llvm-project/clang/lib/AST/TemplateBase.cpp
Matheus Izvekov 91cdd35008
[clang] Improve nested name specifier AST representation (#147835)
This is a major change on how we represent nested name qualifications in
the AST.

* The nested name specifier itself and how it's stored is changed. The
prefixes for types are handled within the type hierarchy, which makes
canonicalization for them super cheap, no memory allocation required.
Also translating a type into nested name specifier form becomes a no-op.
An identifier is stored as a DependentNameType. The nested name
specifier gains a lightweight handle class, to be used instead of
passing around pointers, which is similar to what is implemented for
TemplateName. There is still one free bit available, and this handle can
be used within a PointerUnion and PointerIntPair, which should keep
bit-packing aficionados happy.
* The ElaboratedType node is removed, all type nodes in which it could
previously apply to can now store the elaborated keyword and name
qualifier, tail allocating when present.
* TagTypes can now point to the exact declaration found when producing
these, as opposed to the previous situation of there only existing one
TagType per entity. This increases the amount of type sugar retained,
and can have several applications, for example in tracking module
ownership, and other tools which care about source file origins, such as
IWYU. These TagTypes are lazily allocated, in order to limit the
increase in AST size.

This patch offers a great performance benefit.

It greatly improves compilation time for
[stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for
`test_on2.cpp` in that project, which is the slowest compiling test,
this patch improves `-c` compilation time by about 7.2%, with the
`-fsyntax-only` improvement being at ~12%.

This has great results on compile-time-tracker as well:

![image](https://github.com/user-attachments/assets/700dce98-2cab-4aa8-97d1-b038c0bee831)

This patch also further enables other optimziations in the future, and
will reduce the performance impact of template specialization resugaring
when that lands.

It has some other miscelaneous drive-by fixes.

About the review: Yes the patch is huge, sorry about that. Part of the
reason is that I started by the nested name specifier part, before the
ElaboratedType part, but that had a huge performance downside, as
ElaboratedType is a big performance hog. I didn't have the steam to go
back and change the patch after the fact.

There is also a lot of internal API changes, and it made sense to remove
ElaboratedType in one go, versus removing it from one type at a time, as
that would present much more churn to the users. Also, the nested name
specifier having a different API avoids missing changes related to how
prefixes work now, which could make existing code compile but not work.

How to review: The important changes are all in
`clang/include/clang/AST` and `clang/lib/AST`, with also important
changes in `clang/lib/Sema/TreeTransform.h`.

The rest and bulk of the changes are mostly consequences of the changes
in API.

PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just
for easier to rebasing. I plan to rename it back after this lands.

Fixes #136624
Fixes https://github.com/llvm/llvm-project/issues/43179
Fixes https://github.com/llvm/llvm-project/issues/68670
Fixes https://github.com/llvm/llvm-project/issues/92757
2025-08-09 05:06:53 -03:00

