llvm-project/llvm/lib/Target/SPIRV/SPIRVStructurizer.cpp
Jeremy Morse 304a99091c [NFC][DebugInfo] Use iterators for insertion at some final callsites
These are the callsites that have materialised in the last three weeks
since I last built with deprecation warnings.
2025-01-28 11:37:11 +00:00

1261 lines
42 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===-- SPIRVStructurizer.cpp ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
#include "Analysis/SPIRVConvergenceRegionAnalysis.h"
#include "SPIRV.h"
#include "SPIRVStructurizerWrapper.h"
#include "SPIRVSubtarget.h"
#include "SPIRVTargetMachine.h"
#include "SPIRVUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsSPIRV.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/PassRegistry.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LowerMemIntrinsics.h"
#include <queue>
#include <stack>
#include <unordered_set>
using namespace llvm;
using namespace SPIRV;
namespace llvm {
void initializeSPIRVStructurizerPass(PassRegistry &);
namespace {
using BlockSet = std::unordered_set<BasicBlock *>;
using Edge = std::pair<BasicBlock *, BasicBlock *>;
// Helper function to do a partial order visit from the block |Start|, calling
// |Op| on each visited node.
void partialOrderVisit(BasicBlock &Start,
std::function<bool(BasicBlock *)> Op) {
PartialOrderingVisitor V(*Start.getParent());
V.partialOrderVisit(Start, Op);
}
// Returns the exact convergence region in the tree defined by `Node` for which
// `BB` is the header, nullptr otherwise.
const ConvergenceRegion *getRegionForHeader(const ConvergenceRegion *Node,
BasicBlock *BB) {
if (Node->Entry == BB)
return Node;
for (auto *Child : Node->Children) {
const auto *CR = getRegionForHeader(Child, BB);
if (CR != nullptr)
return CR;
}
return nullptr;
}
// Returns the single BasicBlock exiting the convergence region `CR`,
// nullptr if no such exit exists.
BasicBlock *getExitFor(const ConvergenceRegion *CR) {
std::unordered_set<BasicBlock *> ExitTargets;
for (BasicBlock *Exit : CR->Exits) {
for (BasicBlock *Successor : successors(Exit)) {
if (CR->Blocks.count(Successor) == 0)
ExitTargets.insert(Successor);
}
}
assert(ExitTargets.size() <= 1);
if (ExitTargets.size() == 0)
return nullptr;
return *ExitTargets.begin();
}
// Returns the merge block designated by I if I is a merge instruction, nullptr
// otherwise.
BasicBlock *getDesignatedMergeBlock(Instruction *I) {
IntrinsicInst *II = dyn_cast_or_null<IntrinsicInst>(I);
if (II == nullptr)
return nullptr;
if (II->getIntrinsicID() != Intrinsic::spv_loop_merge &&
II->getIntrinsicID() != Intrinsic::spv_selection_merge)
return nullptr;
BlockAddress *BA = cast<BlockAddress>(II->getOperand(0));
return BA->getBasicBlock();
}
// Returns the continue block designated by I if I is an OpLoopMerge, nullptr
// otherwise.
BasicBlock *getDesignatedContinueBlock(Instruction *I) {
IntrinsicInst *II = dyn_cast_or_null<IntrinsicInst>(I);
if (II == nullptr)
return nullptr;
if (II->getIntrinsicID() != Intrinsic::spv_loop_merge)
return nullptr;
BlockAddress *BA = cast<BlockAddress>(II->getOperand(1));
return BA->getBasicBlock();
}
// Returns true if Header has one merge instruction which designated Merge as
// merge block.
bool isDefinedAsSelectionMergeBy(BasicBlock &Header, BasicBlock &Merge) {
for (auto &I : Header) {
BasicBlock *MB = getDesignatedMergeBlock(&I);
if (MB == &Merge)
return true;
}
return false;
}
// Returns true if the BB has one OpLoopMerge instruction.
bool hasLoopMergeInstruction(BasicBlock &BB) {
for (auto &I : BB)
if (getDesignatedContinueBlock(&I))
return true;
return false;
}
// Returns true is I is an OpSelectionMerge or OpLoopMerge instruction, false
// otherwise.
bool isMergeInstruction(Instruction *I) {
return getDesignatedMergeBlock(I) != nullptr;
}
// Returns all blocks in F having at least one OpLoopMerge or OpSelectionMerge
// instruction.
SmallPtrSet<BasicBlock *, 2> getHeaderBlocks(Function &F) {
SmallPtrSet<BasicBlock *, 2> Output;
for (BasicBlock &BB : F) {
for (Instruction &I : BB) {
if (getDesignatedMergeBlock(&I) != nullptr)
Output.insert(&BB);
}
}
return Output;
}
// Returns all basic blocks in |F| referenced by at least 1
// OpSelectionMerge/OpLoopMerge instruction.
SmallPtrSet<BasicBlock *, 2> getMergeBlocks(Function &F) {
SmallPtrSet<BasicBlock *, 2> Output;
for (BasicBlock &BB : F) {
for (Instruction &I : BB) {
BasicBlock *MB = getDesignatedMergeBlock(&I);
if (MB != nullptr)
Output.insert(MB);
}
}
return Output;
}
// Return all the merge instructions contained in BB.
