getOutputFileOffset() << " with content size "
|
|
<< Section.getOutputContents().size() << '\n';
|
|
OS.seek(Section.getOutputFileOffset());
|
|
Section.write(OS);
|
|
}
|
|
|
|
for (BinarySection &Section : BC->allocatableSections())
|
|
Section.flushPendingRelocations(OS, [this](const MCSymbol *S) {
|
|
return getNewValueForSymbol(S->getName());
|
|
});
|
|
|
|
// If .eh_frame is present create .eh_frame_hdr.
|
|
if (EHFrameSection)
|
|
writeEHFrameHeader();
|
|
|
|
// Add BOLT Addresses Translation maps to allow profile collection to
|
|
// happen in the output binary
|
|
if (opts::EnableBAT)
|
|
addBATSection();
|
|
|
|
// Patch program header table.
|
|
if (!BC->IsLinuxKernel) {
|
|
updateSegmentInfo();
|
|
patchELFPHDRTable();
|
|
}
|
|
|
|
// Finalize memory image of section string table.
|
|
finalizeSectionStringTable();
|
|
|
|
// Update symbol tables.
|
|
patchELFSymTabs();
|
|
|
|
if (opts::EnableBAT)
|
|
encodeBATSection();
|
|
|
|
// Copy non-allocatable sections once allocatable part is finished.
|
|
rewriteNoteSections();
|
|
|
|
if (BC->HasRelocations) {
|
|
patchELFAllocatableRelaSections();
|
|
patchELFAllocatableRelrSection();
|
|
patchELFGOT();
|
|
}
|
|
|
|
// Patch dynamic section/segment.
|
|
patchELFDynamic();
|
|
|
|
// Update ELF book-keeping info.
|
|
patchELFSectionHeaderTable();
|
|
|
|
if (opts::PrintSections) {
|
|
BC->outs() << "BOLT-INFO: Sections after processing:\n";
|
|
BC->printSections(BC->outs());
|
|
}
|
|
|
|
Out->keep();
|
|
EC = sys::fs::setPermissions(
|
|
opts::OutputFilename,
|
|
static_cast<sys::fs::perms>(sys::fs::perms::all_all &
|
|
~sys::fs::getUmask()));
|
|
check_error(EC, "cannot set permissions of output file");
|
|
}
|
|
|
|
void RewriteInstance::writeEHFrameHeader() {
|
|
BinarySection *NewEHFrameSection =
|
|
getSection(getNewSecPrefix() + getEHFrameSectionName());
|
|
|
|
// No need to update the header if no new .eh_frame was created.
|
|
if (!NewEHFrameSection)
|
|
return;
|
|
|
|
DWARFDebugFrame NewEHFrame(BC->TheTriple->getArch(), true,
|
|
NewEHFrameSection->getOutputAddress());
|
|
Error E = NewEHFrame.parse(DWARFDataExtractor(
|
|
NewEHFrameSection->getOutputContents(), BC->AsmInfo->isLittleEndian(),
|
|
BC->AsmInfo->getCodePointerSize()));
|
|
check_error(std::move(E), "failed to parse EH frame");
|
|
|
|
uint64_t RelocatedEHFrameAddress = 0;
|
|
StringRef RelocatedEHFrameContents;
|
|
BinarySection *RelocatedEHFrameSection =
|
|
getSection(".relocated" + getEHFrameSectionName());
|
|
if (RelocatedEHFrameSection) {
|
|
RelocatedEHFrameAddress = RelocatedEHFrameSection->getOutputAddress();
|
|
RelocatedEHFrameContents = RelocatedEHFrameSection->getOutputContents();
|
|
}
|
|
DWARFDebugFrame RelocatedEHFrame(BC->TheTriple->getArch(), true,
|
|
RelocatedEHFrameAddress);
|
|
Error Er = RelocatedEHFrame.parse(DWARFDataExtractor(
|
|
RelocatedEHFrameContents, BC->AsmInfo->isLittleEndian(),
|
|
BC->AsmInfo->getCodePointerSize()));
|
|
check_error(std::move(Er), "failed to parse EH frame");
|
|
|
|
LLVM_DEBUG(dbgs() << "BOLT: writing a new " << getEHFrameHdrSectionName()
|
|
<< '\n');
|
|
|
|
// Try to overwrite the original .eh_frame_hdr if the size permits.
|
|
uint64_t EHFrameHdrOutputAddress = 0;
|
|
uint64_t EHFrameHdrFileOffset = 0;
|
|
std::vector<char> NewEHFrameHdr;
|
|
BinarySection *OldEHFrameHdrSection = getSection(getEHFrameHdrSectionName());
|
|
if (OldEHFrameHdrSection) {
|
|
NewEHFrameHdr = CFIRdWrt->generateEHFrameHeader(
|
|
RelocatedEHFrame, NewEHFrame, OldEHFrameHdrSection->getAddress());
|
|
if (NewEHFrameHdr.size() <= OldEHFrameHdrSection->getSize()) {
|
|
BC->outs() << "BOLT-INFO: rewriting " << getEHFrameHdrSectionName()
|
|
<< " in-place\n";
|
|
EHFrameHdrOutputAddress = OldEHFrameHdrSection->getAddress();
|
|
EHFrameHdrFileOffset = OldEHFrameHdrSection->getInputFileOffset();
|
|
} else {
|
|
OldEHFrameHdrSection->setOutputName(getOrgSecPrefix() +
|
|
getEHFrameHdrSectionName());
|
|
OldEHFrameHdrSection = nullptr;
|
|
}
|
|
}
|
|
|
|
// If there was not enough space, allocate more memory for .eh_frame_hdr.