822 lines
26 KiB
C++

//===- TemplateBase.cpp - Common template AST class implementation --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements common classes used throughout C++ template
// representations.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/TemplateBase.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DependenceFlags.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/TemplateName.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
using namespace clang;
/// Print a template integral argument value.
///
/// \param TemplArg the TemplateArgument instance to print.
///
/// \param Out the raw_ostream instance to use for printing.
///
/// \param Policy the printing policy for EnumConstantDecl printing.
///
/// \param IncludeType If set, ensure that the type of the expression printed
/// matches the type of the template argument.
static void printIntegral(const TemplateArgument &TemplArg, raw_ostream &Out,
const PrintingPolicy &Policy, bool IncludeType) {
const Type *T = TemplArg.getIntegralType().getTypePtr();
const llvm::APSInt &Val = TemplArg.getAsIntegral();
if (Policy.UseEnumerators) {
if (const EnumType *ET = T->getAs<EnumType>()) {
for (const EnumConstantDecl *ECD : ET->getOriginalDecl()->enumerators()) {
// In Sema::CheckTemplateArugment, enum template arguments value are
// extended to the size of the integer underlying the enum type. This
// may create a size difference between the enum value and template
// argument value, requiring isSameValue here instead of operator==.
if (llvm::APSInt::isSameValue(ECD->getInitVal(), Val)) {
ECD->printQualifiedName(Out, Policy);
return;
}
}
}
}
if (Policy.MSVCFormatting)
IncludeType = false;
if (T->isBooleanType()) {
if (!Policy.MSVCFormatting)
Out << (Val.getBoolValue() ? "true" : "false");
else
Out << Val;
} else if (T->isCharType()) {
if (IncludeType) {
if (T->isSpecificBuiltinType(BuiltinType::SChar))
Out << "(signed char)";
else if (T->isSpecificBuiltinType(BuiltinType::UChar))
Out << "(unsigned char)";
}
CharacterLiteral::print(Val.getZExtValue(), CharacterLiteralKind::Ascii,
Out);
} else if (T->isAnyCharacterType() && !Policy.MSVCFormatting) {
CharacterLiteralKind Kind;
if (T->isWideCharType())
Kind = CharacterLiteralKind::Wide;
else if (T->isChar8Type())
Kind = CharacterLiteralKind::UTF8;
else if (T->isChar16Type())
Kind = CharacterLiteralKind::UTF16;
else if (T->isChar32Type())
Kind = CharacterLiteralKind::UTF32;
else
Kind = CharacterLiteralKind::Ascii;
CharacterLiteral::print(Val.getExtValue(), Kind, Out);
} else if (IncludeType) {
if (const auto *BT = T->getAs<BuiltinType>()) {
switch (BT->getKind()) {
case BuiltinType::ULongLong:
Out << Val << "ULL";
break;
case BuiltinType::LongLong:
Out << Val << "LL";
break;
case BuiltinType::ULong:
Out << Val << "UL";
break;
case BuiltinType::Long:
Out << Val << "L";
break;
case BuiltinType::UInt:
Out << Val << "U";
break;
case BuiltinType::Int:
Out << Val;
break;
default:
Out << "(" << T->getCanonicalTypeInternal().getAsString(Policy) << ")"
<< Val;
break;
}
} else
Out << "(" << T->getCanonicalTypeInternal().getAsString(Policy) << ")"
<< Val;
} else
Out << Val;
}
static unsigned getArrayDepth(QualType type) {
unsigned count = 0;
while (const auto *arrayType = type->getAsArrayTypeUnsafe()) {
count++;
type = arrayType->getElementType();
}
return count;
}
static bool needsAmpersandOnTemplateArg(QualType paramType, QualType argType) {
// Generally, if the parameter type is a pointer, we must be taking the
// address of something and need a &. However, if the argument is an array,
// this could be implicit via array-to-pointer decay.
if (!paramType->isPointerType())
return paramType->isMemberPointerType();
