Mehdi Amini 308571074c Mass update the MLIR license header to mention "Part of the LLVM project"
This is an artifact from merging MLIR into LLVM, the file headers are
now aligned with the rest of the project.
2020-01-26 03:58:30 +00:00

1779 lines
72 KiB
C++

//===- LoopUtils.cpp ---- Misc utilities for loop transformation ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous loop transformation routines.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Dialect/AffineOps/AffineOps.h"
#include "mlir/Dialect/LoopOps/LoopOps.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Function.h"
#include "mlir/Transforms/RegionUtils.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "LoopUtils"
using namespace mlir;
using llvm::SetVector;
using llvm::SmallMapVector;
/// Computes the cleanup loop lower bound of the loop being unrolled with
/// the specified unroll factor; this bound will also be upper bound of the main
/// part of the unrolled loop. Computes the bound as an AffineMap with its
/// operands or a null map when the trip count can't be expressed as an affine
/// expression.
void mlir::getCleanupLoopLowerBound(AffineForOp forOp, unsigned unrollFactor,
AffineMap *map,
SmallVectorImpl<Value> *operands,
OpBuilder &b) {
auto lbMap = forOp.getLowerBoundMap();
// Single result lower bound map only.
if (lbMap.getNumResults() != 1) {
*map = AffineMap();
return;
}
AffineMap tripCountMap;
SmallVector<Value, 4> tripCountOperands;
buildTripCountMapAndOperands(forOp, &tripCountMap, &tripCountOperands);
// Sometimes the trip count cannot be expressed as an affine expression.
if (!tripCountMap) {
*map = AffineMap();
return;
}
unsigned step = forOp.getStep();
auto lb = b.create<AffineApplyOp>(forOp.getLoc(), lbMap,
forOp.getLowerBoundOperands());
// For each upper bound expr, get the range.
// Eg: affine.for %i = lb to min (ub1, ub2),
// where tripCountExprs yield (tr1, tr2), we create affine.apply's:
// lb + tr1 - tr1 % ufactor, lb + tr2 - tr2 % ufactor; the results of all
// these affine.apply's make up the cleanup loop lower bound.
SmallVector<AffineExpr, 4> bumpExprs(tripCountMap.getNumResults());
SmallVector<Value, 4> bumpValues(tripCountMap.getNumResults());
for (unsigned i = 0, e = tripCountMap.getNumResults(); i < e; i++) {
auto tripCountExpr = tripCountMap.getResult(i);
bumpExprs[i] = (tripCountExpr - tripCountExpr % unrollFactor) * step;
auto bumpMap = AffineMap::get(tripCountMap.getNumDims(),
tripCountMap.getNumSymbols(), bumpExprs[i]);
bumpValues[i] =
b.create<AffineApplyOp>(forOp.getLoc(), bumpMap, tripCountOperands);
}
SmallVector<AffineExpr, 4> newUbExprs(tripCountMap.getNumResults());
for (unsigned i = 0, e = bumpExprs.size(); i < e; i++)
newUbExprs[i] = b.getAffineDimExpr(0) + b.getAffineDimExpr(i + 1);
operands->clear();
operands->push_back(lb);
operands->append(bumpValues.begin(), bumpValues.end());
*map = AffineMap::get(1 + tripCountMap.getNumResults(), 0, newUbExprs);
// Simplify the map + operands.
fullyComposeAffineMapAndOperands(map, operands);
*map = simplifyAffineMap(*map);
canonicalizeMapAndOperands(map, operands);
// Remove any affine.apply's that became dead from the simplification above.
for (auto v : bumpValues) {
if (v.use_empty())
v.getDefiningOp()->erase();
}
if (lb.use_empty())
lb.erase();
}
/// Promotes the loop body of a forOp to its containing block if the forOp
/// was known to have a single iteration.
// TODO(bondhugula): extend this for arbitrary affine bounds.
LogicalResult mlir::promoteIfSingleIteration(AffineForOp forOp) {
Optional<uint64_t> tripCount = getConstantTripCount(forOp);
if (!tripCount.hasValue() || tripCount.getValue() != 1)
return failure();
// TODO(mlir-team): there is no builder for a max.
if (forOp.getLowerBoundMap().getNumResults() != 1)
return failure();
// Replaces all IV uses to its single iteration value.
auto iv = forOp.getInductionVar();
Operation *op = forOp.getOperation();
if (!iv.use_empty()) {
if (forOp.hasConstantLowerBound()) {
OpBuilder topBuilder(op->getParentOfType<FuncOp>().getBody());
auto constOp = topBuilder.create<ConstantIndexOp>(
forOp.getLoc(), forOp.getConstantLowerBound());
iv.replaceAllUsesWith(constOp);
} else {
AffineBound lb = forOp.getLowerBound();
SmallVector<Value, 4> lbOperands(lb.operand_begin(), lb.operand_end());
OpBuilder builder(op->getBlock(), Block::iterator(op));
if (lb.getMap() == builder.getDimIdentityMap()) {
// No need of generating an affine.apply.
iv.replaceAllUsesWith(lbOperands[0]);
} else {
auto affineApplyOp = builder.create<AffineApplyOp>(
op->getLoc(), lb.getMap(), lbOperands);
iv.replaceAllUsesWith(affineApplyOp);
}
}
}
// Move the loop body operations, except for terminator, to the loop's
// containing block.
auto *block = op->getBlock();
forOp.getBody()->getOperations().back().erase();
block->getOperations().splice(Block::iterator(op),
forOp.getBody()->getOperations());
forOp.erase();
return success();
}
/// Promotes all single iteration for op's in the FuncOp, i.e., moves
/// their body into the containing Block.
void mlir::promoteSingleIterationLoops(FuncOp f) {
// Gathers all innermost loops through a post order pruned walk.
f.walk([](AffineForOp forOp) { promoteIfSingleIteration(forOp); });
}
/// Generates a 'affine.for' op with the specified lower and upper bounds
/// while generating the right IV remappings for the shifted operations. The
/// operation blocks that go into the loop are specified in instGroupQueue
/// starting from the specified offset, and in that order; the first element of
/// the pair specifies the shift applied to that group of operations; note
/// that the shift is multiplied by the loop step before being applied. Returns
/// nullptr if the generated loop simplifies to a single iteration one.
static AffineForOp
generateLoop(AffineMap lbMap, AffineMap ubMap,
const std::vector<std::pair<uint64_t, ArrayRef<Operation *>>>
&instGroupQueue,
unsigned offset, AffineForOp srcForInst, OpBuilder b) {
SmallVector<Value, 4> lbOperands(srcForInst.getLowerBoundOperands());
SmallVector<Value, 4> ubOperands(srcForInst.getUpperBoundOperands());
assert(lbMap.getNumInputs() == lbOperands.size());
assert(ubMap.getNumInputs() == ubOperands.size());
auto loopChunk =
b.create<AffineForOp>(srcForInst.getLoc(), lbOperands, lbMap, ubOperands,
ubMap, srcForInst.getStep());
auto loopChunkIV = loopChunk.getInductionVar();
auto srcIV = srcForInst.getInductionVar();
BlockAndValueMapping operandMap;
OpBuilder bodyBuilder = loopChunk.getBodyBuilder();
for (auto it = instGroupQueue.begin() + offset, e = instGroupQueue.end();
it != e; ++it) {
uint64_t shift = it->first;
auto insts = it->second;
// All 'same shift' operations get added with their operands being
// remapped to results of cloned operations, and their IV used remapped.
// Generate the remapping if the shift is not zero: remappedIV = newIV -
// shift.
if (!srcIV.use_empty() && shift != 0) {
auto ivRemap = bodyBuilder.create<AffineApplyOp>(
srcForInst.getLoc(),
bodyBuilder.getSingleDimShiftAffineMap(
-static_cast<int64_t>(srcForInst.getStep() * shift)),
loopChunkIV);
operandMap.map(srcIV, ivRemap);
} else {
operandMap.map(srcIV, loopChunkIV);
}
for (auto *op : insts) {
if (!isa<AffineTerminatorOp>(op))
bodyBuilder.clone(*op, operandMap);
}
};
if (succeeded(promoteIfSingleIteration(loopChunk)))
return AffineForOp();
return loopChunk;
}
/// Skew the operations in the body of a 'affine.for' operation with the
/// specified operation-wise shifts. The shifts are with respect to the
/// original execution order, and are multiplied by the loop 'step' before being
/// applied. A shift of zero for each operation will lead to no change.
// The skewing of operations with respect to one another can be used for
// example to allow overlap of asynchronous operations (such as DMA
// communication) with computation, or just relative shifting of operations
// for better register reuse, locality or parallelism. As such, the shifts are
// typically expected to be at most of the order of the number of operations.
// This method should not be used as a substitute for loop distribution/fission.
// This method uses an algorithm// in time linear in the number of operations
// in the body of the for loop - (using the 'sweep line' paradigm). This method
// asserts preservation of SSA dominance. A check for that as well as that for
// memory-based dependence preservation check rests with the users of this
// method.
