
this reverts r297116 because it breaks the unittests and TestCompDirSymlink. The ModuleCache unit test is trivially fixable, but the CompDirSymlink failure is a symptom of a deeper problem: llvm's stat functionality is not a drop-in replacement for lldb's. The former is based on stat(2) (which does symlink resolution), while the latter is based on lstat(2) (which does not). This also reverts subsequent build fixes (r297128, r297120, 297117) and r297119 (Remove FileSpec dependency on FileSystem) which builds on top of this. llvm-svn: 297139
2452 lines
81 KiB
C++
2452 lines
81 KiB
C++
//===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "NativeProcessLinux.h"
|
|
|
|
// C Includes
|
|
#include <errno.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
|
|
// C++ Includes
|
|
#include <fstream>
|
|
#include <mutex>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
|
|
// Other libraries and framework includes
|
|
#include "lldb/Core/EmulateInstruction.h"
|
|
#include "lldb/Core/ModuleSpec.h"
|
|
#include "lldb/Core/RegisterValue.h"
|
|
#include "lldb/Core/State.h"
|
|
#include "lldb/Host/Host.h"
|
|
#include "lldb/Host/HostProcess.h"
|
|
#include "lldb/Host/PseudoTerminal.h"
|
|
#include "lldb/Host/ThreadLauncher.h"
|
|
#include "lldb/Host/common/NativeBreakpoint.h"
|
|
#include "lldb/Host/common/NativeRegisterContext.h"
|
|
#include "lldb/Host/linux/Ptrace.h"
|
|
#include "lldb/Host/linux/Uio.h"
|
|
#include "lldb/Host/posix/ProcessLauncherPosixFork.h"
|
|
#include "lldb/Symbol/ObjectFile.h"
|
|
#include "lldb/Target/Process.h"
|
|
#include "lldb/Target/ProcessLaunchInfo.h"
|
|
#include "lldb/Target/Target.h"
|
|
#include "lldb/Utility/Error.h"
|
|
#include "lldb/Utility/LLDBAssert.h"
|
|
#include "lldb/Utility/StringExtractor.h"
|
|
|
|
#include "NativeThreadLinux.h"
|
|
#include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
|
|
#include "ProcFileReader.h"
|
|
#include "Procfs.h"
|
|
|
|
#include "llvm/Support/Threading.h"
|
|
|
|
#include <linux/unistd.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/syscall.h>
|
|
#include <sys/types.h>
|
|
#include <sys/user.h>
|
|
#include <sys/wait.h>
|
|
|
|
// Support hardware breakpoints in case it has not been defined
|
|
#ifndef TRAP_HWBKPT
|
|
#define TRAP_HWBKPT 4
|
|
#endif
|
|
|
|
using namespace lldb;
|
|
using namespace lldb_private;
|
|
using namespace lldb_private::process_linux;
|
|
using namespace llvm;
|
|
|
|
// Private bits we only need internally.
|
|
|
|
static bool ProcessVmReadvSupported() {
|
|
static bool is_supported;
|
|
static llvm::once_flag flag;
|
|
|
|
llvm::call_once(flag, [] {
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
|
|
|
|
uint32_t source = 0x47424742;
|
|
uint32_t dest = 0;
|
|
|
|
struct iovec local, remote;
|
|
remote.iov_base = &source;
|
|
local.iov_base = &dest;
|
|
remote.iov_len = local.iov_len = sizeof source;
|
|
|
|
// We shall try if cross-process-memory reads work by attempting to read a
|
|
// value from our own process.
|
|
ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
|
|
is_supported = (res == sizeof(source) && source == dest);
|
|
if (is_supported)
|
|
LLDB_LOG(log,
|
|
"Detected kernel support for process_vm_readv syscall. "
|
|
"Fast memory reads enabled.");
|
|
else
|
|
LLDB_LOG(log,
|
|
"syscall process_vm_readv failed (error: {0}). Fast memory "
|
|
"reads disabled.",
|
|
strerror(errno));
|
|
});
|
|
|
|
return is_supported;
|
|
}
|
|
|
|
namespace {
|
|
void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
|
|
if (!log)
|
|
return;
|
|
|
|
if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
|
|
LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
|
|
else
|
|
LLDB_LOG(log, "leaving STDIN as is");
|
|
|
|
if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
|
|
LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
|
|
else
|
|
LLDB_LOG(log, "leaving STDOUT as is");
|
|
|
|
if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
|
|
LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
|
|
else
|
|
LLDB_LOG(log, "leaving STDERR as is");
|
|
|
|
int i = 0;
|
|
for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
|
|
++args, ++i)
|
|
LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
|
|
}
|
|
|
|
void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
|
|
uint8_t *ptr = (uint8_t *)bytes;
|
|
const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
|
|
for (uint32_t i = 0; i < loop_count; i++) {
|
|
s.Printf("[%x]", *ptr);
|
|
ptr++;
|
|
}
|
|
}
|
|
|
|
void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
|
|
if (!log)
|
|
return;
|
|
StreamString buf;
|
|
|
|
switch (req) {
|
|
case PTRACE_POKETEXT: {
|
|
DisplayBytes(buf, &data, 8);
|
|
LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
|
|
break;
|
|
}
|
|
case PTRACE_POKEDATA: {
|
|
DisplayBytes(buf, &data, 8);
|
|
LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
|
|
break;
|
|
}
|
|
case PTRACE_POKEUSER: {
|
|
DisplayBytes(buf, &data, 8);
|
|
LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
|
|
break;
|
|
}
|
|
case PTRACE_SETREGS: {
|
|
DisplayBytes(buf, data, data_size);
|
|
LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
|
|
break;
|
|
}
|
|
case PTRACE_SETFPREGS: {
|
|
DisplayBytes(buf, data, data_size);
|
|
LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
|
|
break;
|
|
}
|
|
case PTRACE_SETSIGINFO: {
|
|
DisplayBytes(buf, data, sizeof(siginfo_t));
|
|
LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
|
|
break;
|
|
}
|
|
case PTRACE_SETREGSET: {
|
|
// Extract iov_base from data, which is a pointer to the struct IOVEC
|
|
DisplayBytes(buf, *(void **)data, data_size);
|
|
LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
|
|
break;
|
|
}
|
|
default: {}
|
|
}
|
|
}
|
|
|
|
static constexpr unsigned k_ptrace_word_size = sizeof(void *);
|
|
static_assert(sizeof(long) >= k_ptrace_word_size,
|
|
"Size of long must be larger than ptrace word size");
|
|
} // end of anonymous namespace
|
|
|
|
// Simple helper function to ensure flags are enabled on the given file
|
|
// descriptor.
|
|
static Error EnsureFDFlags(int fd, int flags) {
|
|
Error error;
|
|
|
|
int status = fcntl(fd, F_GETFL);
|
|
if (status == -1) {
|
|
error.SetErrorToErrno();
|
|
return error;
|
|
}
|
|
|
|
if (fcntl(fd, F_SETFL, status | flags) == -1) {
|
|
error.SetErrorToErrno();
|
|
return error;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Public Static Methods
|
|
// -----------------------------------------------------------------------------
|
|
|
|
Error NativeProcessProtocol::Launch(
|
|
ProcessLaunchInfo &launch_info,
|
|
NativeProcessProtocol::NativeDelegate &native_delegate, MainLoop &mainloop,
|
|
NativeProcessProtocolSP &native_process_sp) {
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
|
|
|
|
Error error;
|
|
|
|
// Verify the working directory is valid if one was specified.