if (argType->isArrayType())
return getArrayDepth(argType) == getArrayDepth(paramType->getPointeeType());
return true;
}
//===----------------------------------------------------------------------===//
// TemplateArgument Implementation
//===----------------------------------------------------------------------===//
void TemplateArgument::initFromType(QualType T, bool IsNullPtr,
bool IsDefaulted) {
TypeOrValue.Kind = IsNullPtr ? NullPtr : Type;
TypeOrValue.IsDefaulted = IsDefaulted;
TypeOrValue.V = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
}
void TemplateArgument::initFromDeclaration(ValueDecl *D, QualType QT,
bool IsDefaulted) {
assert(D && "Expected decl");
DeclArg.Kind = Declaration;
DeclArg.IsDefaulted = IsDefaulted;
DeclArg.QT = QT.getAsOpaquePtr();
DeclArg.D = D;
}
void TemplateArgument::initFromIntegral(const ASTContext &Ctx,
const llvm::APSInt &Value,
QualType Type, bool IsDefaulted) {
Integer.Kind = Integral;
Integer.IsDefaulted = IsDefaulted;
// Copy the APSInt value into our decomposed form.
Integer.BitWidth = Value.getBitWidth();
Integer.IsUnsigned = Value.isUnsigned();
// If the value is large, we have to get additional memory from the ASTContext
unsigned NumWords = Value.getNumWords();
if (NumWords > 1) {
void *Mem = Ctx.Allocate(NumWords * sizeof(uint64_t));
std::memcpy(Mem, Value.getRawData(), NumWords * sizeof(uint64_t));
Integer.pVal = static_cast<uint64_t *>(Mem);
} else {
Integer.VAL = Value.getZExtValue();
}
Integer.Type = Type.getAsOpaquePtr();
}
void TemplateArgument::initFromStructural(const ASTContext &Ctx, QualType Type,
const APValue &V, bool IsDefaulted) {
Value.Kind = StructuralValue;
Value.IsDefaulted = IsDefaulted;
Value.Value = new (Ctx) APValue(V);
Ctx.addDestruction(Value.Value);
Value.Type = Type.getAsOpaquePtr();
}
TemplateArgument::TemplateArgument(const ASTContext &Ctx,
const llvm::APSInt &Value, QualType Type,
bool IsDefaulted) {
initFromIntegral(Ctx, Value, Type, IsDefaulted);
}
static const ValueDecl *getAsSimpleValueDeclRef(const ASTContext &Ctx,
QualType T, const APValue &V) {
// Pointers to members are relatively easy.
if (V.isMemberPointer() && V.getMemberPointerPath().empty())
return V.getMemberPointerDecl();
// We model class non-type template parameters as their template parameter
// object declaration.
if (V.isStruct() || V.isUnion()) {
// Dependent types are not supposed to be described as
// TemplateParamObjectDecls.
if (T->isDependentType() || T->isInstantiationDependentType())
return nullptr;
return Ctx.getTemplateParamObjectDecl(T, V);
}
// Pointers and references with an empty path use the special 'Declaration'
// representation.
if (V.isLValue() && V.hasLValuePath() && V.getLValuePath().empty() &&
!V.isLValueOnePastTheEnd())
return V.getLValueBase().dyn_cast<const ValueDecl *>();
// Everything else uses the 'structural' representation.
return nullptr;
}
TemplateArgument::TemplateArgument(const ASTContext &Ctx, QualType Type,
const APValue &V, bool IsDefaulted) {
if (Type->isIntegralOrEnumerationType() && V.isInt())
initFromIntegral(Ctx, V.getInt(), Type, IsDefaulted);
else if ((V.isLValue() && V.isNullPointer()) ||
(V.isMemberPointer() && !V.getMemberPointerDecl()))
initFromType(Type, /*isNullPtr=*/true, IsDefaulted);
else if (const ValueDecl *VD = getAsSimpleValueDeclRef(Ctx, Type, V))
// FIXME: The Declaration form should expose a const ValueDecl*.
initFromDeclaration(const_cast<ValueDecl *>(VD), Type, IsDefaulted);
else
initFromStructural(Ctx, Type, V, IsDefaulted);
}
TemplateArgument
TemplateArgument::CreatePackCopy(ASTContext &Context,
ArrayRef<TemplateArgument> Args) {
if (Args.empty())
return getEmptyPack();
return TemplateArgument(Args.copy(Context));
