Jacques Pienaar 3012f35f87 [flang] Updated FIR dialect to _Both
Change dialect (and remove now redundant accessors) to generate both
form of accessors of being generated. Tried to keep this change
reasonably minimal (this also includes keeping note about not generating
getType accessor to avoid shadowing).

Differential Revision: https://reviews.llvm.org/D115420
2021-12-09 15:05:13 -08:00

821 lines
32 KiB
C++

//===-- ArrayValueCopy.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Support/FIRContext.h"
#include "flang/Optimizer/Transforms/Factory.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "flang-array-value-copy"
using namespace fir;
using OperationUseMapT = llvm::DenseMap<mlir::Operation *, mlir::Operation *>;
namespace {
/// Array copy analysis.
/// Perform an interference analysis between array values.
///
/// Lowering will generate a sequence of the following form.
/// ```mlir
/// %a_1 = fir.array_load %array_1(%shape) : ...
/// ...
/// %a_j = fir.array_load %array_j(%shape) : ...
/// ...
/// %a_n = fir.array_load %array_n(%shape) : ...
/// ...
/// %v_i = fir.array_fetch %a_i, ...
/// %a_j1 = fir.array_update %a_j, ...
/// ...
/// fir.array_merge_store %a_j, %a_jn to %array_j : ...
/// ```
///
/// The analysis is to determine if there are any conflicts. A conflict is when
/// one the following cases occurs.
///
/// 1. There is an `array_update` to an array value, a_j, such that a_j was
/// loaded from the same array memory reference (array_j) but with a different
/// shape as the other array values a_i, where i != j. [Possible overlapping
/// arrays.]
///
/// 2. There is either an array_fetch or array_update of a_j with a different
/// set of index values. [Possible loop-carried dependence.]
///
/// If none of the array values overlap in storage and the accesses are not
/// loop-carried, then the arrays are conflict-free and no copies are required.
class ArrayCopyAnalysis {
public:
using ConflictSetT = llvm::SmallPtrSet<mlir::Operation *, 16>;
using UseSetT = llvm::SmallPtrSet<mlir::OpOperand *, 8>;
using LoadMapSetsT =
llvm::DenseMap<mlir::Operation *, SmallVector<Operation *>>;
ArrayCopyAnalysis(mlir::Operation *op) : operation{op} { construct(op); }
mlir::Operation *getOperation() const { return operation; }
/// Return true iff the `array_merge_store` has potential conflicts.
bool hasPotentialConflict(mlir::Operation *op) const {
LLVM_DEBUG(llvm::dbgs()
<< "looking for a conflict on " << *op
<< " and the set has a total of " << conflicts.size() << '\n');
return conflicts.contains(op);
}
/// Return the use map. The use map maps array fetch and update operations
/// back to the array load that is the original source of the array value.
const OperationUseMapT &getUseMap() const { return useMap; }
/// Find all the array operations that access the array value that is loaded
/// by the array load operation, `load`.
const llvm::SmallVector<mlir::Operation *> &arrayAccesses(ArrayLoadOp load);
private:
void construct(mlir::Operation *topLevelOp);
mlir::Operation *operation; // operation that analysis ran upon
ConflictSetT conflicts; // set of conflicts (loads and merge stores)
OperationUseMapT useMap;
LoadMapSetsT loadMapSets;
};
} // namespace
namespace {
/// Helper class to collect all array operations that produced an array value.
class ReachCollector {
private:
// If provided, the `loopRegion` is the body of a loop that produces the array
// of interest.
ReachCollector(llvm::SmallVectorImpl<mlir::Operation *> &reach,
mlir::Region *loopRegion)
: reach{reach}, loopRegion{loopRegion} {}
void collectArrayAccessFrom(mlir::Operation *op, mlir::ValueRange range) {
llvm::errs() << "COLLECT " << *op << "\n";
if (range.empty()) {
collectArrayAccessFrom(op, mlir::Value{});
return;
}
for (mlir::Value v : range)
collectArrayAccessFrom(v);
}
// TODO: Replace recursive algorithm on def-use chain with an iterative one
// with an explicit stack.
void collectArrayAccessFrom(mlir::Operation *op, mlir::Value val) {
// `val` is defined by an Op, process the defining Op.