|
|
FileSpec working_dir{launch_info.GetWorkingDirectory()};
|
|
if (working_dir &&
|
|
(!working_dir.ResolvePath() ||
|
|
working_dir.GetFileType() != FileSpec::eFileTypeDirectory)) {
|
|
error.SetErrorStringWithFormat("No such file or directory: %s",
|
|
working_dir.GetCString());
|
|
return error;
|
|
}
|
|
|
|
// Create the NativeProcessLinux in launch mode.
|
|
native_process_sp.reset(new NativeProcessLinux());
|
|
|
|
if (!native_process_sp->RegisterNativeDelegate(native_delegate)) {
|
|
native_process_sp.reset();
|
|
error.SetErrorStringWithFormat("failed to register the native delegate");
|
|
return error;
|
|
}
|
|
|
|
error = std::static_pointer_cast<NativeProcessLinux>(native_process_sp)
|
|
->LaunchInferior(mainloop, launch_info);
|
|
|
|
if (error.Fail()) {
|
|
native_process_sp.reset();
|
|
LLDB_LOG(log, "failed to launch process: {0}", error);
|
|
return error;
|
|
}
|
|
|
|
launch_info.SetProcessID(native_process_sp->GetID());
|
|
|
|
return error;
|
|
}
|
|
|
|
Error NativeProcessProtocol::Attach(
|
|
lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
|
|
MainLoop &mainloop, NativeProcessProtocolSP &native_process_sp) {
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
|
|
LLDB_LOG(log, "pid = {0:x}", pid);
|
|
|
|
// Retrieve the architecture for the running process.
|
|
ArchSpec process_arch;
|
|
Error error = ResolveProcessArchitecture(pid, process_arch);
|
|
if (!error.Success())
|
|
return error;
|
|
|
|
std::shared_ptr<NativeProcessLinux> native_process_linux_sp(
|
|
new NativeProcessLinux());
|
|
|
|
if (!native_process_linux_sp->RegisterNativeDelegate(native_delegate)) {
|
|
error.SetErrorStringWithFormat("failed to register the native delegate");
|
|
return error;
|
|
}
|
|
|
|
native_process_linux_sp->AttachToInferior(mainloop, pid, error);
|
|
if (!error.Success())
|
|
return error;
|
|
|
|
native_process_sp = native_process_linux_sp;
|
|
return error;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Public Instance Methods
|
|
// -----------------------------------------------------------------------------
|
|
|
|
NativeProcessLinux::NativeProcessLinux()
|
|
: NativeProcessProtocol(LLDB_INVALID_PROCESS_ID), m_arch(),
|
|
m_supports_mem_region(eLazyBoolCalculate), m_mem_region_cache(),
|
|
m_pending_notification_tid(LLDB_INVALID_THREAD_ID) {}
|
|
|
|
void NativeProcessLinux::AttachToInferior(MainLoop &mainloop, lldb::pid_t pid,
|
|
Error &error) {
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
|
|
LLDB_LOG(log, "pid = {0:x}", pid);
|
|
|
|
m_sigchld_handle = mainloop.RegisterSignal(
|
|
SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error);
|
|
if (!m_sigchld_handle)
|
|
return;
|
|
|
|
error = ResolveProcessArchitecture(pid, m_arch);
|
|
if (!error.Success())
|
|
return;
|
|
|
|
// Set the architecture to the exe architecture.
|
|
LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
|
|
m_arch.GetArchitectureName());
|
|
m_pid = pid;
|
|
SetState(eStateAttaching);
|
|
|
|
Attach(pid, error);
|
|
}
|
|
|
|
Error NativeProcessLinux::LaunchInferior(MainLoop &mainloop,
|
|
ProcessLaunchInfo &launch_info) {
|
|
Error error;
|
|
m_sigchld_handle = mainloop.RegisterSignal(
|
|
SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error);
|
|
if (!m_sigchld_handle)
|
|
return error;
|
|
|
|
SetState(eStateLaunching);
|
|
|
|
MaybeLogLaunchInfo(launch_info);
|
|
|
|
::pid_t pid =
|
|
ProcessLauncherPosixFork().LaunchProcess(launch_info, error).GetProcessId();
|
|
if (error.Fail())
|
|
return error;
|
|
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
|
|
|
|
// Wait for the child process to trap on its call to execve.
|
|
::pid_t wpid;
|
|
int status;
|
|
if ((wpid = waitpid(pid, &status, 0)) < 0) {
|
|
error.SetErrorToErrno();
|
|
LLDB_LOG(log, "waitpid for inferior failed with %s", error);
|
|
|
|
// Mark the inferior as invalid.
|
|
// FIXME this could really use a new state - eStateLaunchFailure. For now,
|
|
// using eStateInvalid.
|
|
SetState(StateType::eStateInvalid);
|
|
|
|
return error;
|
|
}
|
|
assert(WIFSTOPPED(status) && (wpid == static_cast<::pid_t>(pid)) &&
|
|
"Could not sync with inferior process.");
|
|
|
|
LLDB_LOG(log, "inferior started, now in stopped state");
|
|
error = SetDefaultPtraceOpts(pid);
|
|
if (error.Fail()) {
|
|
LLDB_LOG(log, "failed to set default ptrace options: {0}", error);
|
|
|
|
// Mark the inferior as invalid.
|
|
// FIXME this could really use a new state - eStateLaunchFailure. For now,
|
|
// using eStateInvalid.
|
|
SetState(StateType::eStateInvalid);
|
|
|
|
return error;
|
|
}
|
|
|
|
// Release the master terminal descriptor and pass it off to the
|
|
// NativeProcessLinux instance. Similarly stash the inferior pid.
|
|
m_terminal_fd = launch_info.GetPTY().ReleaseMasterFileDescriptor();
|
|
m_pid = pid;
|
|
launch_info.SetProcessID(pid);
|
|
|
|
if (m_terminal_fd != -1) {
|
|
error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
|
|
if (error.Fail()) {
|
|
LLDB_LOG(log,
|
|
"inferior EnsureFDFlags failed for ensuring terminal "
|
|
"O_NONBLOCK setting: {0}",
|
|
error);
|
|
|
|
// Mark the inferior as invalid.
|
|
// FIXME this could really use a new state - eStateLaunchFailure. For
|
|
// now, using eStateInvalid.
|
|
SetState(StateType::eStateInvalid);
|
|
|
|
return error;
|
|
}
|
|
}
|
|
|
|
LLDB_LOG(log, "adding pid = {0}", pid);
|
|
ResolveProcessArchitecture(m_pid, m_arch);
|
|
NativeThreadLinuxSP thread_sp = AddThread(pid);
|
|
assert(thread_sp && "AddThread() returned a nullptr thread");
|
|
thread_sp->SetStoppedBySignal(SIGSTOP);
|
|
ThreadWasCreated(*thread_sp);
|
|
|
|
// Let our process instance know the thread has stopped.
|
|
SetCurrentThreadID(thread_sp->GetID());
|
|
SetState(StateType::eStateStopped);
|
|
|
|
if (error.Fail())
|
|
LLDB_LOG(log, "inferior launching failed {0}", error);
|
|
return error;
|
|
}
|
|
|
|
::pid_t NativeProcessLinux::Attach(lldb::pid_t pid, Error &error) {
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
|
|
|
|
// Use a map to keep track of the threads which we have attached/need to
|
|
// attach.
|
|
Host::TidMap tids_to_attach;
|
|
if (pid <= 1) {
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString("Attaching to process 1 is not allowed.");
|
|
return -1;
|
|
}
|
|
|
|
while (Host::FindProcessThreads(pid, tids_to_attach)) {
|
|
for (Host::TidMap::iterator it = tids_to_attach.begin();
|
|
it != tids_to_attach.end();) {
|
|
if (it->second == false) {
|
|
lldb::tid_t tid = it->first;
|
|
|
|
// Attach to the requested process.