// Note: the SPIR-V spec doesn't allow a single BB to contain more than 1 merge
// instruction, but this can happen while we structurize the CFG.
std::vector<Instruction *> getMergeInstructions(BasicBlock &BB) {
std::vector<Instruction *> Output;
for (Instruction &I : BB)
if (isMergeInstruction(&I))
Output.push_back(&I);
return Output;
}
// Returns all basic blocks in |F| referenced as continue target by at least 1
// OpLoopMerge instruction.
SmallPtrSet<BasicBlock *, 2> getContinueBlocks(Function &F) {
SmallPtrSet<BasicBlock *, 2> Output;
for (BasicBlock &BB : F) {
for (Instruction &I : BB) {
BasicBlock *MB = getDesignatedContinueBlock(&I);
if (MB != nullptr)
Output.insert(MB);
}
}
return Output;
}
// Do a preorder traversal of the CFG starting from the BB |Start|.
// point. Calls |op| on each basic block encountered during the traversal.
void visit(BasicBlock &Start, std::function<bool(BasicBlock *)> op) {
std::stack<BasicBlock *> ToVisit;
SmallPtrSet<BasicBlock *, 8> Seen;
ToVisit.push(&Start);
Seen.insert(ToVisit.top());
while (ToVisit.size() != 0) {
BasicBlock *BB = ToVisit.top();
ToVisit.pop();
if (!op(BB))
continue;
for (auto Succ : successors(BB)) {
if (Seen.contains(Succ))
continue;
ToVisit.push(Succ);
Seen.insert(Succ);
}
}
}
// Replaces the conditional and unconditional branch targets of |BB| by
// |NewTarget| if the target was |OldTarget|. This function also makes sure the
// associated merge instruction gets updated accordingly.
void replaceIfBranchTargets(BasicBlock *BB, BasicBlock *OldTarget,
BasicBlock *NewTarget) {
auto *BI = cast<BranchInst>(BB->getTerminator());
// 1. Replace all matching successors.
for (size_t i = 0; i < BI->getNumSuccessors(); i++) {
if (BI->getSuccessor(i) == OldTarget)
BI->setSuccessor(i, NewTarget);
}
// Branch was unconditional, no fixup required.
if (BI->isUnconditional())
return;
// Branch had 2 successors, maybe now both are the same?
if (BI->getSuccessor(0) != BI->getSuccessor(1))
return;
// Note: we may end up here because the original IR had such branches.
// This means Target is not necessarily equal to NewTarget.
IRBuilder<> Builder(BB);
Builder.SetInsertPoint(BI);
Builder.CreateBr(BI->getSuccessor(0));
BI->eraseFromParent();
// The branch was the only instruction, nothing else to do.
if (BB->size() == 1)
return;
// Otherwise, we need to check: was there an OpSelectionMerge before this
// branch? If we removed the OpBranchConditional, we must also remove the
// OpSelectionMerge. This is not valid for OpLoopMerge:
IntrinsicInst *II =
dyn_cast<IntrinsicInst>(BB->getTerminator()->getPrevNode());
if (!II || II->getIntrinsicID() != Intrinsic::spv_selection_merge)
return;
Constant *C = cast<Constant>(II->getOperand(0));
II->eraseFromParent();
if (!C->isConstantUsed())
C->destroyConstant();
}
// Replaces the target of branch instruction in |BB| with |NewTarget| if it
// was |OldTarget|. This function also fixes the associated merge instruction.
// Note: this function does not simplify branching instructions, it only updates
// targets. See also: simplifyBranches.
void replaceBranchTargets(BasicBlock *BB, BasicBlock *OldTarget,
BasicBlock *NewTarget) {
auto *T = BB->getTerminator();
if (isa<ReturnInst>(T))
return;
if (isa<BranchInst>(T))
return replaceIfBranchTargets(BB, OldTarget, NewTarget);
if (auto *SI = dyn_cast<SwitchInst>(T)) {
for (size_t i = 0; i < SI->getNumSuccessors(); i++) {
if (SI->getSuccessor(i) == OldTarget)
SI->setSuccessor(i, NewTarget);
}
return;
}
assert(false && "Unhandled terminator type.");
}
} // anonymous namespace
// Given a reducible CFG, produces a structurized CFG in the SPIR-V sense,
// adding merge instructions when required.
class SPIRVStructurizer : public FunctionPass {
struct DivergentConstruct;
// Represents a list of condition/loops/switch constructs.
// See SPIR-V 2.11.2. Structured Control-flow Constructs for the list of
// constructs.
using ConstructList = std::vector<std::unique_ptr<DivergentConstruct>>;
// Represents a divergent construct in the SPIR-V sense.
// Such constructs are represented by a header (entry), a merge block (exit),
// and possibly a continue block (back-edge). A construct can contain other
// constructs, but their boundaries do not cross.
struct DivergentConstruct {
BasicBlock *Header = nullptr;
BasicBlock *Merge = nullptr;
BasicBlock *Continue = nullptr;
DivergentConstruct *Parent = nullptr;
ConstructList Children;
};
// An helper class to clean the construct boundaries.