}
TemplateArgumentDependence TemplateArgument::getDependence() const {
auto Deps = TemplateArgumentDependence::None;
switch (getKind()) {
case Null:
llvm_unreachable("Should not have a NULL template argument");
case Type:
Deps = toTemplateArgumentDependence(getAsType()->getDependence());
if (isa<PackExpansionType>(getAsType()))
Deps |= TemplateArgumentDependence::Dependent;
return Deps;
case Template:
return toTemplateArgumentDependence(getAsTemplate().getDependence());
case TemplateExpansion:
return TemplateArgumentDependence::Dependent |
TemplateArgumentDependence::Instantiation;
case Declaration: {
auto *DC = dyn_cast<DeclContext>(getAsDecl());
if (!DC)
DC = getAsDecl()->getDeclContext();
if (DC->isDependentContext())
Deps = TemplateArgumentDependence::Dependent |
TemplateArgumentDependence::Instantiation;
return Deps;
}
case NullPtr:
case Integral:
case StructuralValue:
return TemplateArgumentDependence::None;
case Expression:
Deps = toTemplateArgumentDependence(getAsExpr()->getDependence());
if (isa<PackExpansionExpr>(getAsExpr()))
Deps |= TemplateArgumentDependence::Dependent |
TemplateArgumentDependence::Instantiation;
return Deps;
case Pack:
for (const auto &P : pack_elements())
Deps |= P.getDependence();
return Deps;
}
llvm_unreachable("unhandled ArgKind");
}
bool TemplateArgument::isDependent() const {
return getDependence() & TemplateArgumentDependence::Dependent;
}
bool TemplateArgument::isInstantiationDependent() const {
return getDependence() & TemplateArgumentDependence::Instantiation;
}
bool TemplateArgument::isPackExpansion() const {
switch (getKind()) {
case Null:
case Declaration:
case Integral:
case StructuralValue:
case Pack:
case Template:
case NullPtr:
return false;
case TemplateExpansion:
return true;
case Type:
return isa<PackExpansionType>(getAsType());
case Expression:
return isa<PackExpansionExpr>(getAsExpr());
}
llvm_unreachable("Invalid TemplateArgument Kind!");
}
bool TemplateArgument::isConceptOrConceptTemplateParameter() const {
if (getKind() == TemplateArgument::Template) {
if (isa<ConceptDecl>(getAsTemplate().getAsTemplateDecl()))
return true;
else if (auto *TTP = dyn_cast_if_present<TemplateTemplateParmDecl>(
getAsTemplate().getAsTemplateDecl()))
return TTP->templateParameterKind() == TNK_Concept_template;
}
return false;
}
bool TemplateArgument::containsUnexpandedParameterPack() const {
return getDependence() & TemplateArgumentDependence::UnexpandedPack;
}
UnsignedOrNone TemplateArgument::getNumTemplateExpansions() const {
assert(getKind() == TemplateExpansion);
return TemplateArg.NumExpansions;
}
QualType TemplateArgument::getNonTypeTemplateArgumentType() const {
switch (getKind()) {
case TemplateArgument::Null:
case TemplateArgument::Type:
case TemplateArgument::Template:
case TemplateArgument::TemplateExpansion:
case TemplateArgument::Pack:
return QualType();
case TemplateArgument::Integral:
return getIntegralType();
case TemplateArgument::Expression:
return getAsExpr()->getType();
case TemplateArgument::Declaration:
return getParamTypeForDecl();
case TemplateArgument::NullPtr:
return getNullPtrType();
case TemplateArgument::StructuralValue:
return getStructuralValueType();
}
llvm_unreachable("Invalid TemplateArgument Kind!");
}
void TemplateArgument::Profile(llvm::FoldingSetNodeID &ID,
const ASTContext &Context) const {
ID.AddInteger(getKind());
switch (getKind()) {
case Null:
break;
case Type:
getAsType().Profile(ID);
break;
case NullPtr:
getNullPtrType().Profile(ID);
break;
case Declaration:
getParamTypeForDecl().Profile(ID);
ID.AddPointer(getAsDecl());
break;
case TemplateExpansion:
ID.AddInteger(TemplateArg.NumExpansions.toInternalRepresentation());
[[fallthrough]];