LogicalResult mlir::instBodySkew(AffineForOp forOp, ArrayRef<uint64_t> shifts,
bool unrollPrologueEpilogue) {
if (forOp.getBody()->begin() == std::prev(forOp.getBody()->end()))
return success();
// If the trip counts aren't constant, we would need versioning and
// conditional guards (or context information to prevent such versioning). The
// better way to pipeline for such loops is to first tile them and extract
// constant trip count "full tiles" before applying this.
auto mayBeConstTripCount = getConstantTripCount(forOp);
if (!mayBeConstTripCount.hasValue()) {
LLVM_DEBUG(forOp.emitRemark("non-constant trip count loop not handled"));
return success();
}
uint64_t tripCount = mayBeConstTripCount.getValue();
assert(isInstwiseShiftValid(forOp, shifts) &&
"shifts will lead to an invalid transformation\n");
int64_t step = forOp.getStep();
unsigned numChildInsts = forOp.getBody()->getOperations().size();
// Do a linear time (counting) sort for the shifts.
uint64_t maxShift = 0;
for (unsigned i = 0; i < numChildInsts; i++) {
maxShift = std::max(maxShift, shifts[i]);
}
// Such large shifts are not the typical use case.
if (maxShift >= numChildInsts) {
forOp.emitWarning("not shifting because shifts are unrealistically large");
return success();
}
// An array of operation groups sorted by shift amount; each group has all
// operations with the same shift in the order in which they appear in the
// body of the 'affine.for' op.
std::vector<std::vector<Operation *>> sortedInstGroups(maxShift + 1);
unsigned pos = 0;
for (auto &op : *forOp.getBody()) {
auto shift = shifts[pos++];
sortedInstGroups[shift].push_back(&op);
}
// Unless the shifts have a specific pattern (which actually would be the
// common use case), prologue and epilogue are not meaningfully defined.
// Nevertheless, if 'unrollPrologueEpilogue' is set, we will treat the first
// loop generated as the prologue and the last as epilogue and unroll these
// fully.
AffineForOp prologue;
AffineForOp epilogue;
// Do a sweep over the sorted shifts while storing open groups in a
// vector, and generating loop portions as necessary during the sweep. A block
// of operations is paired with its shift.
std::vector<std::pair<uint64_t, ArrayRef<Operation *>>> instGroupQueue;
auto origLbMap = forOp.getLowerBoundMap();
uint64_t lbShift = 0;
OpBuilder b(forOp.getOperation());
for (uint64_t d = 0, e = sortedInstGroups.size(); d < e; ++d) {
// If nothing is shifted by d, continue.
if (sortedInstGroups[d].empty())
continue;
if (!instGroupQueue.empty()) {
assert(d >= 1 &&
"Queue expected to be empty when the first block is found");
// The interval for which the loop needs to be generated here is:
// [lbShift, min(lbShift + tripCount, d)) and the body of the
// loop needs to have all operations in instQueue in that order.
AffineForOp res;
if (lbShift + tripCount * step < d * step) {
res = generateLoop(
b.getShiftedAffineMap(origLbMap, lbShift),
b.getShiftedAffineMap(origLbMap, lbShift + tripCount * step),
instGroupQueue, 0, forOp, b);
// Entire loop for the queued op groups generated, empty it.
instGroupQueue.clear();
lbShift += tripCount * step;
} else {
res = generateLoop(b.getShiftedAffineMap(origLbMap, lbShift),
b.getShiftedAffineMap(origLbMap, d), instGroupQueue,
0, forOp, b);
lbShift = d * step;
}
if (!prologue && res)
prologue = res;
epilogue = res;
} else {
// Start of first interval.
lbShift = d * step;
}
// Augment the list of operations that get into the current open interval.
instGroupQueue.push_back({d, sortedInstGroups[d]});
}
// Those operations groups left in the queue now need to be processed (FIFO)
// and their loops completed.
for (unsigned i = 0, e = instGroupQueue.size(); i < e; ++i) {
uint64_t ubShift = (instGroupQueue[i].first + tripCount) * step;
epilogue = generateLoop(b.getShiftedAffineMap(origLbMap, lbShift),
b.getShiftedAffineMap(origLbMap, ubShift),
instGroupQueue, i, forOp, b);
lbShift = ubShift;
if (!prologue)
prologue = epilogue;
}
// Erase the original for op.
forOp.erase();
if (unrollPrologueEpilogue && prologue)
loopUnrollFull(prologue);
if (unrollPrologueEpilogue && !epilogue &&
epilogue.getOperation() != prologue.getOperation())
loopUnrollFull(epilogue);
return success();
}
// Collect perfectly nested loops starting from `rootForOps`. Loops are
// perfectly nested if each loop is the first and only non-terminator operation
// in the parent loop. Collect at most `maxLoops` loops and append them to
// `forOps`.
template <typename T>
static void getPerfectlyNestedLoopsImpl(
SmallVectorImpl<T> &forOps, T rootForOp,
unsigned maxLoops = std::numeric_limits<unsigned>::max()) {
for (unsigned i = 0; i < maxLoops; ++i) {
forOps.push_back(rootForOp);
Block &body = rootForOp.region().front();
if (body.begin() != std::prev(body.end(), 2))
return;
rootForOp = dyn_cast<T>(&body.front());
if (!rootForOp)
return;
}
}
/// Get perfectly nested sequence of loops starting at root of loop nest
/// (the first op being another AffineFor, and the second op - a terminator).
/// A loop is perfectly nested iff: the first op in the loop's body is another
/// AffineForOp, and the second op is a terminator).
void mlir::getPerfectlyNestedLoops(SmallVectorImpl<AffineForOp> &nestedLoops,
AffineForOp root) {
getPerfectlyNestedLoopsImpl(nestedLoops, root);
}
void mlir::getPerfectlyNestedLoops(SmallVectorImpl<loop::ForOp> &nestedLoops,
loop::ForOp root) {
getPerfectlyNestedLoopsImpl(nestedLoops, root);
}
/// Unrolls this loop completely.
LogicalResult mlir::loopUnrollFull(AffineForOp forOp) {
Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
if (mayBeConstantTripCount.hasValue()) {
uint64_t tripCount = mayBeConstantTripCount.getValue();
if (tripCount == 1) {
return promoteIfSingleIteration(forOp);
}
return loopUnrollByFactor(forOp, tripCount);
}
return failure();
}
/// Unrolls and jams this loop by the specified factor or by the trip count (if
/// constant) whichever is lower.
LogicalResult mlir::loopUnrollUpToFactor(AffineForOp forOp,
uint64_t unrollFactor) {
Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
if (mayBeConstantTripCount.hasValue() &&
mayBeConstantTripCount.getValue() < unrollFactor)
return loopUnrollByFactor(forOp, mayBeConstantTripCount.getValue());
return loopUnrollByFactor(forOp, unrollFactor);
}
/// Unrolls this loop by the specified factor. Returns success if the loop
/// is successfully unrolled.
LogicalResult mlir::loopUnrollByFactor(AffineForOp forOp,
uint64_t unrollFactor) {
assert(unrollFactor >= 1 && "unroll factor should be >= 1");
if (unrollFactor == 1)
return promoteIfSingleIteration(forOp);
if (forOp.getBody()->empty() ||
forOp.getBody()->begin() == std::prev(forOp.getBody()->end()))
return failure();
// Loops where the lower bound is a max expression isn't supported for
// unrolling since the trip count can be expressed as an affine function when
// both the lower bound and the upper bound are multi-result maps. However,
// one meaningful way to do such unrolling would be to specialize the loop for
// the 'hotspot' case and unroll that hotspot.
if (forOp.getLowerBoundMap().getNumResults() != 1)
return failure();
// If the trip count is lower than the unroll factor, no unrolled body.
// TODO(bondhugula): option to specify cleanup loop unrolling.
Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
if (mayBeConstantTripCount.hasValue() &&
mayBeConstantTripCount.getValue() < unrollFactor)
return failure();
// Generate the cleanup loop if trip count isn't a multiple of unrollFactor.
Operation *op = forOp.getOperation();
if (getLargestDivisorOfTripCount(forOp) % unrollFactor != 0) {
OpBuilder builder(op->getBlock(), ++Block::iterator(op));
auto cleanupForInst = cast<AffineForOp>(builder.clone(*op));
AffineMap cleanupMap;
SmallVector<Value, 4> cleanupOperands;
getCleanupLoopLowerBound(forOp, unrollFactor, &cleanupMap, &cleanupOperands,
builder);
assert(cleanupMap &&
"cleanup loop lower bound map for single result lower bound maps "
"can always be determined");
cleanupForInst.setLowerBound(cleanupOperands, cleanupMap);
// Promote the loop body up if this has turned into a single iteration loop.
promoteIfSingleIteration(cleanupForInst);
// Adjust upper bound of the original loop; this is the same as the lower
// bound of the cleanup loop.
forOp.setUpperBound(cleanupOperands, cleanupMap);
}
// Scale the step of loop being unrolled by unroll factor.
int64_t step = forOp.getStep();
forOp.setStep(step * unrollFactor);
// Builder to insert unrolled bodies just before the terminator of the body of
// 'forOp'.
