llvm-project/llvm/lib/CodeGen/MachineLoopInfo.cpp
Vito Kortbeek e03b1b895e
[CodeGen][MachineLoop] Fix getLoopID (#137820)
Mirror the `getLoopID()` implementation of `LoopInfo` in
`MachineLoopInfo`.

`getLoopID` used `findLoopControlBlock` to detect the special case where
there is a single latch. However, `findLoopControlBlock` returns the
exiting block if the latch is not an exiting block. The middle end
places the `LoopID` metadata on the
latch regardless of if it's an exiting block or not.

I raised this issue in the PR that introduced the `getLoopID()` helper
(https://github.com/llvm/llvm-project/pull/71026#discussion_r2000595214)
and @FreddyLeaf confirmed this is a bug and asked me to help implement a
refinement.

I've mirrored the implementation of `LoopInfo` instead of simply
changing `findLoopControlBlock()` to `findLoopControlBlock()` to keep
the two implementations consistent. The only difference between the two
is that `MachineLoopInfo::getLoopID` initially starts out with a
`MachineBacisBlock` and attempts to retrieve the `BasicBlock` (if it
wasn't for this difference, I would have moved it to `genericLoopInfo`).

I've also updated the test associated with
https://github.com/llvm/llvm-project/pull/71026 (`test5`) that check the
alignment for a loop with a single latch that's not the exit. This test
will fail for the current implementation. I'm not sure if we want to
include this test upstream (it might look out of place after we remove
the 'single-latch-specialization' from `getLoopID()`).