case Template:
ID.AddPointer(TemplateArg.Name);
break;
case Integral:
getIntegralType().Profile(ID);
getAsIntegral().Profile(ID);
break;
case StructuralValue:
getStructuralValueType().Profile(ID);
getAsStructuralValue().Profile(ID);
break;
case Expression: {
const Expr *E = getAsExpr();
bool IsCanonical = isCanonicalExpr();
ID.AddBoolean(IsCanonical);
if (IsCanonical)
E->Profile(ID, Context, true);
else
ID.AddPointer(E);
break;
}
case Pack:
ID.AddInteger(Args.NumArgs);
for (unsigned I = 0; I != Args.NumArgs; ++I)
Args.Args[I].Profile(ID, Context);
}
}
bool TemplateArgument::structurallyEquals(const TemplateArgument &Other) const {
if (getKind() != Other.getKind()) return false;
switch (getKind()) {
case Null:
case Type:
case NullPtr:
return TypeOrValue.V == Other.TypeOrValue.V;
case Expression:
return TypeOrValue.V == Other.TypeOrValue.V &&
TypeOrValue.IsCanonicalExpr == Other.TypeOrValue.IsCanonicalExpr;
case Template:
case TemplateExpansion:
return TemplateArg.Name == Other.TemplateArg.Name &&
TemplateArg.NumExpansions == Other.TemplateArg.NumExpansions;
case Declaration:
return getAsDecl() == Other.getAsDecl() &&
getParamTypeForDecl() == Other.getParamTypeForDecl();
case Integral:
return getIntegralType() == Other.getIntegralType() &&
getAsIntegral() == Other.getAsIntegral();
case StructuralValue: {
if (getStructuralValueType().getCanonicalType() !=
Other.getStructuralValueType().getCanonicalType())
return false;
llvm::FoldingSetNodeID A, B;
getAsStructuralValue().Profile(A);
Other.getAsStructuralValue().Profile(B);
return A == B;
}
case Pack:
if (Args.NumArgs != Other.Args.NumArgs) return false;
for (unsigned I = 0, E = Args.NumArgs; I != E; ++I)
if (!Args.Args[I].structurallyEquals(Other.Args.Args[I]))
return false;
return true;
}
llvm_unreachable("Invalid TemplateArgument Kind!");
}
TemplateArgument TemplateArgument::getPackExpansionPattern() const {
assert(isPackExpansion());
switch (getKind()) {
case Type:
return getAsType()->castAs<PackExpansionType>()->getPattern();
case Expression:
return TemplateArgument(cast<PackExpansionExpr>(getAsExpr())->getPattern(),
isCanonicalExpr());
case TemplateExpansion:
return TemplateArgument(getAsTemplateOrTemplatePattern());
case Declaration:
case Integral:
case StructuralValue:
case Pack:
case Null:
case Template:
case NullPtr:
return TemplateArgument();
}
llvm_unreachable("Invalid TemplateArgument Kind!");
}
void TemplateArgument::print(const PrintingPolicy &Policy, raw_ostream &Out,
bool IncludeType) const {
switch (getKind()) {
case Null:
Out << "(no value)";
break;
case Type: {
PrintingPolicy SubPolicy(Policy);
SubPolicy.SuppressStrongLifetime = true;
getAsType().print(Out, SubPolicy);
break;
}
case Declaration: {
ValueDecl *VD = getAsDecl();
if (getParamTypeForDecl()->isRecordType()) {
if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(VD)) {
TPO->getType().getUnqualifiedType().print(Out, Policy);
TPO->printAsInit(Out, Policy);
break;
}
}
if (needsAmpersandOnTemplateArg(getParamTypeForDecl(), VD->getType()))
Out << "&";
VD->printQualifiedName(Out);
break;
}
case StructuralValue:
getAsStructuralValue().printPretty(Out, Policy, getStructuralValueType());
break;
case NullPtr:
// FIXME: Include the type if it's not obvious from the context.
Out << "nullptr";
break;
case Template: {
getAsTemplate().print(Out, Policy);
break;
}
case TemplateExpansion:
getAsTemplateOrTemplatePattern().print(Out, Policy);
Out << "...";
break;
case Integral:
printIntegral(*this, Out, Policy, IncludeType);
break;
case Expression: {
PrintingPolicy ExprPolicy = Policy;
ExprPolicy.PrintAsCanonical = isCanonicalExpr();
getAsExpr()->printPretty(Out, nullptr, ExprPolicy);
break;
}
case Pack:
Out << "<";