OpBuilder builder = forOp.getBodyBuilder();
// Keep a pointer to the last non-terminator operation in the original block
// so that we know what to clone (since we are doing this in-place).
Block::iterator srcBlockEnd = std::prev(forOp.getBody()->end(), 2);
// Unroll the contents of 'forOp' (append unrollFactor-1 additional copies).
auto forOpIV = forOp.getInductionVar();
for (unsigned i = 1; i < unrollFactor; i++) {
BlockAndValueMapping operandMap;
// If the induction variable is used, create a remapping to the value for
// this unrolled instance.
if (!forOpIV.use_empty()) {
// iv' = iv + 1/2/3...unrollFactor-1;
auto d0 = builder.getAffineDimExpr(0);
auto bumpMap = AffineMap::get(1, 0, {d0 + i * step});
auto ivUnroll =
builder.create<AffineApplyOp>(forOp.getLoc(), bumpMap, forOpIV);
operandMap.map(forOpIV, ivUnroll);
}
// Clone the original body of 'forOp'.
for (auto it = forOp.getBody()->begin(); it != std::next(srcBlockEnd);
it++) {
builder.clone(*it, operandMap);
}
}
// Promote the loop body up if this has turned into a single iteration loop.
promoteIfSingleIteration(forOp);
return success();
}
/// Performs loop interchange on 'forOpA' and 'forOpB', where 'forOpB' is
/// nested within 'forOpA' as the only non-terminator operation in its block.
void mlir::interchangeLoops(AffineForOp forOpA, AffineForOp forOpB) {
auto *forOpAInst = forOpA.getOperation();
assert(&*forOpA.getBody()->begin() == forOpB.getOperation());
auto &forOpABody = forOpA.getBody()->getOperations();
auto &forOpBBody = forOpB.getBody()->getOperations();
// 1) Splice forOpA's non-terminator operations (which is just forOpB) just
// before forOpA (in ForOpA's parent's block) this should leave 'forOpA's
// body containing only the terminator.
forOpAInst->getBlock()->getOperations().splice(Block::iterator(forOpAInst),
forOpABody, forOpABody.begin(),
std::prev(forOpABody.end()));
// 2) Splice forOpB's non-terminator operations into the beginning of forOpA's
// body (this leaves forOpB's body containing only the terminator).
forOpABody.splice(forOpABody.begin(), forOpBBody, forOpBBody.begin(),
std::prev(forOpBBody.end()));
// 3) Splice forOpA into the beginning of forOpB's body.
forOpBBody.splice(forOpBBody.begin(), forOpAInst->getBlock()->getOperations(),
Block::iterator(forOpAInst));
}
// Checks each dependence component against the permutation to see if the
// desired loop interchange would violate dependences by making the
// dependence component lexicographically negative.
static bool checkLoopInterchangeDependences(
const std::vector<SmallVector<DependenceComponent, 2>> &depCompsVec,
ArrayRef<AffineForOp> loops, ArrayRef<unsigned> loopPermMap) {
// Invert permutation map.
unsigned maxLoopDepth = loops.size();
SmallVector<unsigned, 4> loopPermMapInv;
loopPermMapInv.resize(maxLoopDepth);
for (unsigned i = 0; i < maxLoopDepth; ++i)
loopPermMapInv[loopPermMap[i]] = i;
// Check each dependence component against the permutation to see if the
// desired loop interchange permutation would make the dependence vectors
// lexicographically negative.
// Example 1: [-1, 1][0, 0]
// Example 2: [0, 0][-1, 1]
for (unsigned i = 0, e = depCompsVec.size(); i < e; ++i) {
const SmallVector<DependenceComponent, 2> &depComps = depCompsVec[i];
assert(depComps.size() >= maxLoopDepth);
// Check if the first non-zero dependence component is positive.
// This iterates through loops in the desired order.
for (unsigned j = 0; j < maxLoopDepth; ++j) {
unsigned permIndex = loopPermMapInv[j];
assert(depComps[permIndex].lb.hasValue());
int64_t depCompLb = depComps[permIndex].lb.getValue();
if (depCompLb > 0)
break;
if (depCompLb < 0)
return false;
}
}
return true;
}
/// Checks if the loop interchange permutation 'loopPermMap' of the perfectly
/// nested sequence of loops in 'loops' would violate dependences.
bool mlir::isValidLoopInterchangePermutation(ArrayRef<AffineForOp> loops,
ArrayRef<unsigned> loopPermMap) {
// Gather dependence components for dependences between all ops in loop nest
// rooted at 'loops[0]', at loop depths in range [1, maxLoopDepth].
assert(loopPermMap.size() == loops.size());
unsigned maxLoopDepth = loops.size();
std::vector<SmallVector<DependenceComponent, 2>> depCompsVec;
getDependenceComponents(loops[0], maxLoopDepth, &depCompsVec);
return checkLoopInterchangeDependences(depCompsVec, loops, loopPermMap);
}
/// Performs a sequence of loop interchanges of loops in perfectly nested
/// sequence of loops in 'loops', as specified by permutation in 'loopPermMap'.
unsigned mlir::interchangeLoops(ArrayRef<AffineForOp> loops,
ArrayRef<unsigned> loopPermMap) {
Optional<unsigned> loopNestRootIndex;
for (int i = loops.size() - 1; i >= 0; --i) {
int permIndex = static_cast<int>(loopPermMap[i]);
// Store the index of the for loop which will be the new loop nest root.
if (permIndex == 0)
loopNestRootIndex = i;
if (permIndex > i) {
// Sink loop 'i' by 'permIndex - i' levels deeper into the loop nest.
sinkLoop(loops[i], permIndex - i);
}
}
assert(loopNestRootIndex.hasValue());
return loopNestRootIndex.getValue();
}
// Sinks all sequential loops to the innermost levels (while preserving
// relative order among them) and moves all parallel loops to the
// outermost (while again preserving relative order among them).
AffineForOp mlir::sinkSequentialLoops(AffineForOp forOp) {
SmallVector<AffineForOp, 4> loops;
getPerfectlyNestedLoops(loops, forOp);
if (loops.size() < 2)
return forOp;
// Gather dependence components for dependences between all ops in loop nest
// rooted at 'loops[0]', at loop depths in range [1, maxLoopDepth].
unsigned maxLoopDepth = loops.size();
std::vector<SmallVector<DependenceComponent, 2>> depCompsVec;
getDependenceComponents(loops[0], maxLoopDepth, &depCompsVec);
// Mark loops as either parallel or sequential.
SmallVector<bool, 8> isParallelLoop(maxLoopDepth, true);
for (unsigned i = 0, e = depCompsVec.size(); i < e; ++i) {
SmallVector<DependenceComponent, 2> &depComps = depCompsVec[i];
assert(depComps.size() >= maxLoopDepth);
for (unsigned j = 0; j < maxLoopDepth; ++j) {
DependenceComponent &depComp = depComps[j];
assert(depComp.lb.hasValue() && depComp.ub.hasValue());
if (depComp.lb.getValue() != 0 || depComp.ub.getValue() != 0)
isParallelLoop[j] = false;
}
}
// Count the number of parallel loops.
unsigned numParallelLoops = 0;
for (unsigned i = 0, e = isParallelLoop.size(); i < e; ++i)
if (isParallelLoop[i])
++numParallelLoops;
// Compute permutation of loops that sinks sequential loops (and thus raises
// parallel loops) while preserving relative order.
SmallVector<unsigned, 4> loopPermMap(maxLoopDepth);
unsigned nextSequentialLoop = numParallelLoops;
unsigned nextParallelLoop = 0;
for (unsigned i = 0; i < maxLoopDepth; ++i) {
if (isParallelLoop[i]) {
loopPermMap[i] = nextParallelLoop++;
} else {
loopPermMap[i] = nextSequentialLoop++;
}
}
// Check if permutation 'loopPermMap' would violate dependences.
if (!checkLoopInterchangeDependences(depCompsVec, loops, loopPermMap))
return forOp;
// Perform loop interchange according to permutation 'loopPermMap'.
unsigned loopNestRootIndex = interchangeLoops(loops, loopPermMap);
return loops[loopNestRootIndex];
}
/// Performs a series of loop interchanges to sink 'forOp' 'loopDepth' levels
/// deeper in the loop nest.
void mlir::sinkLoop(AffineForOp forOp, unsigned loopDepth) {
for (unsigned i = 0; i < loopDepth; ++i) {
AffineForOp nextForOp = cast<AffineForOp>(forOp.getBody()->front());
interchangeLoops(forOp, nextForOp);
}
}
// Factors out common behavior to add a new `iv` (resp. `iv` + `offset`) to the
// lower (resp. upper) loop bound. When called for both the lower and upper
// bounds, the resulting IR resembles:
//
// ```mlir
// affine.for %i = max (`iv, ...) to min (`iv` + `offset`) {
// ...