|
|
// An attach will cause the thread to stop with a SIGSTOP.
|
|
error = PtraceWrapper(PTRACE_ATTACH, tid);
|
|
if (error.Fail()) {
|
|
// No such thread. The thread may have exited.
|
|
// More error handling may be needed.
|
|
if (error.GetError() == ESRCH) {
|
|
it = tids_to_attach.erase(it);
|
|
continue;
|
|
} else
|
|
return -1;
|
|
}
|
|
|
|
int status;
|
|
// Need to use __WALL otherwise we receive an error with errno=ECHLD
|
|
// At this point we should have a thread stopped if waitpid succeeds.
|
|
if ((status = waitpid(tid, NULL, __WALL)) < 0) {
|
|
// No such thread. The thread may have exited.
|
|
// More error handling may be needed.
|
|
if (errno == ESRCH) {
|
|
it = tids_to_attach.erase(it);
|
|
continue;
|
|
} else {
|
|
error.SetErrorToErrno();
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
error = SetDefaultPtraceOpts(tid);
|
|
if (error.Fail())
|
|
return -1;
|
|
|
|
LLDB_LOG(log, "adding tid = {0}", tid);
|
|
it->second = true;
|
|
|
|
// Create the thread, mark it as stopped.
|
|
NativeThreadLinuxSP thread_sp(AddThread(static_cast<lldb::tid_t>(tid)));
|
|
assert(thread_sp && "AddThread() returned a nullptr");
|
|
|
|
// This will notify this is a new thread and tell the system it is
|
|
// stopped.
|
|
thread_sp->SetStoppedBySignal(SIGSTOP);
|
|
ThreadWasCreated(*thread_sp);
|
|
SetCurrentThreadID(thread_sp->GetID());
|
|
}
|
|
|
|
// move the loop forward
|
|
++it;
|
|
}
|
|
}
|
|
|
|
if (tids_to_attach.size() > 0) {
|
|
m_pid = pid;
|
|
// Let our process instance know the thread has stopped.
|
|
SetState(StateType::eStateStopped);
|
|
} else {
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString("No such process.");
|
|
return -1;
|
|
}
|
|
|
|
return pid;
|
|
}
|
|
|
|
Error NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
|
|
long ptrace_opts = 0;
|
|
|
|
// Have the child raise an event on exit. This is used to keep the child in
|
|
// limbo until it is destroyed.
|
|
ptrace_opts |= PTRACE_O_TRACEEXIT;
|
|
|
|
// Have the tracer trace threads which spawn in the inferior process.
|
|
// TODO: if we want to support tracing the inferiors' child, add the
|
|
// appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
|
|
ptrace_opts |= PTRACE_O_TRACECLONE;
|
|
|
|
// Have the tracer notify us before execve returns
|
|
// (needed to disable legacy SIGTRAP generation)
|
|
ptrace_opts |= PTRACE_O_TRACEEXEC;
|
|
|
|
return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
|
|
}
|
|
|
|
static ExitType convert_pid_status_to_exit_type(int status) {
|
|
if (WIFEXITED(status))
|
|
return ExitType::eExitTypeExit;
|
|
else if (WIFSIGNALED(status))
|
|
return ExitType::eExitTypeSignal;
|
|
else if (WIFSTOPPED(status))
|
|
return ExitType::eExitTypeStop;
|
|
else {
|
|
// We don't know what this is.
|
|
return ExitType::eExitTypeInvalid;
|
|
}
|
|
}
|
|
|
|
static int convert_pid_status_to_return_code(int status) {
|
|
if (WIFEXITED(status))
|
|
return WEXITSTATUS(status);
|
|
else if (WIFSIGNALED(status))
|
|
return WTERMSIG(status);
|
|
else if (WIFSTOPPED(status))
|
|
return WSTOPSIG(status);
|
|
else {
|
|
// We don't know what this is.
|
|
return ExitType::eExitTypeInvalid;
|
|
}
|
|
}
|
|
|
|
// Handles all waitpid events from the inferior process.
|
|
void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited,
|
|
int signal, int status) {
|
|
Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
|
|
|
|
// Certain activities differ based on whether the pid is the tid of the main
|
|
// thread.
|
|
const bool is_main_thread = (pid == GetID());
|
|
|
|
// Handle when the thread exits.
|
|
if (exited) {
|
|
LLDB_LOG(log, "got exit signal({0}) , tid = {1} ({2} main thread)", signal,
|
|
pid, is_main_thread ? "is" : "is not");
|
|
|
|
// This is a thread that exited. Ensure we're not tracking it anymore.
|
|
const bool thread_found = StopTrackingThread(pid);
|
|
|
|
if (is_main_thread) {
|
|
// We only set the exit status and notify the delegate if we haven't
|
|
// already set the process
|
|
// state to an exited state. We normally should have received a SIGTRAP |
|
|
// (PTRACE_EVENT_EXIT << 8)
|
|
// for the main thread.
|
|
const bool already_notified = (GetState() == StateType::eStateExited) ||
|
|
(GetState() == StateType::eStateCrashed);
|
|
if (!already_notified) {
|
|
LLDB_LOG(
|
|
log,
|
|
"tid = {0} handling main thread exit ({1}), expected exit state "
|
|
"already set but state was {2} instead, setting exit state now",
|
|
pid,
|
|
thread_found ? "stopped tracking thread metadata"
|
|
: "thread metadata not found",
|
|
GetState());
|
|
// The main thread exited. We're done monitoring. Report to delegate.
|
|
SetExitStatus(convert_pid_status_to_exit_type(status),
|
|
convert_pid_status_to_return_code(status), nullptr, true);
|
|
|
|
// Notify delegate that our process has exited.
|
|
SetState(StateType::eStateExited, true);
|
|
} else
|
|
LLDB_LOG(log, "tid = {0} main thread now exited (%s)", pid,
|
|
thread_found ? "stopped tracking thread metadata"
|
|
: "thread metadata not found");
|
|
} else {
|
|
// Do we want to report to the delegate in this case? I think not. If
|
|
// this was an orderly thread exit, we would already have received the
|
|
// SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, and we would have done an
|
|
// all-stop then.
|
|
LLDB_LOG(log, "tid = {0} handling non-main thread exit (%s)", pid,
|
|
thread_found ? "stopped tracking thread metadata"
|
|
: "thread metadata not found");
|
|
}
|
|
return;
|
|
}
|
|
|
|
siginfo_t info;
|
|
const auto info_err = GetSignalInfo(pid, &info);
|
|
auto thread_sp = GetThreadByID(pid);
|
|
|
|
if (!thread_sp) {
|
|
// Normally, the only situation when we cannot find the thread is if we have
|
|
// just received a new thread notification. This is indicated by
|
|
// GetSignalInfo() returning si_code == SI_USER and si_pid == 0
|
|
LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
|
|
|
|
if (info_err.Fail()) {
|
|
LLDB_LOG(log,
|
|
"(tid {0}) GetSignalInfo failed ({1}). "
|
|
"Ingoring this notification.",
|
|
pid, info_err);
|
|
return;
|
|
}
|
|
|
|
LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
|
|
info.si_pid);
|
|
|
|
auto thread_sp = AddThread(pid);
|
|
// Resume the newly created thread.
|
|
ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
|
|
ThreadWasCreated(*thread_sp);
|
|
return;
|
|
}
|
|
|
|
// Get details on the signal raised.