// If `val` is defined by a region containing Op, we want to drill down
// and through that Op's region(s).
llvm::errs() << "COLLECT " << *op << "\n";
LLVM_DEBUG(llvm::dbgs() << "popset: " << *op << '\n');
auto popFn = [&](auto rop) {
assert(val && "op must have a result value");
auto resNum = val.cast<mlir::OpResult>().getResultNumber();
llvm::SmallVector<mlir::Value> results;
rop.resultToSourceOps(results, resNum);
for (auto u : results)
collectArrayAccessFrom(u);
};
if (auto rop = mlir::dyn_cast<fir::DoLoopOp>(op)) {
popFn(rop);
return;
}
if (auto rop = mlir::dyn_cast<fir::IfOp>(op)) {
popFn(rop);
return;
}
if (auto mergeStore = mlir::dyn_cast<ArrayMergeStoreOp>(op)) {
if (opIsInsideLoops(mergeStore))
collectArrayAccessFrom(mergeStore.sequence());
return;
}
if (mlir::isa<AllocaOp, AllocMemOp>(op)) {
// Look for any stores inside the loops, and collect an array operation
// that produced the value being stored to it.
for (mlir::Operation *user : op->getUsers())
if (auto store = mlir::dyn_cast<fir::StoreOp>(user))
if (opIsInsideLoops(store))
collectArrayAccessFrom(store.value());
return;
}
// Otherwise, Op does not contain a region so just chase its operands.
if (mlir::isa<ArrayLoadOp, ArrayUpdateOp, ArrayModifyOp, ArrayFetchOp>(
op)) {
LLVM_DEBUG(llvm::dbgs() << "add " << *op << " to reachable set\n");
reach.emplace_back(op);
}
// Array modify assignment is performed on the result. So the analysis
// must look at the what is done with the result.
if (mlir::isa<ArrayModifyOp>(op))
for (mlir::Operation *user : op->getResult(0).getUsers())
followUsers(user);
for (auto u : op->getOperands())
collectArrayAccessFrom(u);
}
void collectArrayAccessFrom(mlir::BlockArgument ba) {
auto *parent = ba.getOwner()->getParentOp();
// If inside an Op holding a region, the block argument corresponds to an
// argument passed to the containing Op.
auto popFn = [&](auto rop) {
collectArrayAccessFrom(rop.blockArgToSourceOp(ba.getArgNumber()));
};
if (auto rop = mlir::dyn_cast<DoLoopOp>(parent)) {
popFn(rop);
return;
}
if (auto rop = mlir::dyn_cast<IterWhileOp>(parent)) {
popFn(rop);
return;
}
// Otherwise, a block argument is provided via the pred blocks.
for (auto *pred : ba.getOwner()->getPredecessors()) {
auto u = pred->getTerminator()->getOperand(ba.getArgNumber());
collectArrayAccessFrom(u);
}
}
// Recursively trace operands to find all array operations relating to the
// values merged.
void collectArrayAccessFrom(mlir::Value val) {
if (!val || visited.contains(val))
return;
visited.insert(val);
// Process a block argument.
if (auto ba = val.dyn_cast<mlir::BlockArgument>()) {
collectArrayAccessFrom(ba);
return;
}
// Process an Op.
if (auto *op = val.getDefiningOp()) {
collectArrayAccessFrom(op, val);
return;
}
fir::emitFatalError(val.getLoc(), "unhandled value");
}
/// Is \op inside the loop nest region ?
bool opIsInsideLoops(mlir::Operation *op) const {
return loopRegion && loopRegion->isAncestor(op->getParentRegion());
}
/// Recursively trace the use of an operation results, calling
/// collectArrayAccessFrom on the direct and indirect user operands.