bool First = true;
for (const auto &P : pack_elements()) {
if (First)
First = false;
else
Out << ", ";
P.print(Policy, Out, IncludeType);
}
Out << ">";
break;
}
}
//===----------------------------------------------------------------------===//
// TemplateArgumentLoc Implementation
//===----------------------------------------------------------------------===//
TemplateArgumentLoc::TemplateArgumentLoc(ASTContext &Ctx,
const TemplateArgument &Argument,
SourceLocation TemplateKWLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateNameLoc,
SourceLocation EllipsisLoc)
: Argument(Argument),
LocInfo(Ctx, TemplateKWLoc, QualifierLoc, TemplateNameLoc, EllipsisLoc) {
assert(Argument.getKind() == TemplateArgument::Template ||
Argument.getKind() == TemplateArgument::TemplateExpansion);
assert(QualifierLoc.getNestedNameSpecifier() ==
Argument.getAsTemplateOrTemplatePattern().getQualifier());
}
NestedNameSpecifierLoc TemplateArgumentLoc::getTemplateQualifierLoc() const {
if (Argument.getKind() != TemplateArgument::Template &&
Argument.getKind() != TemplateArgument::TemplateExpansion)
return NestedNameSpecifierLoc();
return NestedNameSpecifierLoc(
Argument.getAsTemplateOrTemplatePattern().getQualifier(),
LocInfo.getTemplate()->QualifierLocData);
}
SourceRange TemplateArgumentLoc::getSourceRange() const {
switch (Argument.getKind()) {
case TemplateArgument::Expression:
return getSourceExpression()->getSourceRange();
case TemplateArgument::Declaration:
return getSourceDeclExpression()->getSourceRange();
case TemplateArgument::NullPtr:
return getSourceNullPtrExpression()->getSourceRange();
case TemplateArgument::Type:
if (TypeSourceInfo *TSI = getTypeSourceInfo())
return TSI->getTypeLoc().getSourceRange();
else
return SourceRange();
case TemplateArgument::Template:
if (getTemplateQualifierLoc())
return SourceRange(getTemplateQualifierLoc().getBeginLoc(),
getTemplateNameLoc());
return SourceRange(getTemplateNameLoc());
case TemplateArgument::TemplateExpansion:
if (getTemplateQualifierLoc())
return SourceRange(getTemplateQualifierLoc().getBeginLoc(),
getTemplateEllipsisLoc());
return SourceRange(getTemplateNameLoc(), getTemplateEllipsisLoc());
case TemplateArgument::Integral:
return getSourceIntegralExpression()->getSourceRange();
case TemplateArgument::StructuralValue:
return getSourceStructuralValueExpression()->getSourceRange();
case TemplateArgument::Pack:
case TemplateArgument::Null:
return SourceRange();
}
llvm_unreachable("Invalid TemplateArgument Kind!");
}
template <typename T>
static const T &DiagTemplateArg(const T &DB, const TemplateArgument &Arg) {
switch (Arg.getKind()) {
case TemplateArgument::Null:
// This is bad, but not as bad as crashing because of argument
// count mismatches.
return DB << "(null template argument)";
case TemplateArgument::Type:
return DB << Arg.getAsType();
case TemplateArgument::Declaration:
return DB << Arg.getAsDecl();
case TemplateArgument::NullPtr:
return DB << "nullptr";
case TemplateArgument::Integral:
return DB << toString(Arg.getAsIntegral(), 10);
case TemplateArgument::StructuralValue: {
// FIXME: We're guessing at LangOptions!
SmallString<32> Str;
llvm::raw_svector_ostream OS(Str);
LangOptions LangOpts;
LangOpts.CPlusPlus = true;
PrintingPolicy Policy(LangOpts);
Arg.getAsStructuralValue().printPretty(OS, Policy,
Arg.getStructuralValueType());
return DB << OS.str();
}
case TemplateArgument::Template:
return DB << Arg.getAsTemplate();
case TemplateArgument::TemplateExpansion:
return DB << Arg.getAsTemplateOrTemplatePattern() << "...";
case TemplateArgument::Expression:
// FIXME: Support printing expressions as canonical
return DB << Arg.getAsExpr();
case TemplateArgument::Pack: {