// It is used to gather the list of blocks that should belong to each
// divergent construct, and possibly modify CFG edges when exits would cross
// the boundary of multiple constructs.
struct Splitter {
Function &F;
LoopInfo &LI;
DomTreeBuilder::BBDomTree DT;
DomTreeBuilder::BBPostDomTree PDT;
Splitter(Function &F, LoopInfo &LI) : F(F), LI(LI) { invalidate(); }
void invalidate() {
PDT.recalculate(F);
DT.recalculate(F);
}
// Returns the list of blocks that belong to a SPIR-V loop construct,
// including the continue construct.
std::vector<BasicBlock *> getLoopConstructBlocks(BasicBlock *Header,
BasicBlock *Merge) {
assert(DT.dominates(Header, Merge));
std::vector<BasicBlock *> Output;
partialOrderVisit(*Header, [&](BasicBlock *BB) {
if (BB == Merge)
return false;
if (DT.dominates(Merge, BB) || !DT.dominates(Header, BB))
return false;
Output.push_back(BB);
return true;
});
return Output;
}
// Returns the list of blocks that belong to a SPIR-V selection construct.
std::vector<BasicBlock *>
getSelectionConstructBlocks(DivergentConstruct *Node) {
assert(DT.dominates(Node->Header, Node->Merge));
BlockSet OutsideBlocks;
OutsideBlocks.insert(Node->Merge);
for (DivergentConstruct *It = Node->Parent; It != nullptr;
It = It->Parent) {
OutsideBlocks.insert(It->Merge);
if (It->Continue)
OutsideBlocks.insert(It->Continue);
}
std::vector<BasicBlock *> Output;
partialOrderVisit(*Node->Header, [&](BasicBlock *BB) {
if (OutsideBlocks.count(BB) != 0)
return false;
if (DT.dominates(Node->Merge, BB) || !DT.dominates(Node->Header, BB))
return false;
Output.push_back(BB);
return true;
});
return Output;
}
// Returns the list of blocks that belong to a SPIR-V switch construct.
std::vector<BasicBlock *> getSwitchConstructBlocks(BasicBlock *Header,
BasicBlock *Merge) {
assert(DT.dominates(Header, Merge));
std::vector<BasicBlock *> Output;
partialOrderVisit(*Header, [&](BasicBlock *BB) {
// the blocks structurally dominated by a switch header,
if (!DT.dominates(Header, BB))
return false;
// excluding blocks structurally dominated by the switch headers merge
// block.
if (DT.dominates(Merge, BB) || BB == Merge)
return false;
Output.push_back(BB);
return true;
});
return Output;
}
// Returns the list of blocks that belong to a SPIR-V case construct.
std::vector<BasicBlock *> getCaseConstructBlocks(BasicBlock *Target,
BasicBlock *Merge) {
assert(DT.dominates(Target, Merge));
std::vector<BasicBlock *> Output;
partialOrderVisit(*Target, [&](BasicBlock *BB) {
// the blocks structurally dominated by an OpSwitch Target or Default
// block
if (!DT.dominates(Target, BB))
return false;
// excluding the blocks structurally dominated by the OpSwitch
// constructs corresponding merge block.
if (DT.dominates(Merge, BB) || BB == Merge)
return false;
Output.push_back(BB);
return true;
});
return Output;
}
// Splits the given edges by recreating proxy nodes so that the destination
// has unique incoming edges from this region.
//
// clang-format off
//
// In SPIR-V, constructs must have a single exit/merge.
// Given nodes A and B in the construct, a node C outside, and the following edges.
// A -> C
// B -> C
//
// In such cases, we must create a new exit node D, that belong to the construct to make is viable:
// A -> D -> C
// B -> D -> C
//
// This is fine (assuming C has no PHI nodes), but requires handling the merge instruction here.
// By adding a proxy node, we create a regular divergent shape which can easily be regularized later on.
// A -> D -> D1 -> C
// B -> D -> D2 -> C
//
// A, B, D belongs to the construct. D is the exit. D1 and D2 are empty.
//
// clang-format on
std::vector<Edge>
createAliasBlocksForComplexEdges(std::vector<Edge> Edges) {
std::unordered_set<BasicBlock *> Seen;
std::vector<Edge> Output;
Output.reserve(Edges.size());
for (auto &[Src, Dst] : Edges) {
auto [Iterator, Inserted] = Seen.insert(Src);
if (!Inserted) {
// Src already a source node. Cannot have 2 edges from A to B.
// Creating alias source block.
BasicBlock *NewSrc = BasicBlock::Create(
F.getContext(), Src->getName() + ".new.src", &F);
replaceBranchTargets(Src, Dst, NewSrc);
IRBuilder<> Builder(NewSrc);
Builder.CreateBr(Dst);
Src = NewSrc;
}
Output.emplace_back(Src, Dst);
}
return Output;
}
AllocaInst *CreateVariable(Function &F, Type *Type,
BasicBlock::iterator Position) {
const DataLayout &DL = F.getDataLayout();
return new AllocaInst(Type, DL.getAllocaAddrSpace(), nullptr, "reg",
Position);
}
// Given a construct defined by |Header|, and a list of exiting edges
// |Edges|, creates a new single exit node, fixing up those edges.