/// TODO: Replace recursive algorithm on def-use chain with an iterative one
/// with an explicit stack.
void followUsers(mlir::Operation *op) {
for (auto userOperand : op->getOperands())
collectArrayAccessFrom(userOperand);
// Go through potential converts/coordinate_op.
for (mlir::Operation *indirectUser : op->getUsers())
followUsers(indirectUser);
}
llvm::SmallVectorImpl<mlir::Operation *> &reach;
llvm::SmallPtrSet<mlir::Value, 16> visited;
/// Region of the loops nest that produced the array value.
mlir::Region *loopRegion;
public:
/// Return all ops that produce the array value that is stored into the
/// `array_merge_store`.
static void reachingValues(llvm::SmallVectorImpl<mlir::Operation *> &reach,
mlir::Value seq) {
reach.clear();
mlir::Region *loopRegion = nullptr;
// Only `DoLoopOp` is tested here since array operations are currently only
// associated with this kind of loop.
if (auto doLoop =
mlir::dyn_cast_or_null<fir::DoLoopOp>(seq.getDefiningOp()))
loopRegion = &doLoop->getRegion(0);
ReachCollector collector(reach, loopRegion);
collector.collectArrayAccessFrom(seq);
}
};
} // namespace
/// Find all the array operations that access the array value that is loaded by
/// the array load operation, `load`.
const llvm::SmallVector<mlir::Operation *> &
ArrayCopyAnalysis::arrayAccesses(ArrayLoadOp load) {
auto lmIter = loadMapSets.find(load);
if (lmIter != loadMapSets.end())
return lmIter->getSecond();
llvm::SmallVector<mlir::Operation *> accesses;
UseSetT visited;
llvm::SmallVector<mlir::OpOperand *> queue; // uses of ArrayLoad[orig]
auto appendToQueue = [&](mlir::Value val) {
for (mlir::OpOperand &use : val.getUses())
if (!visited.count(&use)) {
visited.insert(&use);
queue.push_back(&use);
}
};
// Build the set of uses of `original`.
// let USES = { uses of original fir.load }
appendToQueue(load);
// Process the worklist until done.
while (!queue.empty()) {
mlir::OpOperand *operand = queue.pop_back_val();
mlir::Operation *owner = operand->getOwner();
auto structuredLoop = [&](auto ro) {
if (auto blockArg = ro.iterArgToBlockArg(operand->get())) {
int64_t arg = blockArg.getArgNumber();
mlir::Value output = ro.getResult(ro.finalValue() ? arg : arg - 1);
appendToQueue(output);
appendToQueue(blockArg);
}
};
// TODO: this need to be updated to use the control-flow interface.
auto branchOp = [&](mlir::Block *dest, OperandRange operands) {
if (operands.empty())
return;
// Check if this operand is within the range.
unsigned operandIndex = operand->getOperandNumber();
unsigned operandsStart = operands.getBeginOperandIndex();
if (operandIndex < operandsStart ||
operandIndex >= (operandsStart + operands.size()))
return;
// Index the successor.
unsigned argIndex = operandIndex - operandsStart;
appendToQueue(dest->getArgument(argIndex));
};
// Thread uses into structured loop bodies and return value uses.
if (auto ro = mlir::dyn_cast<DoLoopOp>(owner)) {
structuredLoop(ro);
} else if (auto ro = mlir::dyn_cast<IterWhileOp>(owner)) {
structuredLoop(ro);
} else if (auto rs = mlir::dyn_cast<ResultOp>(owner)) {
// Thread any uses of fir.if that return the marked array value.
if (auto ifOp = rs->getParentOfType<fir::IfOp>())
appendToQueue(ifOp.getResult(operand->getOperandNumber()));
} else if (mlir::isa<ArrayFetchOp>(owner)) {
// Keep track of array value fetches.
LLVM_DEBUG(llvm::dbgs()
<< "add fetch {" << *owner << "} to array value set\n");
accesses.push_back(owner);
} else if (auto update = mlir::dyn_cast<ArrayUpdateOp>(owner)) {
// Keep track of array value updates and thread the return value uses.
LLVM_DEBUG(llvm::dbgs()
<< "add update {" << *owner << "} to array value set\n");
accesses.push_back(owner);
appendToQueue(update.getResult());
} else if (auto update = mlir::dyn_cast<ArrayModifyOp>(owner)) {
// Keep track of array value modification and thread the return value
// uses.