|
|
if (info_err.Success()) {
|
|
// We have retrieved the signal info. Dispatch appropriately.
|
|
if (info.si_signo == SIGTRAP)
|
|
MonitorSIGTRAP(info, *thread_sp);
|
|
else
|
|
MonitorSignal(info, *thread_sp, exited);
|
|
} else {
|
|
if (info_err.GetError() == EINVAL) {
|
|
// This is a group stop reception for this tid.
|
|
// We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU
|
|
// into the tracee, triggering the group-stop mechanism. Normally
|
|
// receiving these would stop the process, pending a SIGCONT. Simulating
|
|
// this state in a debugger is hard and is generally not needed (one use
|
|
// case is debugging background task being managed by a shell). For
|
|
// general use, it is sufficient to stop the process in a signal-delivery
|
|
// stop which happens before the group stop. This done by MonitorSignal
|
|
// and works correctly for all signals.
|
|
LLDB_LOG(log,
|
|
"received a group stop for pid {0} tid {1}. Transparent "
|
|
"handling of group stops not supported, resuming the "
|
|
"thread.",
|
|
GetID(), pid);
|
|
ResumeThread(*thread_sp, thread_sp->GetState(),
|
|
LLDB_INVALID_SIGNAL_NUMBER);
|
|
} else {
|
|
// ptrace(GETSIGINFO) failed (but not due to group-stop).
|
|
|
|
// A return value of ESRCH means the thread/process is no longer on the
|
|
// system, so it was killed somehow outside of our control. Either way,
|
|
// we can't do anything with it anymore.
|
|
|
|
// Stop tracking the metadata for the thread since it's entirely off the
|
|
// system now.
|
|
const bool thread_found = StopTrackingThread(pid);
|
|
|
|
LLDB_LOG(log,
|
|
"GetSignalInfo failed: {0}, tid = {1}, signal = {2}, "
|
|
"status = {3}, main_thread = {4}, thread_found: {5}",
|
|
info_err, pid, signal, status, is_main_thread, thread_found);
|
|
|
|
if (is_main_thread) {
|
|
// Notify the delegate - our process is not available but appears to
|
|
// have been killed outside
|
|
// our control. Is eStateExited the right exit state in this case?
|
|
SetExitStatus(convert_pid_status_to_exit_type(status),
|
|
convert_pid_status_to_return_code(status), nullptr, true);
|
|
SetState(StateType::eStateExited, true);
|
|
} else {
|
|
// This thread was pulled out from underneath us. Anything to do here?
|
|
// Do we want to do an all stop?
|
|
LLDB_LOG(log,
|
|
"pid {0} tid {1} non-main thread exit occurred, didn't "
|
|
"tell delegate anything since thread disappeared out "
|
|
"from underneath us",
|
|
GetID(), pid);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void NativeProcessLinux::WaitForNewThread(::pid_t tid) {
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
|
|
|
|
NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid);
|
|
|
|
if (new_thread_sp) {
|
|
// We are already tracking the thread - we got the event on the new thread
|
|
// (see
|
|
// MonitorSignal) before this one. We are done.
|
|
return;
|
|
}
|
|
|
|
// The thread is not tracked yet, let's wait for it to appear.
|
|
int status = -1;
|
|
::pid_t wait_pid;
|
|
do {
|
|
LLDB_LOG(log,
|
|
"received thread creation event for tid {0}. tid not tracked "
|
|
"yet, waiting for thread to appear...",
|
|
tid);
|
|
wait_pid = waitpid(tid, &status, __WALL);
|
|
} while (wait_pid == -1 && errno == EINTR);
|
|
// Since we are waiting on a specific tid, this must be the creation event.
|
|
// But let's do some checks just in case.
|
|
if (wait_pid != tid) {
|
|
LLDB_LOG(log,
|
|
"waiting for tid {0} failed. Assuming the thread has "
|
|
"disappeared in the meantime",
|
|
tid);
|
|
// The only way I know of this could happen is if the whole process was
|
|
// SIGKILLed in the mean time. In any case, we can't do anything about that
|
|
// now.
|
|
return;
|
|
}
|
|
if (WIFEXITED(status)) {
|
|
LLDB_LOG(log,
|
|
"waiting for tid {0} returned an 'exited' event. Not "
|
|
"tracking the thread.",
|
|
tid);
|
|
// Also a very improbable event.
|
|
return;
|
|
}
|
|
|
|
LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid);
|
|
new_thread_sp = AddThread(tid);
|
|
ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
|
|
ThreadWasCreated(*new_thread_sp);
|
|
}
|
|
|
|
void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
|
|
NativeThreadLinux &thread) {
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
|
|
const bool is_main_thread = (thread.GetID() == GetID());
|
|
|
|
assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
|
|
|
|
switch (info.si_code) {
|
|
// TODO: these two cases are required if we want to support tracing of the
|
|
// inferiors' children. We'd need this to debug a monitor.
|
|
// case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
|
|
// case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
|
|
|
|
case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
|
|
// This is the notification on the parent thread which informs us of new
|
|
// thread
|
|
// creation.
|
|
// We don't want to do anything with the parent thread so we just resume it.
|
|
// In case we
|
|
// want to implement "break on thread creation" functionality, we would need
|
|
// to stop
|
|
// here.
|
|
|
|
unsigned long event_message = 0;
|
|
if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
|
|
LLDB_LOG(log,
|
|
"pid {0} received thread creation event but "
|
|
"GetEventMessage failed so we don't know the new tid",
|
|
thread.GetID());
|
|
} else
|
|
WaitForNewThread(event_message);
|
|
|
|
ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
|
|
break;
|
|
}
|
|
|
|
case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
|
|
NativeThreadLinuxSP main_thread_sp;
|
|
LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
|
|
|
|
// Exec clears any pending notifications.
|
|
m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
|
|
|
|
// Remove all but the main thread here. Linux fork creates a new process
|
|
// which only copies the main thread.
|
|
LLDB_LOG(log, "exec received, stop tracking all but main thread");
|
|
|
|
for (auto thread_sp : m_threads) {
|
|
const bool is_main_thread = thread_sp && thread_sp->GetID() == GetID();
|
|
if (is_main_thread) {
|
|
main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp);
|
|
LLDB_LOG(log, "found main thread with tid {0}, keeping",
|
|
main_thread_sp->GetID());
|
|
} else {
|
|
LLDB_LOG(log, "discarding non-main-thread tid {0} due to exec",
|
|
thread_sp->GetID());
|
|
}
|
|
}
|
|
|
|
m_threads.clear();
|
|
|
|
if (main_thread_sp) {
|
|
m_threads.push_back(main_thread_sp);
|
|
SetCurrentThreadID(main_thread_sp->GetID());
|
|
main_thread_sp->SetStoppedByExec();
|
|
} else {
|
|
SetCurrentThreadID(LLDB_INVALID_THREAD_ID);
|
|
LLDB_LOG(log,
|
|
"pid {0} no main thread found, discarded all threads, "
|
|
"we're in a no-thread state!",
|
|
GetID());
|
|
}
|
|
|
|
// Tell coordinator about about the "new" (since exec) stopped main thread.
|
|
ThreadWasCreated(*main_thread_sp);
|
|
|
|
// Let our delegate know we have just exec'd.
|
|
NotifyDidExec();
|
|
|
|
// If we have a main thread, indicate we are stopped.
|
|
assert(main_thread_sp && "exec called during ptraced process but no main "
|
|
"thread metadata tracked");
|
|
|
|
// Let the process know we're stopped.