// FIXME: We're guessing at LangOptions!
SmallString<32> Str;
llvm::raw_svector_ostream OS(Str);
LangOptions LangOpts;
LangOpts.CPlusPlus = true;
PrintingPolicy Policy(LangOpts);
Arg.print(Policy, OS, /*IncludeType*/ true);
return DB << OS.str();
}
}
llvm_unreachable("Invalid TemplateArgument Kind!");
}
const StreamingDiagnostic &clang::operator<<(const StreamingDiagnostic &DB,
const TemplateArgument &Arg) {
return DiagTemplateArg(DB, Arg);
}
clang::TemplateArgumentLocInfo::TemplateArgumentLocInfo(
ASTContext &Ctx, SourceLocation TemplateKWLoc,
NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateNameLoc,
SourceLocation EllipsisLoc) {
TemplateTemplateArgLocInfo *Template = new (Ctx) TemplateTemplateArgLocInfo;
Template->TemplateKwLoc = TemplateKWLoc;
Template->QualifierLocData = QualifierLoc.getOpaqueData();
Template->TemplateNameLoc = TemplateNameLoc;
Template->EllipsisLoc = EllipsisLoc;
Pointer = Template;
}
const ASTTemplateArgumentListInfo *
ASTTemplateArgumentListInfo::Create(const ASTContext &C,
const TemplateArgumentListInfo &List) {
std::size_t size = totalSizeToAlloc<TemplateArgumentLoc>(List.size());
void *Mem = C.Allocate(size, alignof(ASTTemplateArgumentListInfo));
return new (Mem) ASTTemplateArgumentListInfo(List);
}
const ASTTemplateArgumentListInfo *
ASTTemplateArgumentListInfo::Create(const ASTContext &C,
const ASTTemplateArgumentListInfo *List) {
if (!List)
return nullptr;
std::size_t size =
totalSizeToAlloc<TemplateArgumentLoc>(List->getNumTemplateArgs());
void *Mem = C.Allocate(size, alignof(ASTTemplateArgumentListInfo));
return new (Mem) ASTTemplateArgumentListInfo(List);
}
ASTTemplateArgumentListInfo::ASTTemplateArgumentListInfo(
const TemplateArgumentListInfo &Info) {
LAngleLoc = Info.getLAngleLoc();
RAngleLoc = Info.getRAngleLoc();
NumTemplateArgs = Info.size();
TemplateArgumentLoc *ArgBuffer = getTrailingObjects();
for (unsigned i = 0; i != NumTemplateArgs; ++i)
new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
}
ASTTemplateArgumentListInfo::ASTTemplateArgumentListInfo(
const ASTTemplateArgumentListInfo *Info) {
LAngleLoc = Info->getLAngleLoc();
RAngleLoc = Info->getRAngleLoc();
NumTemplateArgs = Info->getNumTemplateArgs();
TemplateArgumentLoc *ArgBuffer = getTrailingObjects();
for (unsigned i = 0; i != NumTemplateArgs; ++i)
new (&ArgBuffer[i]) TemplateArgumentLoc((*Info)[i]);
}
void ASTTemplateKWAndArgsInfo::initializeFrom(
SourceLocation TemplateKWLoc, const TemplateArgumentListInfo &Info,
TemplateArgumentLoc *OutArgArray) {
this->TemplateKWLoc = TemplateKWLoc;
LAngleLoc = Info.getLAngleLoc();
RAngleLoc = Info.getRAngleLoc();
NumTemplateArgs = Info.size();
for (unsigned i = 0; i != NumTemplateArgs; ++i)
new (&OutArgArray[i]) TemplateArgumentLoc(Info[i]);
}
void ASTTemplateKWAndArgsInfo::initializeFrom(SourceLocation TemplateKWLoc) {
assert(TemplateKWLoc.isValid());
LAngleLoc = SourceLocation();
RAngleLoc = SourceLocation();
this->TemplateKWLoc = TemplateKWLoc;
NumTemplateArgs = 0;
}
void ASTTemplateKWAndArgsInfo::initializeFrom(
SourceLocation TemplateKWLoc, const TemplateArgumentListInfo &Info,
TemplateArgumentLoc *OutArgArray, TemplateArgumentDependence &Deps) {
this->TemplateKWLoc = TemplateKWLoc;
LAngleLoc = Info.getLAngleLoc();
RAngleLoc = Info.getRAngleLoc();
NumTemplateArgs = Info.size();
for (unsigned i = 0; i != NumTemplateArgs; ++i) {
Deps |= Info[i].getArgument().getDependence();
new (&OutArgArray[i]) TemplateArgumentLoc(Info[i]);
}
}
void ASTTemplateKWAndArgsInfo::copyInto(const TemplateArgumentLoc *ArgArray,
TemplateArgumentListInfo &Info) const {
Info.setLAngleLoc(LAngleLoc);
Info.setRAngleLoc(RAngleLoc);
for (unsigned I = 0; I != NumTemplateArgs; ++I)
Info.addArgument(ArgArray[I]);
}