// }
// ```
static void augmentMapAndBounds(OpBuilder &b, Value iv, AffineMap *map,
SmallVector<Value, 4> *operands,
int64_t offset = 0) {
auto bounds = llvm::to_vector<4>(map->getResults());
bounds.push_back(b.getAffineDimExpr(map->getNumDims()) + offset);
operands->insert(operands->begin() + map->getNumDims(), iv);
*map = AffineMap::get(map->getNumDims() + 1, map->getNumSymbols(), bounds);
canonicalizeMapAndOperands(map, operands);
}
// Stripmines `forOp` by `factor` and sinks it under each of the `targets`.
// Stripmine-sink is a primitive building block for generalized tiling of
// imperfectly nested loops.
// This transformation is purely mechanical and does not check legality,
// profitability or even structural correctness. It is the user's
// responsibility to specify `targets` that are dominated by `forOp`.
// Returns the new AffineForOps, one per `targets`, nested immediately under
// each of the `targets`.
static SmallVector<AffineForOp, 8>
stripmineSink(AffineForOp forOp, uint64_t factor,
ArrayRef<AffineForOp> targets) {
auto originalStep = forOp.getStep();
auto scaledStep = originalStep * factor;
forOp.setStep(scaledStep);
auto *op = forOp.getOperation();
OpBuilder b(op->getBlock(), ++Block::iterator(op));
// Lower-bound map creation.
auto lbMap = forOp.getLowerBoundMap();
SmallVector<Value, 4> lbOperands(forOp.getLowerBoundOperands());
augmentMapAndBounds(b, forOp.getInductionVar(), &lbMap, &lbOperands);
// Upper-bound map creation.
auto ubMap = forOp.getUpperBoundMap();
SmallVector<Value, 4> ubOperands(forOp.getUpperBoundOperands());
augmentMapAndBounds(b, forOp.getInductionVar(), &ubMap, &ubOperands,
/*offset=*/scaledStep);
auto iv = forOp.getInductionVar();
SmallVector<AffineForOp, 8> innerLoops;
for (auto t : targets) {
// Insert newForOp before the terminator of `t`.
OpBuilder b = t.getBodyBuilder();
auto newForOp = b.create<AffineForOp>(t.getLoc(), lbOperands, lbMap,
ubOperands, ubMap, originalStep);
auto begin = t.getBody()->begin();
// Skip terminator and `newForOp` which is just before the terminator.
auto nOps = t.getBody()->getOperations().size() - 2;
newForOp.getBody()->getOperations().splice(
newForOp.getBody()->getOperations().begin(),
t.getBody()->getOperations(), begin, std::next(begin, nOps));
replaceAllUsesInRegionWith(iv, newForOp.getInductionVar(),
newForOp.region());
innerLoops.push_back(newForOp);
}
return innerLoops;
}
static Loops stripmineSink(loop::ForOp forOp, Value factor,
ArrayRef<loop::ForOp> targets) {
auto originalStep = forOp.step();
auto iv = forOp.getInductionVar();
OpBuilder b(forOp);
forOp.setStep(b.create<MulIOp>(forOp.getLoc(), originalStep, factor));
Loops innerLoops;
for (auto t : targets) {
// Save information for splicing ops out of t when done
auto begin = t.getBody()->begin();
auto nOps = t.getBody()->getOperations().size();
// Insert newForOp before the terminator of `t`.
OpBuilder b(t.getBodyBuilder());
Value stepped = b.create<AddIOp>(t.getLoc(), iv, forOp.step());
Value less = b.create<CmpIOp>(t.getLoc(), CmpIPredicate::slt,
forOp.upperBound(), stepped);
Value ub =
b.create<SelectOp>(t.getLoc(), less, forOp.upperBound(), stepped);
// Splice [begin, begin + nOps - 1) into `newForOp` and replace uses.
auto newForOp = b.create<loop::ForOp>(t.getLoc(), iv, ub, originalStep);
newForOp.getBody()->getOperations().splice(
newForOp.getBody()->getOperations().begin(),
t.getBody()->getOperations(), begin, std::next(begin, nOps - 1));
replaceAllUsesInRegionWith(iv, newForOp.getInductionVar(),
newForOp.region());
innerLoops.push_back(newForOp);
}
return innerLoops;
}
// Stripmines a `forOp` by `factor` and sinks it under a single `target`.
// Returns the new AffineForOps, nested immediately under `target`.
template <typename ForType, typename SizeType>
static ForType stripmineSink(ForType forOp, SizeType factor, ForType target) {
// TODO(ntv): Use cheap structural assertions that targets are nested under
// forOp and that targets are not nested under each other when DominanceInfo
// exposes the capability. It seems overkill to construct a whole function
// dominance tree at this point.
auto res = stripmineSink(forOp, factor, ArrayRef<ForType>{target});
assert(res.size() == 1 && "Expected 1 inner forOp");
return res[0];
}
template <typename ForType, typename SizeType>
static SmallVector<SmallVector<ForType, 8>, 8>
tileImpl(ArrayRef<ForType> forOps, ArrayRef<SizeType> sizes,
ArrayRef<ForType> targets) {
SmallVector<SmallVector<ForType, 8>, 8> res;
SmallVector<ForType, 8> currentTargets(targets.begin(), targets.end());
for (auto it : llvm::zip(forOps, sizes)) {
auto step = stripmineSink(std::get<0>(it), std::get<1>(it), currentTargets);
res.push_back(step);
currentTargets = step;
}
return res;
}
SmallVector<SmallVector<AffineForOp, 8>, 8>
mlir::tile(ArrayRef<AffineForOp> forOps, ArrayRef<uint64_t> sizes,
ArrayRef<AffineForOp> targets) {
return tileImpl(forOps, sizes, targets);
}
SmallVector<Loops, 8> mlir::tile(ArrayRef<loop::ForOp> forOps,
ArrayRef<Value> sizes,
ArrayRef<loop::ForOp> targets) {
return tileImpl(forOps, sizes, targets);
}
template <typename ForType, typename SizeType>
static SmallVector<ForType, 8>
tileImpl(ArrayRef<ForType> forOps, ArrayRef<SizeType> sizes, ForType target) {
SmallVector<ForType, 8> res;
for (auto loops : tile(forOps, sizes, ArrayRef<ForType>{target})) {
assert(loops.size() == 1);
res.push_back(loops[0]);
}
return res;
}
SmallVector<AffineForOp, 8> mlir::tile(ArrayRef<AffineForOp> forOps,
ArrayRef<uint64_t> sizes,
AffineForOp target) {
return tileImpl(forOps, sizes, target);
}
Loops mlir::tile(ArrayRef<loop::ForOp> forOps, ArrayRef<Value> sizes,
loop::ForOp target) {
return tileImpl(forOps, sizes, target);
}
Loops mlir::tilePerfectlyNested(loop::ForOp rootForOp, ArrayRef<Value> sizes) {
// Collect perfectly nested loops. If more size values provided than nested
// loops available, truncate `sizes`.
SmallVector<loop::ForOp, 4> forOps;
forOps.reserve(sizes.size());
getPerfectlyNestedLoopsImpl(forOps, rootForOp, sizes.size());
if (forOps.size() < sizes.size())
sizes = sizes.take_front(forOps.size());
return ::tile(forOps, sizes, forOps.back());
}
// Build the IR that performs ceil division of a positive value by a constant:
// ceildiv(a, B) = divis(a + (B-1), B)
// where divis is rounding-to-zero division.
static Value ceilDivPositive(OpBuilder &builder, Location loc, Value dividend,
int64_t divisor) {
assert(divisor > 0 && "expected positive divisor");
assert(dividend.getType().isIndex() && "expected index-typed value");
Value divisorMinusOneCst = builder.create<ConstantIndexOp>(loc, divisor - 1);
Value divisorCst = builder.create<ConstantIndexOp>(loc, divisor);
Value sum = builder.create<AddIOp>(loc, dividend, divisorMinusOneCst);
return builder.create<SignedDivIOp>(loc, sum, divisorCst);
}
// Build the IR that performs ceil division of a positive value by another
// positive value:
// ceildiv(a, b) = divis(a + (b - 1), b)
// where divis is rounding-to-zero division.
static Value ceilDivPositive(OpBuilder &builder, Location loc, Value dividend,
Value divisor) {
assert(dividend.getType().isIndex() && "expected index-typed value");
Value cstOne = builder.create<ConstantIndexOp>(loc, 1);
Value divisorMinusOne = builder.create<SubIOp>(loc, divisor, cstOne);
Value sum = builder.create<AddIOp>(loc, dividend, divisorMinusOne);
return builder.create<SignedDivIOp>(loc, sum, divisor);
}
// Hoist the ops within `outer` that appear before `inner`.
// Such ops include the ops that have been introduced by parametric tiling.
// Ops that come from triangular loops (i.e. that belong to the program slice
// rooted at `outer`) and ops that have side effects cannot be hoisted.