|
|
StopRunningThreads(main_thread_sp->GetID());
|
|
|
|
break;
|
|
}
|
|
|
|
case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
|
|
// The inferior process or one of its threads is about to exit.
|
|
// We don't want to do anything with the thread so we just resume it. In
|
|
// case we
|
|
// want to implement "break on thread exit" functionality, we would need to
|
|
// stop
|
|
// here.
|
|
|
|
unsigned long data = 0;
|
|
if (GetEventMessage(thread.GetID(), &data).Fail())
|
|
data = -1;
|
|
|
|
LLDB_LOG(log,
|
|
"received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
|
|
"WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
|
|
data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
|
|
is_main_thread);
|
|
|
|
if (is_main_thread) {
|
|
SetExitStatus(convert_pid_status_to_exit_type(data),
|
|
convert_pid_status_to_return_code(data), nullptr, true);
|
|
}
|
|
|
|
StateType state = thread.GetState();
|
|
if (!StateIsRunningState(state)) {
|
|
// Due to a kernel bug, we may sometimes get this stop after the inferior
|
|
// gets a
|
|
// SIGKILL. This confuses our state tracking logic in ResumeThread(),
|
|
// since normally,
|
|
// we should not be receiving any ptrace events while the inferior is
|
|
// stopped. This
|
|
// makes sure that the inferior is resumed and exits normally.
|
|
state = eStateRunning;
|
|
}
|
|
ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
|
|
|
|
break;
|
|
}
|
|
|
|
case 0:
|
|
case TRAP_TRACE: // We receive this on single stepping.
|
|
case TRAP_HWBKPT: // We receive this on watchpoint hit
|
|
{
|
|
// If a watchpoint was hit, report it
|
|
uint32_t wp_index;
|
|
Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(
|
|
wp_index, (uintptr_t)info.si_addr);
|
|
if (error.Fail())
|
|
LLDB_LOG(log,
|
|
"received error while checking for watchpoint hits, pid = "
|
|
"{0}, error = {1}",
|
|
thread.GetID(), error);
|
|
if (wp_index != LLDB_INVALID_INDEX32) {
|
|
MonitorWatchpoint(thread, wp_index);
|
|
break;
|
|
}
|
|
|
|
// If a breakpoint was hit, report it
|
|
uint32_t bp_index;
|
|
error = thread.GetRegisterContext()->GetHardwareBreakHitIndex(
|
|
bp_index, (uintptr_t)info.si_addr);
|
|
if (error.Fail())
|
|
LLDB_LOG(log, "received error while checking for hardware "
|
|
"breakpoint hits, pid = {0}, error = {1}",
|
|
thread.GetID(), error);
|
|
if (bp_index != LLDB_INVALID_INDEX32) {
|
|
MonitorBreakpoint(thread);
|
|
break;
|
|
}
|
|
|
|
// Otherwise, report step over
|
|
MonitorTrace(thread);
|
|
break;
|
|
}
|
|
|
|
case SI_KERNEL:
|
|
#if defined __mips__
|
|
// For mips there is no special signal for watchpoint
|
|
// So we check for watchpoint in kernel trap
|
|
{
|
|
// If a watchpoint was hit, report it
|
|
uint32_t wp_index;
|
|
Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(
|
|
wp_index, LLDB_INVALID_ADDRESS);
|
|
if (error.Fail())
|
|
LLDB_LOG(log,
|
|
"received error while checking for watchpoint hits, pid = "
|
|
"{0}, error = {1}",
|
|
thread.GetID(), error);
|
|
if (wp_index != LLDB_INVALID_INDEX32) {
|
|
MonitorWatchpoint(thread, wp_index);
|
|
break;
|
|
}
|
|
}
|
|
// NO BREAK
|
|
#endif
|
|
case TRAP_BRKPT:
|
|
MonitorBreakpoint(thread);
|
|
break;
|
|
|
|
case SIGTRAP:
|
|
case (SIGTRAP | 0x80):
|
|
LLDB_LOG(
|
|
log,
|
|
"received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
|
|
info.si_code, GetID(), thread.GetID());
|
|
|
|
// Ignore these signals until we know more about them.
|
|
ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
|
|
break;
|
|
|
|
default:
|
|
LLDB_LOG(
|
|
log,
|
|
"received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
|
|
info.si_code, GetID(), thread.GetID());
|
|
llvm_unreachable("Unexpected SIGTRAP code!");
|
|
break;
|
|
}
|
|
}
|
|
|
|
void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
|
|
LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
|
|
|
|
// This thread is currently stopped.
|
|
thread.SetStoppedByTrace();
|
|
|
|
StopRunningThreads(thread.GetID());
|
|
}
|
|
|
|
void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
|
|
Log *log(
|
|
GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
|
|
LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
|
|
|
|
// Mark the thread as stopped at breakpoint.
|
|
thread.SetStoppedByBreakpoint();
|
|
Error error = FixupBreakpointPCAsNeeded(thread);
|
|
if (error.Fail())
|
|
LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error);
|
|
|
|
if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
|
|
m_threads_stepping_with_breakpoint.end())
|
|
thread.SetStoppedByTrace();
|
|
|
|
StopRunningThreads(thread.GetID());
|
|
}
|
|
|
|
void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
|
|
uint32_t wp_index) {
|
|
Log *log(
|
|
GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
|
|
LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
|
|
thread.GetID(), wp_index);
|
|
|
|
// Mark the thread as stopped at watchpoint.
|
|
// The address is at (lldb::addr_t)info->si_addr if we need it.
|
|
thread.SetStoppedByWatchpoint(wp_index);
|
|
|
|
// We need to tell all other running threads before we notify the delegate
|
|
// about this stop.
|
|
StopRunningThreads(thread.GetID());
|
|
}
|
|
|
|
void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
|
|
NativeThreadLinux &thread, bool exited) {
|
|
const int signo = info.si_signo;
|
|
const bool is_from_llgs = info.si_pid == getpid();
|
|
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
|
|
|
|
// POSIX says that process behaviour is undefined after it ignores a SIGFPE,
|
|
// SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
|
|
// kill(2) or raise(3). Similarly for tgkill(2) on Linux.
|
|
//
|
|
// IOW, user generated signals never generate what we consider to be a
|
|
// "crash".
|
|
//
|
|
// Similarly, ACK signals generated by this monitor.
|
|
|
|
// Handle the signal.
|
|
LLDB_LOG(log,
|
|
"received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
|
|
"waitpid pid = {4})",
|
|
Host::GetSignalAsCString(signo), signo, info.si_code,
|
|
thread.GetID());
|
|
|
|
// Check for thread stop notification.
|
|
if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
|
|
// This is a tgkill()-based stop.
|
|
LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
|
|
|
|
// Check that we're not already marked with a stop reason.
|
|
// Note this thread really shouldn't already be marked as stopped - if we
|
|
// were, that would imply that the kernel signaled us with the thread
|
|
// stopping which we handled and marked as stopped, and that, without an
|
|
// intervening resume, we received another stop. It is more likely that we
|
|
// are missing the marking of a run state somewhere if we find that the
|
|
// thread was marked as stopped.
|
|
const StateType thread_state = thread.GetState();
|
|
if (!StateIsStoppedState(thread_state, false)) {
|
|
// An inferior thread has stopped because of a SIGSTOP we have sent it.
|
|
// Generally, these are not important stops and we don't want to report
|
|
// them as they are just used to stop other threads when one thread (the
|
|
// one with the *real* stop reason) hits a breakpoint (watchpoint,
|
|
// etc...). However, in the case of an asynchronous Interrupt(), this *is*
|
|
// the real stop reason, so we leave the signal intact if this is the
|
|
// thread that was chosen as the triggering thread.
