338 lines
13 KiB
C++
338 lines
13 KiB
C++
//===- SparseTensorCodegen.cpp - Sparse tensor primitives conversion ------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// A pass that converts sparse tensor types and primitives to actual compiler
|
|
// visible buffers and actual compiler IR that implements these primitives on
|
|
// the selected sparse tensor storage schemes. This pass provides an alternative
|
|
// to the SparseTensorConversion pass, eliminating the dependence on a runtime
|
|
// support library, and providing much more opportunities for subsequent
|
|
// compiler optimization of the generated code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodegenUtils.h"
|
|
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
|
|
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::sparse_tensor;
|
|
|
|
namespace {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Reorders original dimension to stored dimension.
|
|
static unsigned toStored(const SparseTensorEncodingAttr &enc, unsigned i) {
|
|
auto order = enc.getDimOrdering();
|
|
if (order) {
|
|
assert(order.isPermutation());
|
|
return order.getPermutedPosition(i);
|
|
}
|
|
return i;
|
|
}
|
|
|
|
/// Maps a sparse tensor type to the appropriate compounded buffers.
|
|
static Optional<Type> convertSparseTensorType(Type type) {
|
|
auto enc = getSparseTensorEncoding(type);
|
|
if (!enc)
|
|
return llvm::None;
|
|
// Construct the basic types.
|
|
auto context = type.getContext();
|
|
unsigned idxWidth = enc.getIndexBitWidth();
|
|
unsigned ptrWidth = enc.getPointerBitWidth();
|
|
RankedTensorType rType = type.cast<RankedTensorType>();
|
|
Type indexType = IndexType::get(context);
|
|
Type idxType = idxWidth ? IntegerType::get(context, idxWidth) : indexType;
|
|
Type ptrType = ptrWidth ? IntegerType::get(context, ptrWidth) : indexType;
|
|
Type eltType = rType.getElementType();
|
|
//
|
|
// Sparse tensor storage for rank-dimensional tensor is organized as a
|
|
// single compound type with the following fields:
|
|
//
|
|
// struct {
|
|
// memref<rank x index> dimSizes ; size in each dimension
|
|
// ; per-dimension d:
|
|
// ; if dense:
|
|
// <nothing>
|
|
// ; if compresed:
|
|
// memref<? x ptr> pointers-d ; pointers for sparse dim d
|
|
// memref<? x idx> indices-d ; indices for sparse dim d
|
|
// ; if singleton:
|
|
// memref<? x idx> indices-d ; indices for singleton dim d
|
|
// memref<? x eltType> values ; values
|
|
// };
|
|
//
|
|
unsigned rank = rType.getShape().size();
|
|
SmallVector<Type, 8> fields;
|
|
// The dimSizes array.
|
|
fields.push_back(MemRefType::get({rank}, indexType));
|
|
// Per-dimension storage.
|
|
for (unsigned r = 0; r < rank; r++) {
|
|
// Dimension level types apply in order to the reordered dimension.
|
|
// As a result, the compound type can be constructed directly in the given
|
|
// order. Clients of this type know what field is what from the sparse
|
|
// tensor type.
|
|
switch (enc.getDimLevelType()[r]) {
|
|
case SparseTensorEncodingAttr::DimLevelType::Dense:
|
|
break;
|
|
case SparseTensorEncodingAttr::DimLevelType::Compressed:
|
|
case SparseTensorEncodingAttr::DimLevelType::CompressedNu:
|
|
case SparseTensorEncodingAttr::DimLevelType::CompressedNo:
|
|
case SparseTensorEncodingAttr::DimLevelType::CompressedNuNo:
|
|
fields.push_back(MemRefType::get({ShapedType::kDynamicSize}, ptrType));
|
|
fields.push_back(MemRefType::get({ShapedType::kDynamicSize}, idxType));
|
|
break;
|
|
case SparseTensorEncodingAttr::DimLevelType::Singleton:
|
|
case SparseTensorEncodingAttr::DimLevelType::SingletonNu:
|
|
case SparseTensorEncodingAttr::DimLevelType::SingletonNo:
|
|
case SparseTensorEncodingAttr::DimLevelType::SingletonNuNo:
|
|
fields.push_back(MemRefType::get({ShapedType::kDynamicSize}, idxType));
|
|
break;
|
|
}
|
|
}
|
|
// The values array.