BasicBlock *createSingleExitNode(BasicBlock *Header,
std::vector<Edge> &Edges) {
std::vector<Edge> FixedEdges = createAliasBlocksForComplexEdges(Edges);
std::vector<BasicBlock *> Dsts;
std::unordered_map<BasicBlock *, ConstantInt *> DstToIndex;
auto NewExit = BasicBlock::Create(F.getContext(),
Header->getName() + ".new.exit", &F);
IRBuilder<> ExitBuilder(NewExit);
for (auto &[Src, Dst] : FixedEdges) {
if (DstToIndex.count(Dst) != 0)
continue;
DstToIndex.emplace(Dst, ExitBuilder.getInt32(DstToIndex.size()));
Dsts.push_back(Dst);
}
if (Dsts.size() == 1) {
for (auto &[Src, Dst] : FixedEdges) {
replaceBranchTargets(Src, Dst, NewExit);
}
ExitBuilder.CreateBr(Dsts[0]);
return NewExit;
}
AllocaInst *Variable = CreateVariable(F, ExitBuilder.getInt32Ty(),
F.begin()->getFirstInsertionPt());
for (auto &[Src, Dst] : FixedEdges) {
IRBuilder<> B2(Src);
B2.SetInsertPoint(Src->getFirstInsertionPt());
B2.CreateStore(DstToIndex[Dst], Variable);
replaceBranchTargets(Src, Dst, NewExit);
}
llvm::Value *Load =
ExitBuilder.CreateLoad(ExitBuilder.getInt32Ty(), Variable);
// If we can avoid an OpSwitch, generate an OpBranch. Reason is some
// OpBranch are allowed to exist without a new OpSelectionMerge if one of
// the branch is the parent's merge node, while OpSwitches are not.
if (Dsts.size() == 2) {
Value *Condition =
ExitBuilder.CreateCmp(CmpInst::ICMP_EQ, DstToIndex[Dsts[0]], Load);
ExitBuilder.CreateCondBr(Condition, Dsts[0], Dsts[1]);
return NewExit;
}
SwitchInst *Sw = ExitBuilder.CreateSwitch(Load, Dsts[0], Dsts.size() - 1);
for (auto It = Dsts.begin() + 1; It != Dsts.end(); ++It) {
Sw->addCase(DstToIndex[*It], *It);
}
return NewExit;
}
};
/// Create a value in BB set to the value associated with the branch the block
/// terminator will take.
Value *createExitVariable(
BasicBlock *BB,
const DenseMap<BasicBlock *, ConstantInt *> &TargetToValue) {
auto *T = BB->getTerminator();
if (isa<ReturnInst>(T))
return nullptr;
IRBuilder<> Builder(BB);
Builder.SetInsertPoint(T);
if (auto *BI = dyn_cast<BranchInst>(T)) {
BasicBlock *LHSTarget = BI->getSuccessor(0);
BasicBlock *RHSTarget =
BI->isConditional() ? BI->getSuccessor(1) : nullptr;
Value *LHS = TargetToValue.count(LHSTarget) != 0
? TargetToValue.at(LHSTarget)
: nullptr;
Value *RHS = TargetToValue.count(RHSTarget) != 0
? TargetToValue.at(RHSTarget)
: nullptr;
if (LHS == nullptr || RHS == nullptr)
return LHS == nullptr ? RHS : LHS;
return Builder.CreateSelect(BI->getCondition(), LHS, RHS);
}
// TODO: add support for switch cases.
llvm_unreachable("Unhandled terminator type.");
}
// Creates a new basic block in F with a single OpUnreachable instruction.
BasicBlock *CreateUnreachable(Function &F) {
BasicBlock *BB = BasicBlock::Create(F.getContext(), "unreachable", &F);
IRBuilder<> Builder(BB);
Builder.CreateUnreachable();
return BB;
}
// Add OpLoopMerge instruction on cycles.
bool addMergeForLoops(Function &F) {
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
auto *TopLevelRegion =
getAnalysis<SPIRVConvergenceRegionAnalysisWrapperPass>()
.getRegionInfo()
.getTopLevelRegion();
bool Modified = false;
for (auto &BB : F) {
// Not a loop header. Ignoring for now.
if (!LI.isLoopHeader(&BB))
continue;
auto *L = LI.getLoopFor(&BB);
// This loop header is not the entrance of a convergence region. Ignoring
// this block.
auto *CR = getRegionForHeader(TopLevelRegion, &BB);
if (CR == nullptr)
continue;
IRBuilder<> Builder(&BB);
auto *Merge = getExitFor(CR);
// We are indeed in a loop, but there are no exits (infinite loop).
// This could be caused by a bad shader, but also could be an artifact
// from an earlier optimization. It is not always clear if structurally
// reachable means runtime reachable, so we cannot error-out. What we must
// do however is to make is legal on the SPIR-V point of view, hence
// adding an unreachable merge block.
if (Merge == nullptr) {
BranchInst *Br = cast<BranchInst>(BB.getTerminator());
assert(Br &&
"This assumes the branch is not a switch. Maybe that's wrong?");
assert(cast<BranchInst>(BB.getTerminator())->isUnconditional());
Merge = CreateUnreachable(F);
Builder.SetInsertPoint(Br);
Builder.CreateCondBr(Builder.getFalse(), Merge, Br->getSuccessor(0));
Br->eraseFromParent();
}
auto *Continue = L->getLoopLatch();
Builder.SetInsertPoint(BB.getTerminator());
auto MergeAddress = BlockAddress::get(Merge->getParent(), Merge);
auto ContinueAddress = BlockAddress::get(Continue->getParent(), Continue);
SmallVector<Value *, 2> Args = {MergeAddress, ContinueAddress};
Builder.CreateIntrinsic(Intrinsic::spv_loop_merge, {}, {Args});
Modified = true;
}
return Modified;
}
// Adds an OpSelectionMerge to the immediate dominator or each node with an
// in-degree of 2 or more which is not already the merge target of an
// OpLoopMerge/OpSelectionMerge.