LLVM_DEBUG(llvm::dbgs()
<< "add modify {" << *owner << "} to array value set\n");
accesses.push_back(owner);
appendToQueue(update.getResult(1));
} else if (auto br = mlir::dyn_cast<mlir::BranchOp>(owner)) {
branchOp(br.getDest(), br.getDestOperands());
} else if (auto br = mlir::dyn_cast<mlir::CondBranchOp>(owner)) {
branchOp(br.getTrueDest(), br.getTrueOperands());
branchOp(br.getFalseDest(), br.getFalseOperands());
} else if (mlir::isa<ArrayMergeStoreOp>(owner)) {
// do nothing
} else {
llvm::report_fatal_error("array value reached unexpected op");
}
}
return loadMapSets.insert({load, accesses}).first->getSecond();
}
/// Is there a conflict between the array value that was updated and to be
/// stored to `st` and the set of arrays loaded (`reach`) and used to compute
/// the updated value?
static bool conflictOnLoad(llvm::ArrayRef<mlir::Operation *> reach,
ArrayMergeStoreOp st) {
mlir::Value load;
mlir::Value addr = st.memref();
auto stEleTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType());
for (auto *op : reach) {
auto ld = mlir::dyn_cast<ArrayLoadOp>(op);
if (!ld)
continue;
mlir::Type ldTy = ld.memref().getType();
if (auto boxTy = ldTy.dyn_cast<fir::BoxType>())
ldTy = boxTy.getEleTy();
if (ldTy.isa<fir::PointerType>() && stEleTy == dyn_cast_ptrEleTy(ldTy))
return true;
if (ld.memref() == addr) {
if (ld.getResult() != st.original())
return true;
if (load)
return true;
load = ld;
}
}
return false;
}
/// Check if there is any potential conflict in the chained update operations
/// (ArrayFetchOp, ArrayUpdateOp, ArrayModifyOp) while merging back to the
/// array. A potential conflict is detected if two operations work on the same
/// indices.
static bool conflictOnMerge(llvm::ArrayRef<mlir::Operation *> accesses) {
if (accesses.size() < 2)
return false;
llvm::SmallVector<mlir::Value> indices;
LLVM_DEBUG(llvm::dbgs() << "check merge conflict on with " << accesses.size()
<< " accesses on the list\n");
for (auto *op : accesses) {
assert((mlir::isa<ArrayFetchOp, ArrayUpdateOp, ArrayModifyOp>(op)) &&
"unexpected operation in analysis");
llvm::SmallVector<mlir::Value> compareVector;
if (auto u = mlir::dyn_cast<ArrayUpdateOp>(op)) {
if (indices.empty()) {
indices = u.indices();
continue;
}
compareVector = u.indices();
} else if (auto f = mlir::dyn_cast<ArrayModifyOp>(op)) {
if (indices.empty()) {
indices = f.indices();
continue;
}
compareVector = f.indices();
} else if (auto f = mlir::dyn_cast<ArrayFetchOp>(op)) {
if (indices.empty()) {
indices = f.indices();
continue;
}
compareVector = f.indices();
}
if (compareVector != indices)
return true;
LLVM_DEBUG(llvm::dbgs() << "vectors compare equal\n");
}
return false;
}
// Are either of types of conflicts present?
inline bool conflictDetected(llvm::ArrayRef<mlir::Operation *> reach,
llvm::ArrayRef<mlir::Operation *> accesses,
ArrayMergeStoreOp st) {
return conflictOnLoad(reach, st) || conflictOnMerge(accesses);
}
/// Constructor of the array copy analysis.
/// This performs the analysis and saves the intermediate results.