|
|
fields.push_back(MemRefType::get({ShapedType::kDynamicSize}, eltType));
|
|
// Sparse tensor storage (temporarily) lives in a tuple. This allows a
|
|
// simple 1:1 type conversion during codegen. A subsequent pass uses
|
|
// a 1:N type conversion to expand the tuple into its fields.
|
|
return TupleType::get(context, fields);
|
|
}
|
|
|
|
// Returns field index for pointers (d), indices (d) for set field.
|
|
static unsigned getFieldIndex(Type type, unsigned ptrDim, unsigned idxDim) {
|
|
auto enc = getSparseTensorEncoding(type);
|
|
assert(enc);
|
|
RankedTensorType rType = type.cast<RankedTensorType>();
|
|
unsigned field = 1; // start at DimSizes;
|
|
unsigned ptr = 0;
|
|
unsigned idx = 0;
|
|
for (unsigned r = 0, rank = rType.getShape().size(); r < rank; r++) {
|
|
switch (enc.getDimLevelType()[r]) {
|
|
case SparseTensorEncodingAttr::DimLevelType::Dense:
|
|
break; // no fields
|
|
case SparseTensorEncodingAttr::DimLevelType::Compressed:
|
|
case SparseTensorEncodingAttr::DimLevelType::CompressedNu:
|
|
case SparseTensorEncodingAttr::DimLevelType::CompressedNo:
|
|
case SparseTensorEncodingAttr::DimLevelType::CompressedNuNo:
|
|
if (ptr++ == ptrDim)
|
|
return field;
|
|
field++;
|
|
if (idx++ == idxDim)
|
|
return field;
|
|
field++;
|
|
break;
|
|
case SparseTensorEncodingAttr::DimLevelType::Singleton:
|
|
case SparseTensorEncodingAttr::DimLevelType::SingletonNu:
|
|
case SparseTensorEncodingAttr::DimLevelType::SingletonNo:
|
|
case SparseTensorEncodingAttr::DimLevelType::SingletonNuNo:
|
|
if (idx++ == idxDim)
|
|
return field;
|
|
field++;
|
|
break;
|
|
}
|
|
}
|
|
llvm_unreachable("failed to find ptr/idx field index");
|
|
return -1;
|
|
}
|
|
|
|
/// Returns field type in tuple at given index.
|
|
static Type getFieldType(Value tuple, unsigned field) {
|
|
return tuple.getType().cast<TupleType>().getType(field);
|
|
}
|
|
|
|
/// Creates tuple get operation at given index.
|
|
static Value createTupleGet(OpBuilder &builder, Location loc, Value tuple,
|
|
unsigned field) {
|
|
Type indexType = builder.getIndexType();
|
|
return builder.create<StorageGetOp>(loc, getFieldType(tuple, field), tuple,
|
|
builder.getIntegerAttr(indexType, field));
|
|
}
|
|
|
|
/// Returns integral constant, if defined.
|
|
static Optional<int64_t> getConstantInt(Value val) {
|
|
if (auto constantOp = val.getDefiningOp<arith::ConstantOp>())
|
|
return constantOp.getValue().cast<IntegerAttr>().getInt();
|
|
return {};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Codegen rules.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Sparse codegen rule for returns.
|
|
class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
rewriter.replaceOpWithNewOp<func::ReturnOp>(op, adaptor.getOperands());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for dimension accesses.
|
|
class SparseDimOpConverter : public OpConversionPattern<tensor::DimOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Only rewrite annotated DimOp with constant index.
|
|
auto enc = getSparseTensorEncoding(op.getSource().getType());
|
|
if (!enc)
|
|
return failure();
|
|
Optional<int64_t> index = getConstantInt(adaptor.getIndex());
|
|
if (!index)
|
|
return failure();
|
|
// Access into static dimension can query original type directly.
|
|
// Note that this is typically already done by DimOp's folding.