bool addMergeForNodesWithMultiplePredecessors(Function &F) {
DomTreeBuilder::BBDomTree DT;
DT.recalculate(F);
bool Modified = false;
for (auto &BB : F) {
if (pred_size(&BB) <= 1)
continue;
if (hasLoopMergeInstruction(BB) && pred_size(&BB) <= 2)
continue;
assert(DT.getNode(&BB)->getIDom());
BasicBlock *Header = DT.getNode(&BB)->getIDom()->getBlock();
if (isDefinedAsSelectionMergeBy(*Header, BB))
continue;
IRBuilder<> Builder(Header);
Builder.SetInsertPoint(Header->getTerminator());
auto MergeAddress = BlockAddress::get(BB.getParent(), &BB);
createOpSelectMerge(&Builder, MergeAddress);
Modified = true;
}
return Modified;
}
// When a block has multiple OpSelectionMerge/OpLoopMerge instructions, sorts
// them to put the "largest" first. A merge instruction is defined as larger
// than another when its target merge block post-dominates the other target's
// merge block. (This ordering should match the nesting ordering of the source
// HLSL).
bool sortSelectionMerge(Function &F, BasicBlock &Block) {
std::vector<Instruction *> MergeInstructions;
for (Instruction &I : Block)
if (isMergeInstruction(&I))
MergeInstructions.push_back(&I);
if (MergeInstructions.size() <= 1)
return false;
Instruction *InsertionPoint = *MergeInstructions.begin();
PartialOrderingVisitor Visitor(F);
std::sort(MergeInstructions.begin(), MergeInstructions.end(),
[&Visitor](Instruction *Left, Instruction *Right) {
if (Left == Right)
return false;
BasicBlock *RightMerge = getDesignatedMergeBlock(Right);
BasicBlock *LeftMerge = getDesignatedMergeBlock(Left);
return !Visitor.compare(RightMerge, LeftMerge);
});
for (Instruction *I : MergeInstructions) {
I->moveBefore(InsertionPoint->getIterator());
InsertionPoint = I;
}
return true;
}
// Sorts selection merge headers in |F|.
// A is sorted before B if the merge block designated by B is an ancestor of
// the one designated by A.
bool sortSelectionMergeHeaders(Function &F) {
bool Modified = false;
for (BasicBlock &BB : F) {
Modified |= sortSelectionMerge(F, BB);
}
return Modified;
}
// Split basic blocks containing multiple OpLoopMerge/OpSelectionMerge
// instructions so each basic block contains only a single merge instruction.
bool splitBlocksWithMultipleHeaders(Function &F) {
std::stack<BasicBlock *> Work;
for (auto &BB : F) {
std::vector<Instruction *> MergeInstructions = getMergeInstructions(BB);
if (MergeInstructions.size() <= 1)
continue;
Work.push(&BB);
}
const bool Modified = Work.size() > 0;
while (Work.size() > 0) {
BasicBlock *Header = Work.top();
Work.pop();
std::vector<Instruction *> MergeInstructions =
getMergeInstructions(*Header);
for (unsigned i = 1; i < MergeInstructions.size(); i++) {
BasicBlock *NewBlock =
Header->splitBasicBlock(MergeInstructions[i], "new.header");
if (getDesignatedContinueBlock(MergeInstructions[0]) == nullptr) {
BasicBlock *Unreachable = CreateUnreachable(F);
BranchInst *BI = cast<BranchInst>(Header->getTerminator());
IRBuilder<> Builder(Header);
Builder.SetInsertPoint(BI);
Builder.CreateCondBr(Builder.getTrue(), NewBlock, Unreachable);
BI->eraseFromParent();
}
Header = NewBlock;
}
}
return Modified;
}
// Adds an OpSelectionMerge to each block with an out-degree >= 2 which
// doesn't already have an OpSelectionMerge.
bool addMergeForDivergentBlocks(Function &F) {
DomTreeBuilder::BBPostDomTree PDT;
PDT.recalculate(F);
bool Modified = false;
auto MergeBlocks = getMergeBlocks(F);
auto ContinueBlocks = getContinueBlocks(F);
for (auto &BB : F) {
if (getMergeInstructions(BB).size() != 0)
continue;
std::vector<BasicBlock *> Candidates;
for (BasicBlock *Successor : successors(&BB)) {
if (MergeBlocks.contains(Successor))
continue;
if (ContinueBlocks.contains(Successor))
continue;
Candidates.push_back(Successor);
}
if (Candidates.size() <= 1)
continue;
Modified = true;
BasicBlock *Merge = Candidates[0];
auto MergeAddress = BlockAddress::get(Merge->getParent(), Merge);
IRBuilder<> Builder(&BB);
Builder.SetInsertPoint(BB.getTerminator());
createOpSelectMerge(&Builder, MergeAddress);
}
return Modified;
}
// Gather all the exit nodes for the construct header by |Header| and
// containing the blocks |Construct|.
std::vector<Edge> getExitsFrom(const BlockSet &Construct,
BasicBlock &Header) {
std::vector<Edge> Output;
visit(Header, [&](BasicBlock *Item) {
if (Construct.count(Item) == 0)
return false;
for (BasicBlock *Successor : successors(Item)) {
if (Construct.count(Successor) == 0)
Output.emplace_back(Item, Successor);
}
return true;
});
return Output;
}
// Build a divergent construct tree searching from |BB|.