void ArrayCopyAnalysis::construct(mlir::Operation *topLevelOp) {
topLevelOp->walk([&](Operation *op) {
if (auto st = mlir::dyn_cast<fir::ArrayMergeStoreOp>(op)) {
llvm::SmallVector<Operation *> values;
ReachCollector::reachingValues(values, st.sequence());
const llvm::SmallVector<Operation *> &accesses =
arrayAccesses(mlir::cast<ArrayLoadOp>(st.original().getDefiningOp()));
if (conflictDetected(values, accesses, st)) {
LLVM_DEBUG(llvm::dbgs()
<< "CONFLICT: copies required for " << st << '\n'
<< " adding conflicts on: " << op << " and "
<< st.original() << '\n');
conflicts.insert(op);
conflicts.insert(st.original().getDefiningOp());
}
auto *ld = st.original().getDefiningOp();
LLVM_DEBUG(llvm::dbgs()
<< "map: adding {" << *ld << " -> " << st << "}\n");
useMap.insert({ld, op});
} else if (auto load = mlir::dyn_cast<ArrayLoadOp>(op)) {
const llvm::SmallVector<mlir::Operation *> &accesses =
arrayAccesses(load);
LLVM_DEBUG(llvm::dbgs() << "process load: " << load
<< ", accesses: " << accesses.size() << '\n');
for (auto *acc : accesses) {
LLVM_DEBUG(llvm::dbgs() << " access: " << *acc << '\n');
assert((mlir::isa<ArrayFetchOp, ArrayUpdateOp, ArrayModifyOp>(acc)));
if (!useMap.insert({acc, op}).second) {
mlir::emitError(
load.getLoc(),
"The parallel semantics of multiple array_merge_stores per "
"array_load are not supported.");
return;
}
LLVM_DEBUG(llvm::dbgs()
<< "map: adding {" << *acc << "} -> {" << load << "}\n");
}
}
});
}
namespace {
class ArrayLoadConversion : public mlir::OpRewritePattern<ArrayLoadOp> {
public:
using OpRewritePattern::OpRewritePattern;
mlir::LogicalResult
matchAndRewrite(ArrayLoadOp load,
mlir::PatternRewriter &rewriter) const override {
LLVM_DEBUG(llvm::dbgs() << "replace load " << load << " with undef.\n");
rewriter.replaceOpWithNewOp<UndefOp>(load, load.getType());
return mlir::success();
}
};
class ArrayMergeStoreConversion
: public mlir::OpRewritePattern<ArrayMergeStoreOp> {
public:
using OpRewritePattern::OpRewritePattern;
mlir::LogicalResult
matchAndRewrite(ArrayMergeStoreOp store,
mlir::PatternRewriter &rewriter) const override {
LLVM_DEBUG(llvm::dbgs() << "marking store " << store << " as dead.\n");
rewriter.eraseOp(store);
return mlir::success();
}
};
} // namespace
static mlir::Type getEleTy(mlir::Type ty) {
if (auto t = dyn_cast_ptrEleTy(ty))
ty = t;
if (auto t = ty.dyn_cast<SequenceType>())
ty = t.getEleTy();
// FIXME: keep ptr/heap/ref information.
return ReferenceType::get(ty);
}
// Extract extents from the ShapeOp/ShapeShiftOp into the result vector.
// TODO: getExtents on op should return a ValueRange instead of a vector.
static void getExtents(llvm::SmallVectorImpl<mlir::Value> &result,
mlir::Value shape) {
auto *shapeOp = shape.getDefiningOp();
if (auto s = mlir::dyn_cast<fir::ShapeOp>(shapeOp)) {
auto e = s.getExtents();
result.insert(result.end(), e.begin(), e.end());
return;
}
if (auto s = mlir::dyn_cast<fir::ShapeShiftOp>(shapeOp)) {
auto e = s.getExtents();
result.insert(result.end(), e.begin(), e.end());
return;
}
llvm::report_fatal_error("not a fir.shape/fir.shape_shift op");
}
// Place the extents of the array loaded by an ArrayLoadOp into the result
// vector and return a ShapeOp/ShapeShiftOp with the corresponding extents. If
// the ArrayLoadOp is loading a fir.box, code will be generated to read the
// extents from the fir.box, and a the retunred ShapeOp is built with the read
// extents.
// Otherwise, the extents will be extracted from the ShapeOp/ShapeShiftOp
// argument of the ArrayLoadOp that is returned.