// Return failure when any op fails to hoist.
static LogicalResult hoistOpsBetween(loop::ForOp outer, loop::ForOp inner) {
SetVector<Operation *> forwardSlice;
getForwardSlice(outer.getOperation(), &forwardSlice, [&inner](Operation *op) {
return op != inner.getOperation();
});
LogicalResult status = success();
SmallVector<Operation *, 8> toHoist;
for (auto &op : outer.getBody()->getOperations()) {
// Stop when encountering the inner loop.
if (&op == inner.getOperation())
break;
// Skip over non-hoistable ops.
if (forwardSlice.count(&op) > 0) {
status = failure();
continue;
}
// Skip loop::ForOp, these are not considered a failure.
if (op.getNumRegions() > 0)
continue;
// Skip other ops with regions.
if (op.getNumRegions() > 0) {
status = failure();
continue;
}
// Skip if op has side effects.
// TODO(ntv): loads to immutable memory regions are ok.
if (!op.hasNoSideEffect()) {
status = failure();
continue;
}
toHoist.push_back(&op);
}
auto *outerForOp = outer.getOperation();
for (auto *op : toHoist)
op->moveBefore(outerForOp);
return status;
}
// Traverse the interTile and intraTile loops and try to hoist ops such that
// bands of perfectly nested loops are isolated.
// Return failure if either perfect interTile or perfect intraTile bands cannot
// be formed.
static LogicalResult tryIsolateBands(const TileLoops &tileLoops) {
LogicalResult status = success();
auto &interTile = tileLoops.first;
auto &intraTile = tileLoops.second;
auto size = interTile.size();
assert(size == intraTile.size());
if (size <= 1)
return success();
for (unsigned s = 1; s < size; ++s)
status = succeeded(status) ? hoistOpsBetween(intraTile[0], intraTile[s])
: failure();
for (unsigned s = 1; s < size; ++s)
status = succeeded(status) ? hoistOpsBetween(interTile[0], interTile[s])
: failure();
return status;
}
TileLoops mlir::extractFixedOuterLoops(loop::ForOp rootForOp,
ArrayRef<int64_t> sizes) {
// Collect perfectly nested loops. If more size values provided than nested
// loops available, truncate `sizes`.
SmallVector<loop::ForOp, 4> forOps;
forOps.reserve(sizes.size());
getPerfectlyNestedLoopsImpl(forOps, rootForOp, sizes.size());
if (forOps.size() < sizes.size())
sizes = sizes.take_front(forOps.size());
// Compute the tile sizes such that i-th outer loop executes size[i]
// iterations. Given that the loop current executes
// numIterations = ceildiv((upperBound - lowerBound), step)
// iterations, we need to tile with size ceildiv(numIterations, size[i]).
SmallVector<Value, 4> tileSizes;
tileSizes.reserve(sizes.size());
for (unsigned i = 0, e = sizes.size(); i < e; ++i) {
assert(sizes[i] > 0 && "expected strictly positive size for strip-mining");
auto forOp = forOps[i];
OpBuilder builder(forOp);
auto loc = forOp.getLoc();
Value diff =
builder.create<SubIOp>(loc, forOp.upperBound(), forOp.lowerBound());
Value numIterations = ceilDivPositive(builder, loc, diff, forOp.step());
Value iterationsPerBlock =
ceilDivPositive(builder, loc, numIterations, sizes[i]);
tileSizes.push_back(iterationsPerBlock);
}
// Call parametric tiling with the given sizes.
auto intraTile = tile(forOps, tileSizes, forOps.back());
TileLoops tileLoops = std::make_pair(forOps, intraTile);
// TODO(ntv, zinenko) for now we just ignore the result of band isolation.
// In the future, mapping decisions may be impacted by the ability to
// isolate perfectly nested bands.
tryIsolateBands(tileLoops);
return tileLoops;
}
// Replaces all uses of `orig` with `replacement` except if the user is listed
// in `exceptions`.
static void
replaceAllUsesExcept(Value orig, Value replacement,
const SmallPtrSetImpl<Operation *> &exceptions) {
for (auto &use : llvm::make_early_inc_range(orig.getUses())) {
if (exceptions.count(use.getOwner()) == 0)
use.set(replacement);
}
}
// Transform a loop with a strictly positive step
// for %i = %lb to %ub step %s
// into a 0-based loop with step 1
// for %ii = 0 to ceildiv(%ub - %lb, %s) step 1 {
// %i = %ii * %s + %lb
// Insert the induction variable remapping in the body of `inner`, which is
// expected to be either `loop` or another loop perfectly nested under `loop`.
// Insert the definition of new bounds immediate before `outer`, which is
// expected to be either `loop` or its parent in the loop nest.
static void normalizeLoop(loop::ForOp loop, loop::ForOp outer,
loop::ForOp inner) {
OpBuilder builder(outer);
Location loc = loop.getLoc();
// Check if the loop is already known to have a constant zero lower bound or
// a constant one step.
bool isZeroBased = false;
if (auto ubCst =
dyn_cast_or_null<ConstantIndexOp>(loop.lowerBound().getDefiningOp()))
isZeroBased = ubCst.getValue() == 0;
bool isStepOne = false;
if (auto stepCst =
dyn_cast_or_null<ConstantIndexOp>(loop.step().getDefiningOp()))
isStepOne = stepCst.getValue() == 1;
if (isZeroBased && isStepOne)
return;
// Compute the number of iterations the loop executes: ceildiv(ub - lb, step)
// assuming the step is strictly positive. Update the bounds and the step
// of the loop to go from 0 to the number of iterations, if necessary.
// TODO(zinenko): introduce support for negative steps or emit dynamic asserts
// on step positivity, whatever gets implemented first.
Value diff =
builder.create<SubIOp>(loc, loop.upperBound(), loop.lowerBound());
Value numIterations = ceilDivPositive(builder, loc, diff, loop.step());
loop.setUpperBound(numIterations);
Value lb = loop.lowerBound();
if (!isZeroBased) {
Value cst0 = builder.create<ConstantIndexOp>(loc, 0);
loop.setLowerBound(cst0);
}
Value step = loop.step();
if (!isStepOne) {
Value cst1 = builder.create<ConstantIndexOp>(loc, 1);
loop.setStep(cst1);
}
// Insert code computing the value of the original loop induction variable
// from the "normalized" one.
builder.setInsertionPointToStart(inner.getBody());
Value scaled =
isStepOne ? loop.getInductionVar()
: builder.create<MulIOp>(loc, loop.getInductionVar(), step);
Value shifted =
isZeroBased ? scaled : builder.create<AddIOp>(loc, scaled, lb);
SmallPtrSet<Operation *, 2> preserve{scaled.getDefiningOp(),
shifted.getDefiningOp()};
replaceAllUsesExcept(loop.getInductionVar(), shifted, preserve);
}
void mlir::coalesceLoops(MutableArrayRef<loop::ForOp> loops) {
if (loops.size() < 2)
return;
loop::ForOp innermost = loops.back();
loop::ForOp outermost = loops.front();
// 1. Make sure all loops iterate from 0 to upperBound with step 1. This
// allows the following code to assume upperBound is the number of iterations.
for (auto loop : loops)
normalizeLoop(loop, outermost, innermost);
// 2. Emit code computing the upper bound of the coalesced loop as product
// of the number of iterations of all loops.
OpBuilder builder(outermost);
Location loc = outermost.getLoc();
Value upperBound = outermost.upperBound();
for (auto loop : loops.drop_front())
upperBound = builder.create<MulIOp>(loc, upperBound, loop.upperBound());
outermost.setUpperBound(upperBound);
builder.setInsertionPointToStart(outermost.getBody());
// 3. Remap induction variables. For each original loop, the value of the
// induction variable can be obtained by dividing the induction variable of
// the linearized loop by the total number of iterations of the loops nested
// in it modulo the number of iterations in this loop (remove the values
// related to the outer loops):
// iv_i = floordiv(iv_linear, product-of-loop-ranges-until-i) mod range_i.
// Compute these iteratively from the innermost loop by creating a "running
// quotient" of division by the range.