// If |Parent| is not null, this tree is attached to the parent's tree.
void constructDivergentConstruct(BlockSet &Visited, Splitter &S,
BasicBlock *BB, DivergentConstruct *Parent) {
if (Visited.count(BB) != 0)
return;
Visited.insert(BB);
auto MIS = getMergeInstructions(*BB);
if (MIS.size() == 0) {
for (BasicBlock *Successor : successors(BB))
constructDivergentConstruct(Visited, S, Successor, Parent);
return;
}
assert(MIS.size() == 1);
Instruction *MI = MIS[0];
BasicBlock *Merge = getDesignatedMergeBlock(MI);
BasicBlock *Continue = getDesignatedContinueBlock(MI);
auto Output = std::make_unique<DivergentConstruct>();
Output->Header = BB;
Output->Merge = Merge;
Output->Continue = Continue;
Output->Parent = Parent;
constructDivergentConstruct(Visited, S, Merge, Parent);
if (Continue)
constructDivergentConstruct(Visited, S, Continue, Output.get());
for (BasicBlock *Successor : successors(BB))
constructDivergentConstruct(Visited, S, Successor, Output.get());
if (Parent)
Parent->Children.emplace_back(std::move(Output));
}
// Returns the blocks belonging to the divergent construct |Node|.
BlockSet getConstructBlocks(Splitter &S, DivergentConstruct *Node) {
assert(Node->Header && Node->Merge);
if (Node->Continue) {
auto LoopBlocks = S.getLoopConstructBlocks(Node->Header, Node->Merge);
return BlockSet(LoopBlocks.begin(), LoopBlocks.end());
}
auto SelectionBlocks = S.getSelectionConstructBlocks(Node);
return BlockSet(SelectionBlocks.begin(), SelectionBlocks.end());
}
// Fixup the construct |Node| to respect a set of rules defined by the SPIR-V
// spec.
bool fixupConstruct(Splitter &S, DivergentConstruct *Node) {
bool Modified = false;
for (auto &Child : Node->Children)
Modified |= fixupConstruct(S, Child.get());
// This construct is the root construct. Does not represent any real
// construct, just a way to access the first level of the forest.
if (Node->Parent == nullptr)
return Modified;
// This node's parent is the root. Meaning this is a top-level construct.
// There can be multiple exists, but all are guaranteed to exit at most 1
// construct since we are at first level.
if (Node->Parent->Header == nullptr)
return Modified;
// Health check for the structure.
assert(Node->Header && Node->Merge);
assert(Node->Parent->Header && Node->Parent->Merge);
BlockSet ConstructBlocks = getConstructBlocks(S, Node);
auto Edges = getExitsFrom(ConstructBlocks, *Node->Header);
// No edges exiting the construct.
if (Edges.size() < 1)
return Modified;
bool HasBadEdge = Node->Merge == Node->Parent->Merge ||
Node->Merge == Node->Parent->Continue;
// BasicBlock *Target = Edges[0].second;
for (auto &[Src, Dst] : Edges) {
// - Breaking from a selection construct: S is a selection construct, S is
// the innermost structured
// control-flow construct containing A, and B is the merge block for S
// - Breaking from the innermost loop: S is the innermost loop construct
// containing A,
// and B is the merge block for S
if (Node->Merge == Dst)
continue;
// Entering the innermost loops continue construct: S is the innermost
// loop construct containing A, and B is the continue target for S
if (Node->Continue == Dst)
continue;
// TODO: what about cases branching to another case in the switch? Seems
// to work, but need to double check.
HasBadEdge = true;
}
if (!HasBadEdge)
return Modified;
// Create a single exit node gathering all exit edges.
BasicBlock *NewExit = S.createSingleExitNode(Node->Header, Edges);
// Fixup this construct's merge node to point to the new exit.
// Note: this algorithm fixes inner-most divergence construct first. So
// recursive structures sharing a single merge node are fixed from the
// inside toward the outside.
auto MergeInstructions = getMergeInstructions(*Node->Header);
assert(MergeInstructions.size() == 1);
Instruction *I = MergeInstructions[0];
BlockAddress *BA = cast<BlockAddress>(I->getOperand(0));
if (BA->getBasicBlock() == Node->Merge) {
auto MergeAddress = BlockAddress::get(NewExit->getParent(), NewExit);
I->setOperand(0, MergeAddress);
}
// Clean up of the possible dangling BockAddr operands to prevent MIR
// comments about "address of removed block taken".
if (!BA->isConstantUsed())
BA->destroyConstant();
Node->Merge = NewExit;
// Regenerate the dom trees.
S.invalidate();
return true;
}
bool splitCriticalEdges(Function &F) {
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Splitter S(F, LI);
DivergentConstruct Root;
BlockSet Visited;
constructDivergentConstruct(Visited, S, &*F.begin(), &Root);
return fixupConstruct(S, &Root);
}
// Simplify branches when possible:
// - if the 2 sides of a conditional branch are the same, transforms it to an
// unconditional branch.