static mlir::Value
getOrReadExtentsAndShapeOp(mlir::Location loc, mlir::PatternRewriter &rewriter,
fir::ArrayLoadOp loadOp,
llvm::SmallVectorImpl<mlir::Value> &result) {
assert(result.empty());
if (auto boxTy = loadOp.memref().getType().dyn_cast<fir::BoxType>()) {
auto rank = fir::dyn_cast_ptrOrBoxEleTy(boxTy)
.cast<fir::SequenceType>()
.getDimension();
auto idxTy = rewriter.getIndexType();
for (decltype(rank) dim = 0; dim < rank; ++dim) {
auto dimVal = rewriter.create<arith::ConstantIndexOp>(loc, dim);
auto dimInfo = rewriter.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy,
loadOp.memref(), dimVal);
result.emplace_back(dimInfo.getResult(1));
}
auto shapeType = fir::ShapeType::get(rewriter.getContext(), rank);
return rewriter.create<fir::ShapeOp>(loc, shapeType, result);
}
getExtents(result, loadOp.shape());
return loadOp.shape();
}
static mlir::Type toRefType(mlir::Type ty) {
if (fir::isa_ref_type(ty))
return ty;
return fir::ReferenceType::get(ty);
}
static mlir::Value
genCoorOp(mlir::PatternRewriter &rewriter, mlir::Location loc, mlir::Type eleTy,
mlir::Type resTy, mlir::Value alloc, mlir::Value shape,
mlir::Value slice, mlir::ValueRange indices,
mlir::ValueRange typeparams, bool skipOrig = false) {
llvm::SmallVector<mlir::Value> originated;
if (skipOrig)
originated.assign(indices.begin(), indices.end());
else
originated = fir::factory::originateIndices(loc, rewriter, alloc.getType(),
shape, indices);
auto seqTy = fir::dyn_cast_ptrOrBoxEleTy(alloc.getType());
assert(seqTy && seqTy.isa<fir::SequenceType>());
const auto dimension = seqTy.cast<fir::SequenceType>().getDimension();
mlir::Value result = rewriter.create<fir::ArrayCoorOp>(
loc, eleTy, alloc, shape, slice,
llvm::ArrayRef<mlir::Value>{originated}.take_front(dimension),
typeparams);
if (dimension < originated.size())
result = rewriter.create<fir::CoordinateOp>(
loc, resTy, result,
llvm::ArrayRef<mlir::Value>{originated}.drop_front(dimension));
return result;
}
namespace {
/// Conversion of fir.array_update and fir.array_modify Ops.
/// If there is a conflict for the update, then we need to perform a
/// copy-in/copy-out to preserve the original values of the array. If there is
/// no conflict, then it is save to eschew making any copies.
template <typename ArrayOp>
class ArrayUpdateConversionBase : public mlir::OpRewritePattern<ArrayOp> {
public:
explicit ArrayUpdateConversionBase(mlir::MLIRContext *ctx,
const ArrayCopyAnalysis &a,
const OperationUseMapT &m)
: mlir::OpRewritePattern<ArrayOp>{ctx}, analysis{a}, useMap{m} {}
void genArrayCopy(mlir::Location loc, mlir::PatternRewriter &rewriter,
mlir::Value dst, mlir::Value src, mlir::Value shapeOp,
mlir::Type arrTy) const {
auto insPt = rewriter.saveInsertionPoint();
llvm::SmallVector<mlir::Value> indices;
llvm::SmallVector<mlir::Value> extents;
getExtents(extents, shapeOp);
// Build loop nest from column to row.
for (auto sh : llvm::reverse(extents)) {
auto idxTy = rewriter.getIndexType();
auto ubi = rewriter.create<fir::ConvertOp>(loc, idxTy, sh);
auto zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
auto one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
auto ub = rewriter.create<arith::SubIOp>(loc, idxTy, ubi, one);
auto loop = rewriter.create<fir::DoLoopOp>(loc, zero, ub, one);
rewriter.setInsertionPointToStart(loop.getBody());
indices.push_back(loop.getInductionVar());
}
// Reverse the indices so they are in column-major order.
std::reverse(indices.begin(), indices.end());
auto ty = getEleTy(arrTy);
auto fromAddr = rewriter.create<fir::ArrayCoorOp>(
loc, ty, src, shapeOp, mlir::Value{},
fir::factory::originateIndices(loc, rewriter, src.getType(), shapeOp,
indices),
mlir::ValueRange{});
auto load = rewriter.create<fir::LoadOp>(loc, fromAddr);
auto toAddr = rewriter.create<fir::ArrayCoorOp>(
loc, ty, dst, shapeOp, mlir::Value{},
fir::factory::originateIndices(loc, rewriter, dst.getType(), shapeOp,
indices),
mlir::ValueRange{});
rewriter.create<fir::StoreOp>(loc, load, toAddr);
rewriter.restoreInsertionPoint(insPt);
}
/// Copy the RHS element into the LHS and insert copy-in/copy-out between a
/// temp and the LHS if the analysis found potential overlaps between the RHS
/// and LHS arrays. The element copy generator must be provided through \p
/// assignElement. \p update must be the ArrayUpdateOp or the ArrayModifyOp.