|
|
if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
|
|
if (m_pending_notification_tid == thread.GetID())
|
|
thread.SetStoppedBySignal(SIGSTOP, &info);
|
|
else
|
|
thread.SetStoppedWithNoReason();
|
|
|
|
SetCurrentThreadID(thread.GetID());
|
|
SignalIfAllThreadsStopped();
|
|
} else {
|
|
// We can end up here if stop was initiated by LLGS but by this time a
|
|
// thread stop has occurred - maybe initiated by another event.
|
|
Error error = ResumeThread(thread, thread.GetState(), 0);
|
|
if (error.Fail())
|
|
LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
|
|
error);
|
|
}
|
|
} else {
|
|
LLDB_LOG(log,
|
|
"pid {0} tid {1}, thread was already marked as a stopped "
|
|
"state (state={2}), leaving stop signal as is",
|
|
GetID(), thread.GetID(), thread_state);
|
|
SignalIfAllThreadsStopped();
|
|
}
|
|
|
|
// Done handling.
|
|
return;
|
|
}
|
|
|
|
// Check if debugger should stop at this signal or just ignore it
|
|
// and resume the inferior.
|
|
if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) {
|
|
ResumeThread(thread, thread.GetState(), signo);
|
|
return;
|
|
}
|
|
|
|
// This thread is stopped.
|
|
LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
|
|
thread.SetStoppedBySignal(signo, &info);
|
|
|
|
// Send a stop to the debugger after we get all other threads to stop.
|
|
StopRunningThreads(thread.GetID());
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct EmulatorBaton {
|
|
NativeProcessLinux *m_process;
|
|
NativeRegisterContext *m_reg_context;
|
|
|
|
// eRegisterKindDWARF -> RegsiterValue
|
|
std::unordered_map<uint32_t, RegisterValue> m_register_values;
|
|
|
|
EmulatorBaton(NativeProcessLinux *process, NativeRegisterContext *reg_context)
|
|
: m_process(process), m_reg_context(reg_context) {}
|
|
};
|
|
|
|
} // anonymous namespace
|
|
|
|
static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
|
|
const EmulateInstruction::Context &context,
|
|
lldb::addr_t addr, void *dst, size_t length) {
|
|
EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
|
|
|
|
size_t bytes_read;
|
|
emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
|
|
return bytes_read;
|
|
}
|
|
|
|
static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
|
|
const RegisterInfo *reg_info,
|
|
RegisterValue ®_value) {
|
|
EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
|
|
|
|
auto it = emulator_baton->m_register_values.find(
|
|
reg_info->kinds[eRegisterKindDWARF]);
|
|
if (it != emulator_baton->m_register_values.end()) {
|
|
reg_value = it->second;
|
|
return true;
|
|
}
|
|
|
|
// The emulator only fill in the dwarf regsiter numbers (and in some case
|
|
// the generic register numbers). Get the full register info from the
|
|
// register context based on the dwarf register numbers.
|
|
const RegisterInfo *full_reg_info =
|
|
emulator_baton->m_reg_context->GetRegisterInfo(
|
|
eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
|
|
|
|
Error error =
|
|
emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
|
|
if (error.Success())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton,
|
|
const EmulateInstruction::Context &context,
|
|
const RegisterInfo *reg_info,
|
|
const RegisterValue ®_value) {
|
|
EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
|
|
emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] =
|
|
reg_value;
|
|
return true;
|
|
}
|
|
|
|
static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton,
|
|
const EmulateInstruction::Context &context,
|
|
lldb::addr_t addr, const void *dst,
|
|
size_t length) {
|
|
return length;
|
|
}
|
|
|
|
static lldb::addr_t ReadFlags(NativeRegisterContext *regsiter_context) {
|
|
const RegisterInfo *flags_info = regsiter_context->GetRegisterInfo(
|
|
eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
|
|
return regsiter_context->ReadRegisterAsUnsigned(flags_info,
|
|
LLDB_INVALID_ADDRESS);
|
|
}
|
|
|
|
Error NativeProcessLinux::SetupSoftwareSingleStepping(
|
|
NativeThreadLinux &thread) {
|
|
Error error;
|
|
NativeRegisterContextSP register_context_sp = thread.GetRegisterContext();
|
|
|
|
std::unique_ptr<EmulateInstruction> emulator_ap(
|
|
EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying,
|
|
nullptr));
|
|
|
|
if (emulator_ap == nullptr)
|
|
return Error("Instruction emulator not found!");
|
|
|
|
EmulatorBaton baton(this, register_context_sp.get());
|
|
emulator_ap->SetBaton(&baton);
|
|
emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
|
|
emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
|
|
emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
|
|
emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
|
|
|
|
if (!emulator_ap->ReadInstruction())
|
|
return Error("Read instruction failed!");
|
|
|
|
bool emulation_result =
|
|
emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
|
|
|
|
const RegisterInfo *reg_info_pc = register_context_sp->GetRegisterInfo(
|
|
eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
|
|
const RegisterInfo *reg_info_flags = register_context_sp->GetRegisterInfo(
|
|
eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
|
|
|
|
auto pc_it =
|
|
baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
|
|
auto flags_it =
|
|
baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
|
|
|
|
lldb::addr_t next_pc;
|
|
lldb::addr_t next_flags;
|
|
if (emulation_result) {
|
|
assert(pc_it != baton.m_register_values.end() &&
|
|
"Emulation was successfull but PC wasn't updated");
|
|
next_pc = pc_it->second.GetAsUInt64();
|
|
|
|
if (flags_it != baton.m_register_values.end())
|
|
next_flags = flags_it->second.GetAsUInt64();
|
|
else
|
|
next_flags = ReadFlags(register_context_sp.get());
|
|
} else if (pc_it == baton.m_register_values.end()) {
|
|
// Emulate instruction failed and it haven't changed PC. Advance PC
|
|
// with the size of the current opcode because the emulation of all
|
|
// PC modifying instruction should be successful. The failure most
|
|
// likely caused by a not supported instruction which don't modify PC.
|
|
next_pc =
|
|
register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
|
|
next_flags = ReadFlags(register_context_sp.get());
|
|
} else {
|
|
// The instruction emulation failed after it modified the PC. It is an
|
|
// unknown error where we can't continue because the next instruction is
|
|
// modifying the PC but we don't know how.
|
|
return Error("Instruction emulation failed unexpectedly.");
|
|
}
|
|
|
|
if (m_arch.GetMachine() == llvm::Triple::arm) {
|
|
if (next_flags & 0x20) {
|
|
// Thumb mode
|
|
error = SetSoftwareBreakpoint(next_pc, 2);
|
|
} else {
|
|
// Arm mode
|
|
error = SetSoftwareBreakpoint(next_pc, 4);
|
|
}
|
|
} else if (m_arch.GetMachine() == llvm::Triple::mips64 ||
|
|
m_arch.GetMachine() == llvm::Triple::mips64el ||
|
|
m_arch.GetMachine() == llvm::Triple::mips ||
|
|
m_arch.GetMachine() == llvm::Triple::mipsel)
|
|
error = SetSoftwareBreakpoint(next_pc, 4);
|
|
else {
|
|
// No size hint is given for the next breakpoint
|
|
error = SetSoftwareBreakpoint(next_pc, 0);
|
|
}
|
|
|
|
// If setting the breakpoint fails because next_pc is out of
|
|
// the address space, ignore it and let the debugee segfault.