Value previous = outermost.getInductionVar();
for (unsigned i = 0, e = loops.size(); i < e; ++i) {
unsigned idx = loops.size() - i - 1;
if (i != 0)
previous = builder.create<SignedDivIOp>(loc, previous,
loops[idx + 1].upperBound());
Value iv = (i == e - 1) ? previous
: builder.create<SignedRemIOp>(
loc, previous, loops[idx].upperBound());
replaceAllUsesInRegionWith(loops[idx].getInductionVar(), iv,
loops.back().region());
}
// 4. Move the operations from the innermost just above the second-outermost
// loop, delete the extra terminator and the second-outermost loop.
loop::ForOp second = loops[1];
innermost.getBody()->back().erase();
outermost.getBody()->getOperations().splice(
Block::iterator(second.getOperation()),
innermost.getBody()->getOperations());
second.erase();
}
void mlir::mapLoopToProcessorIds(loop::ForOp forOp, ArrayRef<Value> processorId,
ArrayRef<Value> numProcessors) {
assert(processorId.size() == numProcessors.size());
if (processorId.empty())
return;
OpBuilder b(forOp);
Location loc(forOp.getLoc());
Value mul = processorId.front();
for (unsigned i = 1, e = processorId.size(); i < e; ++i)
mul = b.create<AddIOp>(loc, b.create<MulIOp>(loc, mul, numProcessors[i]),
processorId[i]);
Value lb = b.create<AddIOp>(loc, forOp.lowerBound(),
b.create<MulIOp>(loc, forOp.step(), mul));
forOp.setLowerBound(lb);
Value step = forOp.step();
for (auto numProcs : numProcessors)
step = b.create<MulIOp>(loc, step, numProcs);
forOp.setStep(step);
}
/// Given a memref region, determine the lowest depth at which transfers can be
/// placed for it, and return the corresponding block, start and end positions
/// in the block for placing incoming (read) and outgoing (write) copies
/// respectively. The lowest depth depends on whether the region being accessed
/// is hoistable with respect to one or more immediately surrounding loops.
static void
findHighestBlockForPlacement(const MemRefRegion &region, Block &block,
Block::iterator &begin, Block::iterator &end,
Block **copyPlacementBlock,
Block::iterator *copyInPlacementStart,
Block::iterator *copyOutPlacementStart) {
const auto *cst = region.getConstraints();
SmallVector<Value, 4> symbols;
cst->getIdValues(cst->getNumDimIds(), cst->getNumDimAndSymbolIds(), &symbols);
SmallVector<AffineForOp, 4> enclosingFors;
getLoopIVs(*block.begin(), &enclosingFors);
// Walk up loop parents till we find an IV on which this region is
// symbolic/variant.
auto it = enclosingFors.rbegin();
for (auto e = enclosingFors.rend(); it != e; ++it) {
// TODO(bondhugula): also need to be checking this for regions symbols that
// aren't loop IVs, whether we are within their resp. defs' dominance scope.
if (llvm::is_contained(symbols, it->getInductionVar()))
break;
}
if (it != enclosingFors.rbegin()) {
auto lastInvariantIV = *std::prev(it);
*copyInPlacementStart = Block::iterator(lastInvariantIV.getOperation());
*copyOutPlacementStart = std::next(*copyInPlacementStart);
*copyPlacementBlock = lastInvariantIV.getOperation()->getBlock();
} else {
*copyInPlacementStart = begin;
*copyOutPlacementStart = end;
*copyPlacementBlock = &block;
}
}
// Info comprising stride and number of elements transferred every stride.
struct StrideInfo {
int64_t stride;
int64_t numEltPerStride;
};
/// Returns striding information for a copy/transfer of this region with
/// potentially multiple striding levels from outermost to innermost. For an
/// n-dimensional region, there can be at most n-1 levels of striding
/// successively nested.
// TODO(bondhugula): make this work with non-identity layout maps.
static void getMultiLevelStrides(const MemRefRegion &region,
ArrayRef<int64_t> bufferShape,
SmallVectorImpl<StrideInfo> *strideInfos) {
if (bufferShape.size() <= 1)
return;
int64_t numEltPerStride = 1;
int64_t stride = 1;
for (int d = bufferShape.size() - 1; d >= 1; d--) {
int64_t dimSize = region.memref.getType().cast<MemRefType>().getDimSize(d);
stride *= dimSize;
numEltPerStride *= bufferShape[d];
// A stride is needed only if the region has a shorter extent than the
// memref along the dimension *and* has an extent greater than one along the
// next major dimension.
if (bufferShape[d] < dimSize && bufferShape[d - 1] > 1) {
strideInfos->push_back({stride, numEltPerStride});
}
}
}
/// Generates a point-wise copy from/to `memref' to/from `fastMemRef' and
/// returns the outermost AffineForOp of the copy loop nest. `memIndicesStart'
/// holds the lower coordinates of the region in the original memref to copy
/// in/out. If `copyOut' is true, generates a copy-out; otherwise a copy-in.
static AffineForOp generatePointWiseCopy(Location loc, Value memref,
Value fastMemRef,
AffineMap memAffineMap,
ArrayRef<Value> memIndicesStart,
ArrayRef<int64_t> fastBufferShape,
bool isCopyOut, OpBuilder b) {
assert(!memIndicesStart.empty() && "only 1-d or more memrefs");
// The copy-in nest is generated as follows as an example for a 2-d region:
// for x = ...
// for y = ...
// fast_buf[x][y] = buf[mem_x + x][mem_y + y]
SmallVector<Value, 4> fastBufIndices, memIndices;
AffineForOp copyNestRoot;
for (unsigned d = 0, e = fastBufferShape.size(); d < e; ++d) {
auto forOp = b.create<AffineForOp>(loc, 0, fastBufferShape[d]);
if (d == 0)
copyNestRoot = forOp;
b = forOp.getBodyBuilder();
fastBufIndices.push_back(forOp.getInductionVar());
Value memBase =
(memAffineMap == b.getMultiDimIdentityMap(memAffineMap.getNumDims()))
? memIndicesStart[d]
: b.create<AffineApplyOp>(
loc,
AffineMap::get(memAffineMap.getNumDims(),
memAffineMap.getNumSymbols(),
memAffineMap.getResult(d)),
memIndicesStart);
// Construct the subscript for the slow memref being copied.
auto memIndex = b.create<AffineApplyOp>(
loc,
AffineMap::get(2, 0, b.getAffineDimExpr(0) + b.getAffineDimExpr(1)),
ValueRange({memBase, forOp.getInductionVar()}));
memIndices.push_back(memIndex);
}
if (!isCopyOut) {
// Copy in.
auto load = b.create<AffineLoadOp>(loc, memref, memIndices);
b.create<AffineStoreOp>(loc, load, fastMemRef, fastBufIndices);
return copyNestRoot;
}
// Copy out.
auto load = b.create<AffineLoadOp>(loc, fastMemRef, fastBufIndices);
b.create<AffineStoreOp>(loc, load, memref, memIndices);
return copyNestRoot;
}
static InFlightDiagnostic LLVM_ATTRIBUTE_UNUSED
emitRemarkForBlock(Block &block) {
return block.getParentOp()->emitRemark();
}
/// Creates a buffer in the faster memory space for the specified memref region;
/// generates a copy from the lower memory space to this one, and replaces all
/// loads/stores in the block range [`begin', `end') of `block' to load/store
/// from that buffer. Returns failure if copies could not be generated due to
/// yet unimplemented cases. `copyInPlacementStart` and `copyOutPlacementStart`
/// in copyPlacementBlock specify the insertion points where the incoming copies
/// and outgoing copies, respectively, should be inserted (the insertion happens
/// right before the insertion point). Since `begin` can itself be invalidated
/// due to the memref rewriting done from this method, the output argument
/// `nBegin` is set to its replacement (set to `begin` if no invalidation
/// happens). Since outgoing copies could have been inserted at `end`, the
/// output argument `nEnd` is set to the new end. `sizeInBytes` is set to the
/// size of the fast buffer allocated.
static LogicalResult generateCopy(
const MemRefRegion &region, Block *block, Block::iterator begin,
Block::iterator end, Block *copyPlacementBlock,
Block::iterator copyInPlacementStart, Block::iterator copyOutPlacementStart,
AffineCopyOptions copyOptions, DenseMap<Value, Value> &fastBufferMap,
DenseSet<Operation *> &copyNests, uint64_t *sizeInBytes,
Block::iterator *nBegin, Block::iterator *nEnd) {
*nBegin = begin;
*nEnd = end;
FuncOp f = begin->getParentOfType<FuncOp>();
OpBuilder topBuilder(f.getBody());
Value zeroIndex = topBuilder.create<ConstantIndexOp>(f.getLoc(), 0);
if (begin == end)
return success();
// Is the copy out point at the end of the block where we are doing
// explicit copying.
bool isCopyOutAtEndOfBlock = (end == copyOutPlacementStart);
// Copies for read regions are going to be inserted at 'begin'.
OpBuilder prologue(copyPlacementBlock, copyInPlacementStart);
// Copies for write regions are going to be inserted at 'end'.
OpBuilder epilogue(copyPlacementBlock, copyOutPlacementStart);
OpBuilder &b = region.isWrite() ? epilogue : prologue;
// Builder to create constants at the top level.
auto func = copyPlacementBlock->getParent()->getParentOfType<FuncOp>();
OpBuilder top(func.getBody());
auto loc = region.loc;
auto memref = region.memref;
auto memRefType = memref.getType().cast<MemRefType>();
auto layoutMaps = memRefType.getAffineMaps();
if (layoutMaps.size() > 1 ||
(layoutMaps.size() == 1 && !layoutMaps[0].isIdentity())) {
LLVM_DEBUG(llvm::dbgs() << "Non-identity layout map not yet supported\n");
return failure();
}
// Indices to use for the copying.
// Indices for the original memref being copied from/to.
SmallVector<Value, 4> memIndices;
// Indices for the faster buffer being copied into/from.