/// Returns the address of the LHS element inside the loop and the LHS
/// ArrayLoad result.
std::pair<mlir::Value, mlir::Value>
materializeAssignment(mlir::Location loc, mlir::PatternRewriter &rewriter,
ArrayOp update,
llvm::function_ref<void(mlir::Value)> assignElement,
mlir::Type lhsEltRefType) const {
auto *op = update.getOperation();
mlir::Operation *loadOp = useMap.lookup(op);
auto load = mlir::cast<ArrayLoadOp>(loadOp);
LLVM_DEBUG(llvm::outs() << "does " << load << " have a conflict?\n");
if (analysis.hasPotentialConflict(loadOp)) {
// If there is a conflict between the arrays, then we copy the lhs array
// to a temporary, update the temporary, and copy the temporary back to
// the lhs array. This yields Fortran's copy-in copy-out array semantics.
LLVM_DEBUG(llvm::outs() << "Yes, conflict was found\n");
rewriter.setInsertionPoint(loadOp);
// Copy in.
llvm::SmallVector<mlir::Value> extents;
mlir::Value shapeOp =
getOrReadExtentsAndShapeOp(loc, rewriter, load, extents);
auto allocmem = rewriter.create<AllocMemOp>(
loc, dyn_cast_ptrOrBoxEleTy(load.memref().getType()),
load.typeparams(), extents);
genArrayCopy(load.getLoc(), rewriter, allocmem, load.memref(), shapeOp,
load.getType());
rewriter.setInsertionPoint(op);
mlir::Value coor = genCoorOp(
rewriter, loc, getEleTy(load.getType()), lhsEltRefType, allocmem,
shapeOp, load.slice(), update.indices(), load.typeparams(),
update->hasAttr(fir::factory::attrFortranArrayOffsets()));
assignElement(coor);
mlir::Operation *storeOp = useMap.lookup(loadOp);
auto store = mlir::cast<ArrayMergeStoreOp>(storeOp);
rewriter.setInsertionPoint(storeOp);
// Copy out.
genArrayCopy(store.getLoc(), rewriter, store.memref(), allocmem, shapeOp,
load.getType());
rewriter.create<FreeMemOp>(loc, allocmem);
return {coor, load.getResult()};
}
// Otherwise, when there is no conflict (a possible loop-carried
// dependence), the lhs array can be updated in place.
LLVM_DEBUG(llvm::outs() << "No, conflict wasn't found\n");
rewriter.setInsertionPoint(op);
auto coorTy = getEleTy(load.getType());
mlir::Value coor = genCoorOp(
rewriter, loc, coorTy, lhsEltRefType, load.memref(), load.shape(),
load.slice(), update.indices(), load.typeparams(),
update->hasAttr(fir::factory::attrFortranArrayOffsets()));
assignElement(coor);
return {coor, load.getResult()};
}
private:
const ArrayCopyAnalysis &analysis;
const OperationUseMapT &useMap;
};
class ArrayUpdateConversion : public ArrayUpdateConversionBase<ArrayUpdateOp> {
public:
explicit ArrayUpdateConversion(mlir::MLIRContext *ctx,
const ArrayCopyAnalysis &a,
const OperationUseMapT &m)
: ArrayUpdateConversionBase{ctx, a, m} {}
mlir::LogicalResult
matchAndRewrite(ArrayUpdateOp update,
mlir::PatternRewriter &rewriter) const override {
auto loc = update.getLoc();
auto assignElement = [&](mlir::Value coor) {
rewriter.create<fir::StoreOp>(loc, update.merge(), coor);
};
auto lhsEltRefType = toRefType(update.merge().getType());
auto [_, lhsLoadResult] = materializeAssignment(
loc, rewriter, update, assignElement, lhsEltRefType);
update.replaceAllUsesWith(lhsLoadResult);
rewriter.replaceOp(update, lhsLoadResult);
return mlir::success();
}
};
class ArrayModifyConversion : public ArrayUpdateConversionBase<ArrayModifyOp> {
public:
explicit ArrayModifyConversion(mlir::MLIRContext *ctx,
const ArrayCopyAnalysis &a,
const OperationUseMapT &m)
: ArrayUpdateConversionBase{ctx, a, m} {}
mlir::LogicalResult
matchAndRewrite(ArrayModifyOp modify,
mlir::PatternRewriter &rewriter) const override {
auto loc = modify.getLoc();
auto assignElement = [](mlir::Value) {
// Assignment already materialized by lowering using lhs element address.