|
|
if (error.GetError() == EIO || error.GetError() == EFAULT) {
|
|
return Error();
|
|
} else if (error.Fail())
|
|
return error;
|
|
|
|
m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
|
|
|
|
return Error();
|
|
}
|
|
|
|
bool NativeProcessLinux::SupportHardwareSingleStepping() const {
|
|
if (m_arch.GetMachine() == llvm::Triple::arm ||
|
|
m_arch.GetMachine() == llvm::Triple::mips64 ||
|
|
m_arch.GetMachine() == llvm::Triple::mips64el ||
|
|
m_arch.GetMachine() == llvm::Triple::mips ||
|
|
m_arch.GetMachine() == llvm::Triple::mipsel)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
Error NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
|
|
LLDB_LOG(log, "pid {0}", GetID());
|
|
|
|
bool software_single_step = !SupportHardwareSingleStepping();
|
|
|
|
if (software_single_step) {
|
|
for (auto thread_sp : m_threads) {
|
|
assert(thread_sp && "thread list should not contain NULL threads");
|
|
|
|
const ResumeAction *const action =
|
|
resume_actions.GetActionForThread(thread_sp->GetID(), true);
|
|
if (action == nullptr)
|
|
continue;
|
|
|
|
if (action->state == eStateStepping) {
|
|
Error error = SetupSoftwareSingleStepping(
|
|
static_cast<NativeThreadLinux &>(*thread_sp));
|
|
if (error.Fail())
|
|
return error;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto thread_sp : m_threads) {
|
|
assert(thread_sp && "thread list should not contain NULL threads");
|
|
|
|
const ResumeAction *const action =
|
|
resume_actions.GetActionForThread(thread_sp->GetID(), true);
|
|
|
|
if (action == nullptr) {
|
|
LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
|
|
thread_sp->GetID());
|
|
continue;
|
|
}
|
|
|
|
LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
|
|
action->state, GetID(), thread_sp->GetID());
|
|
|
|
switch (action->state) {
|
|
case eStateRunning:
|
|
case eStateStepping: {
|
|
// Run the thread, possibly feeding it the signal.
|
|
const int signo = action->signal;
|
|
ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state,
|
|
signo);
|
|
break;
|
|
}
|
|
|
|
case eStateSuspended:
|
|
case eStateStopped:
|
|
llvm_unreachable("Unexpected state");
|
|
|
|
default:
|
|
return Error("NativeProcessLinux::%s (): unexpected state %s specified "
|
|
"for pid %" PRIu64 ", tid %" PRIu64,
|
|
__FUNCTION__, StateAsCString(action->state), GetID(),
|
|
thread_sp->GetID());
|
|
}
|
|
}
|
|
|
|
return Error();
|
|
}
|
|
|
|
Error NativeProcessLinux::Halt() {
|
|
Error error;
|
|
|
|
if (kill(GetID(), SIGSTOP) != 0)
|
|
error.SetErrorToErrno();
|
|
|
|
return error;
|
|
}
|
|
|
|
Error NativeProcessLinux::Detach() {
|
|
Error error;
|
|
|
|
// Stop monitoring the inferior.
|
|
m_sigchld_handle.reset();
|
|
|
|
// Tell ptrace to detach from the process.
|
|
if (GetID() == LLDB_INVALID_PROCESS_ID)
|
|
return error;
|
|
|
|
for (auto thread_sp : m_threads) {
|
|
Error e = Detach(thread_sp->GetID());
|
|
if (e.Fail())
|
|
error =
|
|
e; // Save the error, but still attempt to detach from other threads.
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
Error NativeProcessLinux::Signal(int signo) {
|
|
Error error;
|
|
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
|
|
LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
|
|
Host::GetSignalAsCString(signo), GetID());
|
|
|
|
if (kill(GetID(), signo))
|
|
error.SetErrorToErrno();
|
|
|
|
return error;
|
|
}
|
|
|
|
Error NativeProcessLinux::Interrupt() {
|
|
// Pick a running thread (or if none, a not-dead stopped thread) as
|
|
// the chosen thread that will be the stop-reason thread.
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
|
|
|
|
NativeThreadProtocolSP running_thread_sp;
|
|
NativeThreadProtocolSP stopped_thread_sp;
|
|
|
|
LLDB_LOG(log, "selecting running thread for interrupt target");
|
|
for (auto thread_sp : m_threads) {
|
|
// The thread shouldn't be null but lets just cover that here.
|
|
if (!thread_sp)
|
|
continue;
|
|
|
|
// If we have a running or stepping thread, we'll call that the
|
|
// target of the interrupt.
|
|
const auto thread_state = thread_sp->GetState();
|
|
if (thread_state == eStateRunning || thread_state == eStateStepping) {
|
|
running_thread_sp = thread_sp;
|
|
break;
|
|
} else if (!stopped_thread_sp && StateIsStoppedState(thread_state, true)) {
|
|
// Remember the first non-dead stopped thread. We'll use that as a backup
|
|
// if there are no running threads.
|
|
stopped_thread_sp = thread_sp;
|
|
}
|
|
}
|
|
|
|
if (!running_thread_sp && !stopped_thread_sp) {
|
|
Error error("found no running/stepping or live stopped threads as target "
|
|
"for interrupt");
|
|
LLDB_LOG(log, "skipping due to error: {0}", error);
|
|
|
|
return error;
|
|
}
|
|
|
|
NativeThreadProtocolSP deferred_signal_thread_sp =
|
|
running_thread_sp ? running_thread_sp : stopped_thread_sp;
|
|
|
|
LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
|
|
running_thread_sp ? "running" : "stopped",
|
|
deferred_signal_thread_sp->GetID());
|
|
|
|
StopRunningThreads(deferred_signal_thread_sp->GetID());
|
|
|
|
return Error();
|
|
}
|
|
|
|
Error NativeProcessLinux::Kill() {
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
|
|
LLDB_LOG(log, "pid {0}", GetID());
|
|
|
|
Error error;
|
|
|
|
switch (m_state) {
|
|
case StateType::eStateInvalid:
|
|
case StateType::eStateExited:
|
|
case StateType::eStateCrashed:
|
|
case StateType::eStateDetached:
|
|
case StateType::eStateUnloaded:
|
|
// Nothing to do - the process is already dead.
|
|
LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
|
|
m_state);
|
|
return error;
|
|
|
|
case StateType::eStateConnected:
|
|
case StateType::eStateAttaching:
|
|
case StateType::eStateLaunching:
|
|
case StateType::eStateStopped:
|
|
case StateType::eStateRunning:
|
|
case StateType::eStateStepping:
|
|
case StateType::eStateSuspended:
|
|
// We can try to kill a process in these states.
|
|
break;
|
|
}
|
|
|
|
if (kill(GetID(), SIGKILL) != 0) {
|
|
error.SetErrorToErrno();
|
|
return error;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static Error
|
|
ParseMemoryRegionInfoFromProcMapsLine(const std::string &maps_line,
|
|
MemoryRegionInfo &memory_region_info) {
|
|
memory_region_info.Clear();
|
|
|
|
StringExtractor line_extractor(maps_line.c_str());
|
|
|
|
// Format: {address_start_hex}-{address_end_hex} perms offset dev inode
|
|
// pathname
|
|
// perms: rwxp (letter is present if set, '-' if not, final character is
|
|
// p=private, s=shared).
|
|
|
|
// Parse out the starting address
|
|
lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0);
|
|
|
|
// Parse out hyphen separating start and end address from range.