// - if a switch has only 2 distinct successors, converts it to a conditional
// branch.
bool simplifyBranches(Function &F) {
bool Modified = false;
for (BasicBlock &BB : F) {
SwitchInst *SI = dyn_cast<SwitchInst>(BB.getTerminator());
if (!SI)
continue;
if (SI->getNumCases() > 1)
continue;
Modified = true;
IRBuilder<> Builder(&BB);
Builder.SetInsertPoint(SI);
if (SI->getNumCases() == 0) {
Builder.CreateBr(SI->getDefaultDest());
} else {
Value *Condition =
Builder.CreateCmp(CmpInst::ICMP_EQ, SI->getCondition(),
SI->case_begin()->getCaseValue());
Builder.CreateCondBr(Condition, SI->case_begin()->getCaseSuccessor(),
SI->getDefaultDest());
}
SI->eraseFromParent();
}
return Modified;
}
// Makes sure every case target in |F| is unique. If 2 cases branch to the
// same basic block, one of the targets is updated so it jumps to a new basic
// block ending with a single unconditional branch to the original target.
bool splitSwitchCases(Function &F) {
bool Modified = false;
for (BasicBlock &BB : F) {
SwitchInst *SI = dyn_cast<SwitchInst>(BB.getTerminator());
if (!SI)
continue;
BlockSet Seen;
Seen.insert(SI->getDefaultDest());
auto It = SI->case_begin();
while (It != SI->case_end()) {
BasicBlock *Target = It->getCaseSuccessor();
if (Seen.count(Target) == 0) {
Seen.insert(Target);
++It;
continue;
}
Modified = true;
BasicBlock *NewTarget =
BasicBlock::Create(F.getContext(), "new.sw.case", &F);
IRBuilder<> Builder(NewTarget);
Builder.CreateBr(Target);
SI->addCase(It->getCaseValue(), NewTarget);
It = SI->removeCase(It);
}
}
return Modified;
}
// Removes blocks not contributing to any structured CFG. This assumes there
// is no PHI nodes.
bool removeUselessBlocks(Function &F) {
std::vector<BasicBlock *> ToRemove;
auto MergeBlocks = getMergeBlocks(F);
auto ContinueBlocks = getContinueBlocks(F);
for (BasicBlock &BB : F) {
if (BB.size() != 1)
continue;
if (isa<ReturnInst>(BB.getTerminator()))
continue;
if (MergeBlocks.count(&BB) != 0 || ContinueBlocks.count(&BB) != 0)
continue;
if (BB.getUniqueSuccessor() == nullptr)
continue;
BasicBlock *Successor = BB.getUniqueSuccessor();
std::vector<BasicBlock *> Predecessors(predecessors(&BB).begin(),
predecessors(&BB).end());
for (BasicBlock *Predecessor : Predecessors)
replaceBranchTargets(Predecessor, &BB, Successor);
ToRemove.push_back(&BB);
}
for (BasicBlock *BB : ToRemove)
BB->eraseFromParent();
return ToRemove.size() != 0;
}
bool addHeaderToRemainingDivergentDAG(Function &F) {
bool Modified = false;
auto MergeBlocks = getMergeBlocks(F);
auto ContinueBlocks = getContinueBlocks(F);
auto HeaderBlocks = getHeaderBlocks(F);
DomTreeBuilder::BBDomTree DT;
DomTreeBuilder::BBPostDomTree PDT;
PDT.recalculate(F);
DT.recalculate(F);
for (BasicBlock &BB : F) {
if (HeaderBlocks.count(&BB) != 0)
continue;
if (succ_size(&BB) < 2)
continue;
size_t CandidateEdges = 0;
for (BasicBlock *Successor : successors(&BB)) {
if (MergeBlocks.count(Successor) != 0 ||
ContinueBlocks.count(Successor) != 0)
continue;
if (HeaderBlocks.count(Successor) != 0)
continue;
CandidateEdges += 1;
}
if (CandidateEdges <= 1)
continue;
BasicBlock *Header = &BB;
BasicBlock *Merge = PDT.getNode(&BB)->getIDom()->getBlock();
bool HasBadBlock = false;
visit(*Header, [&](const BasicBlock *Node) {
if (DT.dominates(Header, Node))
return false;
if (PDT.dominates(Merge, Node))
return false;
if (Node == Header || Node == Merge)
return true;
HasBadBlock |= MergeBlocks.count(Node) != 0 ||
ContinueBlocks.count(Node) != 0 ||
HeaderBlocks.count(Node) != 0;
return !HasBadBlock;
});
if (HasBadBlock)
continue;
Modified = true;
if (Merge == nullptr) {
Merge = *successors(Header).begin();
IRBuilder<> Builder(Header);
Builder.SetInsertPoint(Header->getTerminator());
auto MergeAddress = BlockAddress::get(Merge->getParent(), Merge);
createOpSelectMerge(&Builder, MergeAddress);
continue;
}
Instruction *SplitInstruction = Merge->getTerminator();
if (isMergeInstruction(SplitInstruction->getPrevNode()))
SplitInstruction = SplitInstruction->getPrevNode();
BasicBlock *NewMerge =
Merge->splitBasicBlockBefore(SplitInstruction, "new.merge");
IRBuilder<> Builder(Header);
Builder.SetInsertPoint(Header->getTerminator());
auto MergeAddress = BlockAddress::get(NewMerge->getParent(), NewMerge);
createOpSelectMerge(&Builder, MergeAddress);
}
return Modified;
}
public:
static char ID;
SPIRVStructurizer() : FunctionPass(ID) {
initializeSPIRVStructurizerPass(*PassRegistry::getPassRegistry());
};
virtual bool runOnFunction(Function &F) override {
bool Modified = false;
// In LLVM, Switches are allowed to have several cases branching to the same
// basic block. This is allowed in SPIR-V, but can make structurizing SPIR-V
// harder, so first remove edge cases.