|
|
if (!OldEHFrameHdrSection) {
|
|
NextAvailableAddress =
|
|
appendPadding(Out->os(), NextAvailableAddress, EHFrameHdrAlign);
|
|
|
|
EHFrameHdrOutputAddress = NextAvailableAddress;
|
|
EHFrameHdrFileOffset = getFileOffsetForAddress(NextAvailableAddress);
|
|
|
|
NewEHFrameHdr = CFIRdWrt->generateEHFrameHeader(
|
|
RelocatedEHFrame, NewEHFrame, EHFrameHdrOutputAddress);
|
|
|
|
NextAvailableAddress += NewEHFrameHdr.size();
|
|
if (!BC->BOLTReserved.empty() &&
|
|
(NextAvailableAddress > BC->BOLTReserved.end())) {
|
|
BC->errs() << "BOLT-ERROR: unable to fit " << getEHFrameHdrSectionName()
|
|
<< " into reserved space\n";
|
|
exit(1);
|
|
}
|
|
|
|
// Create a new entry in the section header table.
|
|
const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true,
|
|
/*IsText=*/false,
|
|
/*IsAllocatable=*/true);
|
|
BinarySection &EHFrameHdrSec = BC->registerOrUpdateSection(
|
|
getNewSecPrefix() + getEHFrameHdrSectionName(), ELF::SHT_PROGBITS,
|
|
Flags, nullptr, NewEHFrameHdr.size(), /*Alignment=*/1);
|
|
EHFrameHdrSec.setOutputFileOffset(EHFrameHdrFileOffset);
|
|
EHFrameHdrSec.setOutputAddress(EHFrameHdrOutputAddress);
|
|
EHFrameHdrSec.setOutputName(getEHFrameHdrSectionName());
|
|
}
|
|
|
|
Out->os().seek(EHFrameHdrFileOffset);
|
|
Out->os().write(NewEHFrameHdr.data(), NewEHFrameHdr.size());
|
|
|
|
// Pad the contents if overwriting in-place.
|
|
if (OldEHFrameHdrSection)
|
|
Out->os().write_zeros(OldEHFrameHdrSection->getSize() -
|
|
NewEHFrameHdr.size());
|
|
|
|
// Merge new .eh_frame with the relocated original so that gdb can locate all
|
|
// FDEs.
|
|
if (RelocatedEHFrameSection) {
|
|
const uint64_t NewEHFrameSectionSize =
|
|
RelocatedEHFrameSection->getOutputAddress() +
|
|
RelocatedEHFrameSection->getOutputSize() -
|
|
NewEHFrameSection->getOutputAddress();
|
|
NewEHFrameSection->updateContents(NewEHFrameSection->getOutputData(),
|
|
NewEHFrameSectionSize);
|
|
BC->deregisterSection(*RelocatedEHFrameSection);
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: size of .eh_frame after merge is "
|
|
<< NewEHFrameSection->getOutputSize() << '\n');
|
|
}
|
|
|
|
uint64_t RewriteInstance::getNewValueForSymbol(const StringRef Name) {
|
|
auto Value = Linker->lookupSymbolInfo(Name);
|
|
if (Value)
|
|
return Value->Address;
|
|
|
|
// Return the original value if we haven't emitted the symbol.
|
|
BinaryData *BD = BC->getBinaryDataByName(Name);
|
|
if (!BD)
|
|
return 0;
|
|
|
|
return BD->getAddress();
|
|
}
|
|
|
|
uint64_t RewriteInstance::getFileOffsetForAddress(uint64_t Address) const {
|
|
// Check if it's possibly part of the new segment.
|
|
if (NewTextSegmentAddress && Address >= NewTextSegmentAddress)
|
|
return Address - NewTextSegmentAddress + NewTextSegmentOffset;
|
|
|
|
// Find an existing segment that matches the address.
|
|
const auto SegmentInfoI = BC->SegmentMapInfo.upper_bound(Address);
|
|
if (SegmentInfoI == BC->SegmentMapInfo.begin())
|
|
return 0;
|
|
|
|
const SegmentInfo &SegmentInfo = std::prev(SegmentInfoI)->second;
|
|
if (Address < SegmentInfo.Address ||
|
|
Address >= SegmentInfo.Address + SegmentInfo.FileSize)
|
|
return 0;
|
|
|
|
return SegmentInfo.FileOffset + Address - SegmentInfo.Address;
|
|
}
|
|
|
|
bool RewriteInstance::willOverwriteSection(StringRef SectionName) {
|
|
if (llvm::is_contained(SectionsToOverwrite, SectionName))
|
|
return true;
|
|
if (llvm::is_contained(DebugSectionsToOverwrite, SectionName))
|
|
return true;
|
|
|
|
ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName);
|
|
return Section && Section->isAllocatable() && Section->isFinalized();
|
|
}
|
|
|
|
bool RewriteInstance::isDebugSection(StringRef SectionName) {
|
|
if (SectionName.starts_with(".debug_") ||
|
|
SectionName.starts_with(".zdebug_") || SectionName == ".gdb_index" ||
|
|
SectionName == ".stab" || SectionName == ".stabstr")
|
|
return true;
|
|
|
|
return false;
|
|
}
|