SmallVector<Value, 4> bufIndices;
unsigned rank = memRefType.getRank();
SmallVector<int64_t, 4> fastBufferShape;
// Compute the extents of the buffer.
std::vector<SmallVector<int64_t, 4>> lbs;
SmallVector<int64_t, 8> lbDivisors;
lbs.reserve(rank);
Optional<int64_t> numElements = region.getConstantBoundingSizeAndShape(
&fastBufferShape, &lbs, &lbDivisors);
if (!numElements.hasValue()) {
LLVM_DEBUG(llvm::dbgs() << "Non-constant region size not supported\n");
return failure();
}
if (numElements.getValue() == 0) {
LLVM_DEBUG(llvm::dbgs() << "Nothing to copy\n");
*sizeInBytes = 0;
return success();
}
const FlatAffineConstraints *cst = region.getConstraints();
// 'regionSymbols' hold values that this memory region is symbolic/parametric
// on; these typically include loop IVs surrounding the level at which the
// copy generation is being done or other valid symbols in MLIR.
SmallVector<Value, 8> regionSymbols;
cst->getIdValues(rank, cst->getNumIds(), &regionSymbols);
// Construct the index expressions for the fast memory buffer. The index
// expression for a particular dimension of the fast buffer is obtained by
// subtracting out the lower bound on the original memref's data region
// along the corresponding dimension.
// Index start offsets for faster memory buffer relative to the original.
SmallVector<AffineExpr, 4> offsets;
offsets.reserve(rank);
for (unsigned d = 0; d < rank; d++) {
assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size");
AffineExpr offset = top.getAffineConstantExpr(0);
for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) {
offset = offset + lbs[d][j] * top.getAffineDimExpr(j);
}
assert(lbDivisors[d] > 0);
offset =
(offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]);
// Set copy start location for this dimension in the lower memory space
// memref.
if (auto caf = offset.dyn_cast<AffineConstantExpr>()) {
auto indexVal = caf.getValue();
if (indexVal == 0) {
memIndices.push_back(zeroIndex);
} else {
memIndices.push_back(
top.create<ConstantIndexOp>(loc, indexVal).getResult());
}
} else {
// The coordinate for the start location is just the lower bound along the
// corresponding dimension on the memory region (stored in 'offset').
auto map = AffineMap::get(
cst->getNumDimIds() + cst->getNumSymbolIds() - rank, 0, offset);
memIndices.push_back(b.create<AffineApplyOp>(loc, map, regionSymbols));
}
// The fast buffer is copied into at location zero; addressing is relative.
bufIndices.push_back(zeroIndex);
// Record the offsets since they are needed to remap the memory accesses of
// the original memref further below.
offsets.push_back(offset);
}
// The faster memory space buffer.
Value fastMemRef;
// Check if a buffer was already created.
bool existingBuf = fastBufferMap.count(memref) > 0;
if (!existingBuf) {
AffineMap fastBufferLayout = b.getMultiDimIdentityMap(rank);
auto fastMemRefType =
MemRefType::get(fastBufferShape, memRefType.getElementType(),
fastBufferLayout, copyOptions.fastMemorySpace);
// Create the fast memory space buffer just before the 'affine.for'
// operation.
fastMemRef = prologue.create<AllocOp>(loc, fastMemRefType).getResult();
// Record it.
fastBufferMap[memref] = fastMemRef;
// fastMemRefType is a constant shaped memref.
*sizeInBytes = getMemRefSizeInBytes(fastMemRefType).getValue();
LLVM_DEBUG(emitRemarkForBlock(*block)
<< "Creating fast buffer of type " << fastMemRefType
<< " and size " << llvm::divideCeil(*sizeInBytes, 1024)
<< " KiB\n");
} else {
// Reuse the one already created.
fastMemRef = fastBufferMap[memref];
*sizeInBytes = 0;
}
auto numElementsSSA =
top.create<ConstantIndexOp>(loc, numElements.getValue());
SmallVector<StrideInfo, 4> strideInfos;
getMultiLevelStrides(region, fastBufferShape, &strideInfos);
// TODO(bondhugula): use all stride levels once DmaStartOp is extended for
// multi-level strides.
if (strideInfos.size() > 1) {
LLVM_DEBUG(llvm::dbgs() << "Only up to one level of stride supported\n");
return failure();
}
Value stride = nullptr;
Value numEltPerStride = nullptr;
if (!strideInfos.empty()) {
stride = top.create<ConstantIndexOp>(loc, strideInfos[0].stride);
numEltPerStride =
top.create<ConstantIndexOp>(loc, strideInfos[0].numEltPerStride);
}
// Record the last operation where we want the memref replacement to end. We
// later do the memref replacement only in [begin, postDomFilter] so
// that the original memref's used in the data movement code themselves don't
// get replaced.
auto postDomFilter = std::prev(end);
// Create fully composed affine maps for each memref.
auto memAffineMap = b.getMultiDimIdentityMap(memIndices.size());
fullyComposeAffineMapAndOperands(&memAffineMap, &memIndices);
auto bufAffineMap = b.getMultiDimIdentityMap(bufIndices.size());
fullyComposeAffineMapAndOperands(&bufAffineMap, &bufIndices);
if (!copyOptions.generateDma) {
// Point-wise copy generation.
auto copyNest = generatePointWiseCopy(loc, memref, fastMemRef, memAffineMap,
memIndices, fastBufferShape,
/*isCopyOut=*/region.isWrite(), b);
// Record this so that we can skip it from yet another copy.
copyNests.insert(copyNest);
// Since new ops are being appended (for copy out's), adjust the end to
// mark end of block range being processed if necessary.
if (region.isWrite() && isCopyOutAtEndOfBlock)
*nEnd = Block::iterator(copyNest.getOperation());
} else {
// DMA generation.
// Create a tag (single element 1-d memref) for the DMA.
auto tagMemRefType = MemRefType::get({1}, top.getIntegerType(32), {},
copyOptions.tagMemorySpace);
auto tagMemRef = prologue.create<AllocOp>(loc, tagMemRefType);
SmallVector<Value, 4> tagIndices({zeroIndex});
auto tagAffineMap = b.getMultiDimIdentityMap(tagIndices.size());
fullyComposeAffineMapAndOperands(&tagAffineMap, &tagIndices);
if (!region.isWrite()) {
// DMA non-blocking read from original buffer to fast buffer.
b.create<AffineDmaStartOp>(loc, memref, memAffineMap, memIndices,
fastMemRef, bufAffineMap, bufIndices,
tagMemRef, tagAffineMap, tagIndices,
numElementsSSA, stride, numEltPerStride);
} else {
// DMA non-blocking write from fast buffer to the original memref.
auto op = b.create<AffineDmaStartOp>(
loc, fastMemRef, bufAffineMap, bufIndices, memref, memAffineMap,
memIndices, tagMemRef, tagAffineMap, tagIndices, numElementsSSA,
stride, numEltPerStride);
// Since new ops may be appended at 'end' (for outgoing DMAs), adjust the
// end to mark end of block range being processed.
if (isCopyOutAtEndOfBlock)
*nEnd = Block::iterator(op.getOperation());
}
// Matching DMA wait to block on completion; tag always has a 0 index.
b.create<AffineDmaWaitOp>(loc, tagMemRef, tagAffineMap, zeroIndex,
numElementsSSA);
// Generate dealloc for the tag.
auto tagDeallocOp = epilogue.create<DeallocOp>(loc, tagMemRef);
if (*nEnd == end && isCopyOutAtEndOfBlock)
// Since new ops are being appended (for outgoing DMAs), adjust the end to
// mark end of range of the original.
*nEnd = Block::iterator(tagDeallocOp.getOperation());
}
// Generate dealloc for the buffer.
if (!existingBuf) {
auto bufDeallocOp = epilogue.create<DeallocOp>(loc, fastMemRef);
// When generating pointwise copies, `nEnd' has to be set to deallocOp on
// the fast buffer (since it marks the new end insertion point).
if (!copyOptions.generateDma && *nEnd == end && isCopyOutAtEndOfBlock)
*nEnd = Block::iterator(bufDeallocOp.getOperation());
}
// Replace all uses of the old memref with the faster one while remapping
// access indices (subtracting out lower bound offsets for each dimension).
// Ex: to replace load %A[%i, %j] with load %Abuf[%i - %iT, %j - %jT],
// index remap will be (%i, %j) -> (%i - %iT, %j - %jT),
// i.e., affine.apply (d0, d1, d2, d3) -> (d2-d0, d3-d1) (%iT, %jT, %i, %j),
// and (%iT, %jT) will be the 'extraOperands' for 'rep all memref uses with'.
// d2, d3 correspond to the original indices (%i, %j).
SmallVector<AffineExpr, 4> remapExprs;
remapExprs.reserve(rank);
for (unsigned i = 0; i < rank; i++) {
// The starting operands of indexRemap will be regionSymbols (the symbols on
// which the memref region is parametric); then those corresponding to
// the memref's original indices follow.
auto dimExpr = b.getAffineDimExpr(regionSymbols.size() + i);
remapExprs.push_back(dimExpr - offsets[i]);
}
auto indexRemap = AffineMap::get(regionSymbols.size() + rank, 0, remapExprs);
// Record the begin since it may be invalidated by memref replacement.