|
|
Location loc = op->getLoc();
|
|
auto shape = op.getSource().getType().cast<RankedTensorType>().getShape();
|
|
if (!ShapedType::isDynamic(shape[*index])) {
|
|
rewriter.replaceOp(op, constantIndex(rewriter, loc, shape[*index]));
|
|
return success();
|
|
}
|
|
// Any other query can consult the dimSizes array at field 0 using,
|
|
// accounting for the reordering applied to the sparse storage.
|
|
Value tuple = adaptor.getSource();
|
|
Value dimSizes = createTupleGet(rewriter, loc, tuple, 0);
|
|
rewriter.replaceOpWithNewOp<memref::LoadOp>(
|
|
op, dimSizes, constantIndex(rewriter, loc, toStored(enc, *index)));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for trivial tensor casts.
|
|
class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Only rewrite identically annotated source/dest.
|
|
auto encDst = getSparseTensorEncoding(op.getType());
|
|
auto encSrc = getSparseTensorEncoding(op.getSource().getType());
|
|
if (!encDst || encDst != encSrc)
|
|
return failure();
|
|
rewriter.replaceOp(op, adaptor.getOperands());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for the dealloc operator.
|
|
class SparseTensorDeallocConverter
|
|
: public OpConversionPattern<bufferization::DeallocTensorOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(bufferization::DeallocTensorOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto enc = getSparseTensorEncoding(op.getTensor().getType());
|
|
if (!enc)
|
|
return failure();
|
|
// Replace the tuple deallocation with field deallocations.
|
|
Location loc = op->getLoc();
|
|
Value tuple = adaptor.getTensor();
|
|
for (unsigned i = 0, sz = tuple.getType().cast<TupleType>().size(); i < sz;
|
|
i++) {
|
|
Value mem = createTupleGet(rewriter, loc, tuple, i);
|
|
rewriter.create<memref::DeallocOp>(loc, mem);
|
|
}
|
|
rewriter.eraseOp(op);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for pointer accesses.
|
|
class SparseToPointersConverter : public OpConversionPattern<ToPointersOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Optional<int64_t> index = getConstantInt(adaptor.getOperands()[1]);
|
|
if (!index)
|
|
return failure();
|
|
// Replace the requested pointer access with corresponding field.
|
|
Location loc = op->getLoc();
|
|
Value tuple = adaptor.getTensor();
|
|
unsigned i = getFieldIndex(op.getTensor().getType(), /*ptrDim=*/*index, -1);
|
|
rewriter.replaceOp(op, createTupleGet(rewriter, loc, tuple, i));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for index accesses.
|
|
class SparseToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Optional<int64_t> index = getConstantInt(adaptor.getOperands()[1]);
|
|
if (!index)
|
|
return failure();
|
|
// Replace the requested indices access with corresponding field.
|
|
Location loc = op->getLoc();
|
|
Value tuple = adaptor.getTensor();
|
|
unsigned i = getFieldIndex(op.getTensor().getType(), -1, /*idxDim=*/*index);
|
|
rewriter.replaceOp(op, createTupleGet(rewriter, loc, tuple, i));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for value accesses.
|
|
class SparseToValuesConverter : public OpConversionPattern<ToValuesOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Replace the requested values access with corresponding field.
|
|
Location loc = op->getLoc();
|
|
Value tuple = adaptor.getTensor();
|
|
unsigned i = tuple.getType().cast<TupleType>().size() - 1; // last
|
|
rewriter.replaceOp(op, createTupleGet(rewriter, loc, tuple, i));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Sparse tensor type conversion into an actual buffer.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
mlir::SparseTensorTypeToBufferConverter::SparseTensorTypeToBufferConverter() {
|
|
addConversion([](Type type) { return type; });
|
|
addConversion(convertSparseTensorType);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Public method for populating conversion rules.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Populates the given patterns list with conversion rules required for
|
|
/// the sparsification of linear algebra operations.
|
|
void mlir::populateSparseTensorCodegenPatterns(TypeConverter &typeConverter,
|
|
RewritePatternSet &patterns) {
|
|
patterns.add<SparseReturnConverter, SparseDimOpConverter, SparseCastConverter,
|
|
SparseTensorDeallocConverter, SparseToPointersConverter,
|
|
SparseToIndicesConverter, SparseToValuesConverter>(
|
|
typeConverter, patterns.getContext());
|
|
}
|