Let me know if you have any comments, @FreddyLeaf !
2025-05-24 08:52:51 +02:00

295 lines
9.5 KiB
C++

//===- MachineLoopInfo.cpp - Natural Loop Calculator ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the MachineLoopInfo class that is used to identify natural
// loops and determine the loop depth of various nodes of the CFG. Note that
// the loops identified may actually be several natural loops that share the
// same header node... not just a single natural loop.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/Support/GenericLoopInfoImpl.h"
using namespace llvm;
// Explicitly instantiate methods in LoopInfoImpl.h for MI-level Loops.
template class llvm::LoopBase<MachineBasicBlock, MachineLoop>;
template class llvm::LoopInfoBase<MachineBasicBlock, MachineLoop>;
AnalysisKey MachineLoopAnalysis::Key;
MachineLoopAnalysis::Result
MachineLoopAnalysis::run(MachineFunction &MF,
MachineFunctionAnalysisManager &MFAM) {
return MachineLoopInfo(MFAM.getResult<MachineDominatorTreeAnalysis>(MF));
}
PreservedAnalyses
MachineLoopPrinterPass::run(MachineFunction &MF,
MachineFunctionAnalysisManager &MFAM) {
OS << "Machine loop info for machine function '" << MF.getName() << "':\n";
MFAM.getResult<MachineLoopAnalysis>(MF).print(OS);
return PreservedAnalyses::all();
}
char MachineLoopInfoWrapperPass::ID = 0;
MachineLoopInfoWrapperPass::MachineLoopInfoWrapperPass()
: MachineFunctionPass(ID) {
initializeMachineLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry());
}
INITIALIZE_PASS_BEGIN(MachineLoopInfoWrapperPass, "machine-loops",
"Machine Natural Loop Construction", true, true)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
INITIALIZE_PASS_END(MachineLoopInfoWrapperPass, "machine-loops",
"Machine Natural Loop Construction", true, true)
char &llvm::MachineLoopInfoID = MachineLoopInfoWrapperPass::ID;
bool MachineLoopInfoWrapperPass::runOnMachineFunction(MachineFunction &) {
LI.calculate(getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree());
return false;
}
bool MachineLoopInfo::invalidate(
MachineFunction &, const PreservedAnalyses &PA,
MachineFunctionAnalysisManager::Invalidator &) {
// Check whether the analysis, all analyses on functions, or the function's
// CFG have been preserved.
auto PAC = PA.getChecker<MachineLoopAnalysis>();
return !PAC.preserved() &&
!PAC.preservedSet<AllAnalysesOn<MachineFunction>>() &&
!PAC.preservedSet<CFGAnalyses>();
}
void MachineLoopInfo::calculate(MachineDominatorTree &MDT) {
releaseMemory();
analyze(MDT);
}
void MachineLoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<MachineDominatorTreeWrapperPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
MachineBasicBlock *MachineLoop::getTopBlock() {
MachineBasicBlock *TopMBB = getHeader();
MachineFunction::iterator Begin = TopMBB->getParent()->begin();
if (TopMBB->getIterator() != Begin) {
MachineBasicBlock *PriorMBB = &*std::prev(TopMBB->getIterator());
while (contains(PriorMBB)) {
TopMBB = PriorMBB;
if (TopMBB->getIterator() == Begin)
break;
PriorMBB = &*std::prev(TopMBB->getIterator());
}
}
return TopMBB;
}
MachineBasicBlock *MachineLoop::getBottomBlock() {
MachineBasicBlock *BotMBB = getHeader();
MachineFunction::iterator End = BotMBB->getParent()->end();
if (BotMBB->getIterator() != std::prev(End)) {
MachineBasicBlock *NextMBB = &*std::next(BotMBB->getIterator());
while (contains(NextMBB)) {
BotMBB = NextMBB;
if (BotMBB == &*std::next(BotMBB->getIterator()))
break;
NextMBB = &*std::next(BotMBB->getIterator());
}
}
return BotMBB;
}
MachineBasicBlock *MachineLoop::findLoopControlBlock() const {
if (MachineBasicBlock *Latch = getLoopLatch()) {
if (isLoopExiting(Latch))
return Latch;
else
return getExitingBlock();
}
return nullptr;
}
DebugLoc MachineLoop::getStartLoc() const {
// Try the pre-header first.
if (MachineBasicBlock *PHeadMBB = getLoopPreheader())
if (const BasicBlock *PHeadBB = PHeadMBB->getBasicBlock())
if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
return DL;
// If we have no pre-header or there are no instructions with debug
// info in it, try the header.
if (MachineBasicBlock *HeadMBB = getHeader())
if (const BasicBlock *HeadBB = HeadMBB->getBasicBlock())
return HeadBB->getTerminator()->getDebugLoc();
return DebugLoc();
}
MachineBasicBlock *
MachineLoopInfo::findLoopPreheader(MachineLoop *L, bool SpeculativePreheader,
bool FindMultiLoopPreheader) const {
if (MachineBasicBlock *PB = L->getLoopPreheader())
return PB;
if (!SpeculativePreheader)
return nullptr;
MachineBasicBlock *HB = L->getHeader(), *LB = L->getLoopLatch();
if (HB->pred_size() != 2 || HB->hasAddressTaken())
return nullptr;
// Find the predecessor of the header that is not the latch block.
MachineBasicBlock *Preheader = nullptr;
for (MachineBasicBlock *P : HB->predecessors()) {
if (P == LB)
continue;
// Sanity.
if (Preheader)
return nullptr;
Preheader = P;
}
// Check if the preheader candidate is a successor of any other loop
// headers. We want to avoid having two loop setups in the same block.
if (!FindMultiLoopPreheader) {
for (MachineBasicBlock *S : Preheader->successors()) {
if (S == HB)
continue;
MachineLoop *T = getLoopFor(S);
if (T && T->getHeader() == S)
return nullptr;
}
}
return Preheader;
}
MDNode *MachineLoop::getLoopID() const {
MDNode *LoopID = nullptr;
// Go through the latch blocks and check the terminator for the metadata
SmallVector<MachineBasicBlock *, 4> LatchesBlocks;
getLoopLatches(LatchesBlocks);
for (const auto *MBB : LatchesBlocks) {
const auto *BB = MBB->getBasicBlock();
if (!BB)
return nullptr;
const auto *TI = BB->getTerminator();
if (!TI)
return nullptr;
MDNode *MD = TI->getMetadata(LLVMContext::MD_loop);
if (!MD)
return nullptr;
if (!LoopID)
LoopID = MD;
else if (MD != LoopID)
return nullptr;
}
if (!LoopID || LoopID->getNumOperands() == 0 ||
LoopID->getOperand(0) != LoopID)
return nullptr;
return LoopID;
}
bool MachineLoop::isLoopInvariantImplicitPhysReg(Register Reg) const {
MachineFunction *MF = getHeader()->getParent();
MachineRegisterInfo *MRI = &MF->getRegInfo();
if (MRI->isConstantPhysReg(Reg))
return true;
if (!MF->getSubtarget()
.getRegisterInfo()
->shouldAnalyzePhysregInMachineLoopInfo(Reg))
return false;
return !llvm::any_of(
MRI->def_instructions(Reg),
[this](const MachineInstr &MI) { return this->contains(&MI); });
}
bool MachineLoop::isLoopInvariant(MachineInstr &I,
const Register ExcludeReg) const {
MachineFunction *MF = I.getParent()->getParent();
MachineRegisterInfo *MRI = &MF->getRegInfo();
const TargetSubtargetInfo &ST = MF->getSubtarget();
const TargetRegisterInfo *TRI = ST.getRegisterInfo();
const TargetInstrInfo *TII = ST.getInstrInfo();
// The instruction is loop invariant if all of its operands are.
for (const MachineOperand &MO : I.operands()) {
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
if (Reg == 0) continue;
if (ExcludeReg == Reg)
continue;
// An instruction that uses or defines a physical register can't e.g. be
// hoisted, so mark this as not invariant.
if (Reg.isPhysical()) {
if (MO.isUse()) {
// If the physreg has no defs anywhere, it's just an ambient register
// and we can freely move its uses. Alternatively, if it's allocatable,
// it could get allocated to something with a def during allocation.
// However, if the physreg is known to always be caller saved/restored
// then this use is safe to hoist.
if (!isLoopInvariantImplicitPhysReg(Reg) &&
!(TRI->isCallerPreservedPhysReg(Reg.asMCReg(), *I.getMF())) &&
!TII->isIgnorableUse(MO))
return false;
// Otherwise it's safe to move.
continue;
} else if (!MO.isDead()) {
// A def that isn't dead can't be moved.
return false;
} else if (getHeader()->isLiveIn(Reg)) {
// If the reg is live into the loop, we can't hoist an instruction
// which would clobber it.
return false;
}
}
if (!MO.readsReg())
continue;
assert(MRI->getVRegDef(Reg) &&
"Machine instr not mapped for this vreg?!");
// If the loop contains the definition of an operand, then the instruction
// isn't loop invariant.
if (contains(MRI->getVRegDef(Reg)))
return false;
}
// If we got this far, the instruction is loop invariant!
return true;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MachineLoop::dump() const {
print(dbgs());
}
#endif