Block::iterator prevOfBegin;
bool isBeginAtStartOfBlock = (begin == block->begin());
if (!isBeginAtStartOfBlock)
prevOfBegin = std::prev(begin);
// *Only* those uses within the range [begin, end) of 'block' are replaced.
replaceAllMemRefUsesWith(memref, fastMemRef,
/*extraIndices=*/{}, indexRemap,
/*extraOperands=*/regionSymbols,
/*symbolOperands=*/{},
/*domInstFilter=*/&*begin,
/*postDomInstFilter=*/&*postDomFilter);
*nBegin = isBeginAtStartOfBlock ? block->begin() : std::next(prevOfBegin);
return success();
}
/// Construct the memref region to just include the entire memref. Returns false
/// dynamic shaped memref's for now. `numParamLoopIVs` is the number of
/// enclosing loop IVs of opInst (starting from the outermost) that the region
/// is parametric on.
static bool getFullMemRefAsRegion(Operation *opInst, unsigned numParamLoopIVs,
MemRefRegion *region) {
unsigned rank;
if (auto loadOp = dyn_cast<AffineLoadOp>(opInst)) {
rank = loadOp.getMemRefType().getRank();
region->memref = loadOp.getMemRef();
region->setWrite(false);
} else if (auto storeOp = dyn_cast<AffineStoreOp>(opInst)) {
rank = storeOp.getMemRefType().getRank();
region->memref = storeOp.getMemRef();
region->setWrite(true);
} else {
assert(false && "expected load or store op");
return false;
}
auto memRefType = region->memref.getType().cast<MemRefType>();
if (!memRefType.hasStaticShape())
return false;
auto *regionCst = region->getConstraints();
// Just get the first numSymbols IVs, which the memref region is parametric
// on.
SmallVector<AffineForOp, 4> ivs;
getLoopIVs(*opInst, &ivs);
ivs.resize(numParamLoopIVs);
SmallVector<Value, 4> symbols;
extractForInductionVars(ivs, &symbols);
regionCst->reset(rank, numParamLoopIVs, 0);
regionCst->setIdValues(rank, rank + numParamLoopIVs, symbols);
// Memref dim sizes provide the bounds.
for (unsigned d = 0; d < rank; d++) {
auto dimSize = memRefType.getDimSize(d);
assert(dimSize > 0 && "filtered dynamic shapes above");
regionCst->addConstantLowerBound(d, 0);
regionCst->addConstantUpperBound(d, dimSize - 1);
}
return true;
}
/// Generates copies for a contiguous sequence of operations in `block` in the
/// iterator range [`begin', `end'), where `end' can't be past the terminator of
/// the block (since additional operations are potentially inserted right before
/// `end'. Returns the total size of the fast buffers used.
// Since we generate alloc's and dealloc's for all fast buffers (before and
// after the range of operations resp.), all of the fast memory capacity is
// assumed to be available for processing this block range.
uint64_t mlir::affineDataCopyGenerate(Block::iterator begin,
Block::iterator end,
const AffineCopyOptions &copyOptions,
DenseSet<Operation *> &copyNests) {
if (begin == end)
return 0;
assert(begin->getBlock() == std::prev(end)->getBlock() &&
"Inconsistent block begin/end args");
assert(end != end->getBlock()->end() && "end can't be the block terminator");
Block *block = begin->getBlock();
// Copies will be generated for this depth, i.e., symbolic in all loops
// surrounding the this block range.
unsigned copyDepth = getNestingDepth(*begin);
LLVM_DEBUG(llvm::dbgs() << "Generating copies at depth " << copyDepth
<< "\n");
LLVM_DEBUG(llvm::dbgs() << "from begin: " << *begin << "\n");
LLVM_DEBUG(llvm::dbgs() << "to inclusive end: " << *std::prev(end) << "\n");
// List of memory regions to copy for. We need a map vector to have a
// guaranteed iteration order to write test cases. CHECK-DAG doesn't help here
// since the alloc's for example are identical except for the SSA id.
SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4> readRegions;
SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4> writeRegions;
// Map from original memref's to the fast buffers that their accesses are
// replaced with.
DenseMap<Value, Value> fastBufferMap;
// To check for errors when walking the block.
bool error = false;
// Walk this range of operations to gather all memory regions.
block->walk(begin, end, [&](Operation *opInst) {
// Gather regions to allocate to buffers in faster memory space.
if (auto loadOp = dyn_cast<AffineLoadOp>(opInst)) {
if ((loadOp.getMemRefType().getMemorySpace() !=
copyOptions.slowMemorySpace))
return;
} else if (auto storeOp = dyn_cast<AffineStoreOp>(opInst)) {
if (storeOp.getMemRefType().getMemorySpace() !=
copyOptions.slowMemorySpace)
return;
} else {
// Neither load nor a store op.
return;
}
// Compute the MemRefRegion accessed.
auto region = std::make_unique<MemRefRegion>(opInst->getLoc());
if (failed(region->compute(opInst, copyDepth))) {
LLVM_DEBUG(llvm::dbgs()
<< "Error obtaining memory region: semi-affine maps?\n");
LLVM_DEBUG(llvm::dbgs() << "over-approximating to the entire memref\n");
if (!getFullMemRefAsRegion(opInst, copyDepth, region.get())) {
LLVM_DEBUG(
opInst->emitError("non-constant memref sizes not yet supported"));
error = true;
return;
}
}
// Each memref has a single buffer associated with it irrespective of how
// many load's and store's happen on it.
// TODO(bondhugula): in the future, when regions don't intersect and satisfy
// other properties (based on load/store regions), we could consider
// multiple buffers per memref.
// Add to the appropriate region if it's not already in it, or take a
// bounding box union with the existing one if it's already in there.
// Note that a memref may have both read and write regions - so update the
// region in the other list if one exists (write in case of read and vice
// versa) since there is a single bounding box for a memref across all reads
// and writes that happen on it.
// Attempts to update; returns true if 'region' exists in targetRegions.
auto updateRegion =
[&](const SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4>
&targetRegions) {
auto it = targetRegions.find(region->memref);
if (it == targetRegions.end())
return false;
// Perform a union with the existing region.
if (failed(it->second->unionBoundingBox(*region))) {
LLVM_DEBUG(llvm::dbgs()
<< "Memory region bounding box failed; "
"over-approximating to the entire memref\n");
// If the union fails, we will overapproximate.
if (!getFullMemRefAsRegion(opInst, copyDepth, region.get())) {
LLVM_DEBUG(opInst->emitError(
"non-constant memref sizes not yet supported"));
error = true;
return true;
}
it->second->getConstraints()->clearAndCopyFrom(
*region->getConstraints());
} else {
// Union was computed and stored in 'it->second': copy to 'region'.
region->getConstraints()->clearAndCopyFrom(
*it->second->getConstraints());
}
return true;
};
bool existsInRead = updateRegion(readRegions);
if (error)
return;
bool existsInWrite = updateRegion(writeRegions);
if (error)
return;
// Finally add it to the region list.
if (region->isWrite() && !existsInWrite) {
writeRegions[region->memref] = std::move(region);
} else if (!region->isWrite() && !existsInRead) {
readRegions[region->memref] = std::move(region);
}
});
if (error) {
begin->emitError(
"copy generation failed for one or more memref's in this block\n");
return 0;
}
uint64_t totalCopyBuffersSizeInBytes = 0;
bool ret = true;
auto processRegions =
[&](const SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4>
&regions) {
for (const auto &regionEntry : regions) {
// For each region, hoist copy in/out past all hoistable
// 'affine.for's.
Block::iterator copyInPlacementStart, copyOutPlacementStart;
Block *copyPlacementBlock;
findHighestBlockForPlacement(
*regionEntry.second, *block, begin, end, &copyPlacementBlock,
&copyInPlacementStart, &copyOutPlacementStart);
uint64_t sizeInBytes;
Block::iterator nBegin, nEnd;
LogicalResult iRet = generateCopy(
*regionEntry.second, block, begin, end, copyPlacementBlock,
copyInPlacementStart, copyOutPlacementStart, copyOptions,
fastBufferMap, copyNests, &sizeInBytes, &nBegin, &nEnd);
if (succeeded(iRet)) {
// begin/end could have been invalidated, and need update.
begin = nBegin;
end = nEnd;
totalCopyBuffersSizeInBytes += sizeInBytes;
}
ret = ret & succeeded(iRet);
}
};
processRegions(readRegions);
processRegions(writeRegions);
if (!ret) {
begin->emitError(
"copy generation failed for one or more memref's in this block\n");
return totalCopyBuffersSizeInBytes;
}
// For a range of operations, a note will be emitted at the caller.
AffineForOp forOp;
uint64_t sizeInKib = llvm::divideCeil(totalCopyBuffersSizeInBytes, 1024);
if (llvm::DebugFlag && (forOp = dyn_cast<AffineForOp>(&*begin))) {
forOp.emitRemark()
<< sizeInKib
<< " KiB of copy buffers in fast memory space for this block\n";
}
if (totalCopyBuffersSizeInBytes > copyOptions.fastMemCapacityBytes) {
StringRef str = "Total size of all copy buffers' for this block "
"exceeds fast memory capacity\n";
block->getParentOp()->emitError(str);
}
return totalCopyBuffersSizeInBytes;
}