};
auto lhsEltRefType = modify.getResult(0).getType();
auto [lhsEltCoor, lhsLoadResult] = materializeAssignment(
loc, rewriter, modify, assignElement, lhsEltRefType);
modify.replaceAllUsesWith(mlir::ValueRange{lhsEltCoor, lhsLoadResult});
rewriter.replaceOp(modify, mlir::ValueRange{lhsEltCoor, lhsLoadResult});
return mlir::success();
}
};
class ArrayFetchConversion : public mlir::OpRewritePattern<ArrayFetchOp> {
public:
explicit ArrayFetchConversion(mlir::MLIRContext *ctx,
const OperationUseMapT &m)
: OpRewritePattern{ctx}, useMap{m} {}
mlir::LogicalResult
matchAndRewrite(ArrayFetchOp fetch,
mlir::PatternRewriter &rewriter) const override {
auto *op = fetch.getOperation();
rewriter.setInsertionPoint(op);
auto load = mlir::cast<ArrayLoadOp>(useMap.lookup(op));
auto loc = fetch.getLoc();
mlir::Value coor =
genCoorOp(rewriter, loc, getEleTy(load.getType()),
toRefType(fetch.getType()), load.memref(), load.shape(),
load.slice(), fetch.indices(), load.typeparams(),
fetch->hasAttr(fir::factory::attrFortranArrayOffsets()));
rewriter.replaceOpWithNewOp<fir::LoadOp>(fetch, coor);
return mlir::success();
}
private:
const OperationUseMapT &useMap;
};
} // namespace
namespace {
class ArrayValueCopyConverter
: public ArrayValueCopyBase<ArrayValueCopyConverter> {
public:
void runOnFunction() override {
auto func = getFunction();
LLVM_DEBUG(llvm::dbgs() << "\n\narray-value-copy pass on function '"
<< func.getName() << "'\n");
auto *context = &getContext();
// Perform the conflict analysis.
auto &analysis = getAnalysis<ArrayCopyAnalysis>();
const auto &useMap = analysis.getUseMap();
// Phase 1 is performing a rewrite on the array accesses. Once all the
// array accesses are rewritten we can go on phase 2.
// Phase 2 gets rid of the useless copy-in/copyout operations. The copy-in
// /copy-out refers the Fortran copy-in/copy-out semantics on statements.
mlir::OwningRewritePatternList patterns1(context);
patterns1.insert<ArrayFetchConversion>(context, useMap);
patterns1.insert<ArrayUpdateConversion>(context, analysis, useMap);
patterns1.insert<ArrayModifyConversion>(context, analysis, useMap);
mlir::ConversionTarget target(*context);
target.addLegalDialect<FIROpsDialect, mlir::scf::SCFDialect,
mlir::arith::ArithmeticDialect,
mlir::StandardOpsDialect>();
target.addIllegalOp<ArrayFetchOp, ArrayUpdateOp, ArrayModifyOp>();
// Rewrite the array fetch and array update ops.
if (mlir::failed(
mlir::applyPartialConversion(func, target, std::move(patterns1)))) {
mlir::emitError(mlir::UnknownLoc::get(context),
"failure in array-value-copy pass, phase 1");
signalPassFailure();
}
mlir::OwningRewritePatternList patterns2(context);
patterns2.insert<ArrayLoadConversion>(context);
patterns2.insert<ArrayMergeStoreConversion>(context);
target.addIllegalOp<ArrayLoadOp, ArrayMergeStoreOp>();
if (mlir::failed(
mlir::applyPartialConversion(func, target, std::move(patterns2)))) {
mlir::emitError(mlir::UnknownLoc::get(context),
"failure in array-value-copy pass, phase 2");
signalPassFailure();
}
}
};
} // namespace
std::unique_ptr<mlir::Pass> fir::createArrayValueCopyPass() {
return std::make_unique<ArrayValueCopyConverter>();
}