Modified |= splitSwitchCases(F);
// LLVM allows conditional branches to have both side jumping to the same
// block. It also allows switched to have a single default, or just one
// case. Cleaning this up now.
Modified |= simplifyBranches(F);
// At this state, we should have a reducible CFG with cycles.
// STEP 1: Adding OpLoopMerge instructions to loop headers.
Modified |= addMergeForLoops(F);
// STEP 2: adding OpSelectionMerge to each node with an in-degree >= 2.
Modified |= addMergeForNodesWithMultiplePredecessors(F);
// STEP 3:
// Sort selection merge, the largest construct goes first.
// This simplifies the next step.
Modified |= sortSelectionMergeHeaders(F);
// STEP 4: As this stage, we can have a single basic block with multiple
// OpLoopMerge/OpSelectionMerge instructions. Splitting this block so each
// BB has a single merge instruction.
Modified |= splitBlocksWithMultipleHeaders(F);
// STEP 5: In the previous steps, we added merge blocks the loops and
// natural merge blocks (in-degree >= 2). What remains are conditions with
// an exiting branch (return, unreachable). In such case, we must start from
// the header, and add headers to divergent construct with no headers.
Modified |= addMergeForDivergentBlocks(F);
// STEP 6: At this stage, we have several divergent construct defines by a
// header and a merge block. But their boundaries have no constraints: a
// construct exit could be outside of the parents' construct exit. Such
// edges are called critical edges. What we need is to split those edges
// into several parts. Each part exiting the parent's construct by its merge
// block.
Modified |= splitCriticalEdges(F);
// STEP 7: The previous steps possibly created a lot of "proxy" blocks.
// Blocks with a single unconditional branch, used to create a valid
// divergent construct tree. Some nodes are still requires (e.g: nodes
// allowing a valid exit through the parent's merge block). But some are
// left-overs of past transformations, and could cause actual validation
// issues. E.g: the SPIR-V spec allows a construct to break to the parents
// loop construct without an OpSelectionMerge, but this requires a straight
// jump. If a proxy block lies between the conditional branch and the
// parent's merge, the CFG is not valid.
Modified |= removeUselessBlocks(F);
// STEP 8: Final fix-up steps: our tree boundaries are correct, but some
// blocks are branching with no header. Those are often simple conditional
// branches with 1 or 2 returning edges. Adding a header for those.
Modified |= addHeaderToRemainingDivergentDAG(F);
// STEP 9: sort basic blocks to match both the LLVM & SPIR-V requirements.
Modified |= sortBlocks(F);
return Modified;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<SPIRVConvergenceRegionAnalysisWrapperPass>();
AU.addPreserved<SPIRVConvergenceRegionAnalysisWrapperPass>();
FunctionPass::getAnalysisUsage(AU);
}
void createOpSelectMerge(IRBuilder<> *Builder, BlockAddress *MergeAddress) {
Instruction *BBTerminatorInst = Builder->GetInsertBlock()->getTerminator();
MDNode *MDNode = BBTerminatorInst->getMetadata("hlsl.controlflow.hint");
ConstantInt *BranchHint = llvm::ConstantInt::get(Builder->getInt32Ty(), 0);
if (MDNode) {
assert(MDNode->getNumOperands() == 2 &&
"invalid metadata hlsl.controlflow.hint");
BranchHint = mdconst::extract<ConstantInt>(MDNode->getOperand(1));
assert(BranchHint && "invalid metadata value for hlsl.controlflow.hint");
}
llvm::SmallVector<llvm::Value *, 2> Args = {MergeAddress, BranchHint};
Builder->CreateIntrinsic(Intrinsic::spv_selection_merge,
{MergeAddress->getType()}, {Args});
}
};
} // namespace llvm
char SPIRVStructurizer::ID = 0;
INITIALIZE_PASS_BEGIN(SPIRVStructurizer, "spirv-structurizer",
"structurize SPIRV", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(SPIRVConvergenceRegionAnalysisWrapperPass)
INITIALIZE_PASS_END(SPIRVStructurizer, "spirv-structurizer",
"structurize SPIRV", false, false)
FunctionPass *llvm::createSPIRVStructurizerPass() {
return new SPIRVStructurizer();
}
PreservedAnalyses SPIRVStructurizerWrapper::run(Function &F,
FunctionAnalysisManager &AF) {
auto FPM = legacy::FunctionPassManager(F.getParent());
FPM.add(createSPIRVStructurizerPass());
if (!FPM.run(F))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
return PA;
}