|
|
if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-'))
|
|
return Error(
|
|
"malformed /proc/{pid}/maps entry, missing dash between address range");
|
|
|
|
// Parse out the ending address
|
|
lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address);
|
|
|
|
// Parse out the space after the address.
|
|
if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' '))
|
|
return Error("malformed /proc/{pid}/maps entry, missing space after range");
|
|
|
|
// Save the range.
|
|
memory_region_info.GetRange().SetRangeBase(start_address);
|
|
memory_region_info.GetRange().SetRangeEnd(end_address);
|
|
|
|
// Any memory region in /proc/{pid}/maps is by definition mapped into the
|
|
// process.
|
|
memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes);
|
|
|
|
// Parse out each permission entry.
|
|
if (line_extractor.GetBytesLeft() < 4)
|
|
return Error("malformed /proc/{pid}/maps entry, missing some portion of "
|
|
"permissions");
|
|
|
|
// Handle read permission.
|
|
const char read_perm_char = line_extractor.GetChar();
|
|
if (read_perm_char == 'r')
|
|
memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes);
|
|
else if (read_perm_char == '-')
|
|
memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
|
|
else
|
|
return Error("unexpected /proc/{pid}/maps read permission char");
|
|
|
|
// Handle write permission.
|
|
const char write_perm_char = line_extractor.GetChar();
|
|
if (write_perm_char == 'w')
|
|
memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes);
|
|
else if (write_perm_char == '-')
|
|
memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
|
|
else
|
|
return Error("unexpected /proc/{pid}/maps write permission char");
|
|
|
|
// Handle execute permission.
|
|
const char exec_perm_char = line_extractor.GetChar();
|
|
if (exec_perm_char == 'x')
|
|
memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes);
|
|
else if (exec_perm_char == '-')
|
|
memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
|
|
else
|
|
return Error("unexpected /proc/{pid}/maps exec permission char");
|
|
|
|
line_extractor.GetChar(); // Read the private bit
|
|
line_extractor.SkipSpaces(); // Skip the separator
|
|
line_extractor.GetHexMaxU64(false, 0); // Read the offset
|
|
line_extractor.GetHexMaxU64(false, 0); // Read the major device number
|
|
line_extractor.GetChar(); // Read the device id separator
|
|
line_extractor.GetHexMaxU64(false, 0); // Read the major device number
|
|
line_extractor.SkipSpaces(); // Skip the separator
|
|
line_extractor.GetU64(0, 10); // Read the inode number
|
|
|
|
line_extractor.SkipSpaces();
|
|
const char *name = line_extractor.Peek();
|
|
if (name)
|
|
memory_region_info.SetName(name);
|
|
|
|
return Error();
|
|
}
|
|
|
|
Error NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
|
|
MemoryRegionInfo &range_info) {
|
|
// FIXME review that the final memory region returned extends to the end of
|
|
// the virtual address space,
|
|
// with no perms if it is not mapped.
|
|
|
|
// Use an approach that reads memory regions from /proc/{pid}/maps.
|
|
// Assume proc maps entries are in ascending order.
|
|
// FIXME assert if we find differently.
|
|
|
|
if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
|
|
// We're done.
|
|
return Error("unsupported");
|
|
}
|
|
|
|
Error error = PopulateMemoryRegionCache();
|
|
if (error.Fail()) {
|
|
return error;
|
|
}
|
|
|
|
lldb::addr_t prev_base_address = 0;
|
|
|
|
// FIXME start by finding the last region that is <= target address using
|
|
// binary search. Data is sorted.
|
|
// There can be a ton of regions on pthreads apps with lots of threads.
|
|
for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
|
|
++it) {
|
|
MemoryRegionInfo &proc_entry_info = it->first;
|
|
|
|
// Sanity check assumption that /proc/{pid}/maps entries are ascending.
|
|
assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
|
|
"descending /proc/pid/maps entries detected, unexpected");
|
|
prev_base_address = proc_entry_info.GetRange().GetRangeBase();
|
|
UNUSED_IF_ASSERT_DISABLED(prev_base_address);
|
|
|
|
// If the target address comes before this entry, indicate distance to next
|
|
// region.
|
|
if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
|
|
range_info.GetRange().SetRangeBase(load_addr);
|
|
range_info.GetRange().SetByteSize(
|
|
proc_entry_info.GetRange().GetRangeBase() - load_addr);
|
|
range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
|
|
range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
|
|
range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
|
|
range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
|
|
|
|
return error;
|
|
} else if (proc_entry_info.GetRange().Contains(load_addr)) {
|
|
// The target address is within the memory region we're processing here.
|
|
range_info = proc_entry_info;
|
|
return error;
|
|
}
|
|
|
|
// The target memory address comes somewhere after the region we just
|
|
// parsed.
|
|
}
|
|
|
|
// If we made it here, we didn't find an entry that contained the given
|
|
// address. Return the
|
|
// load_addr as start and the amount of bytes betwwen load address and the end
|
|
// of the memory as
|
|
// size.
|
|
range_info.GetRange().SetRangeBase(load_addr);
|
|
range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
|
|
range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
|
|
range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
|
|
range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
|
|
range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
|
|
return error;
|
|
}
|
|
|
|
Error NativeProcessLinux::PopulateMemoryRegionCache() {
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
|
|
|
|
// If our cache is empty, pull the latest. There should always be at least
|
|
// one memory region if memory region handling is supported.
|
|
if (!m_mem_region_cache.empty()) {
|
|
LLDB_LOG(log, "reusing {0} cached memory region entries",
|
|
m_mem_region_cache.size());
|
|
return Error();
|
|
}
|
|
|
|
Error error = ProcFileReader::ProcessLineByLine(
|
|
GetID(), "maps", [&](const std::string &line) -> bool {
|
|
MemoryRegionInfo info;
|
|
const Error parse_error =
|
|
ParseMemoryRegionInfoFromProcMapsLine(line, info);
|
|
if (parse_error.Success()) {
|
|
m_mem_region_cache.emplace_back(
|
|
info, FileSpec(info.GetName().GetCString(), true));
|
|
return true;
|
|
} else {
|
|
LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", line,
|
|
parse_error);
|
|
return false;
|
|
}
|
|
});
|
|
|
|
// If we had an error, we'll mark unsupported.
|
|
if (error.Fail()) {
|
|
m_supports_mem_region = LazyBool::eLazyBoolNo;
|
|
return error;
|
|
} else if (m_mem_region_cache.empty()) {
|
|
// No entries after attempting to read them. This shouldn't happen if
|
|
// /proc/{pid}/maps is supported. Assume we don't support map entries
|
|
// via procfs.
|
|
LLDB_LOG(log,
|
|
"failed to find any procfs maps entries, assuming no support "
|
|
"for memory region metadata retrieval");
|
|
m_supports_mem_region = LazyBool::eLazyBoolNo;
|
|
error.SetErrorString("not supported");
|
|
return error;
|
|
}
|
|
|
|
LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
|
|
m_mem_region_cache.size(), GetID());
|
|
|
|
// We support memory retrieval, remember that.
|
|
m_supports_mem_region = LazyBool::eLazyBoolYes;
|
|
return Error();
|
|
}
|
|
|
|
void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
|
|
LLDB_LOG(log, "newBumpId={0}", newBumpId);
|
|
LLDB_LOG(log, "clearing {0} entries from memory region cache",
|
|
m_mem_region_cache.size());
|
|
m_mem_region_cache.clear();
|
|
}
|
|
|
|
Error NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions,
|
|
lldb::addr_t &addr) {
|
|
// FIXME implementing this requires the equivalent of
|
|
// InferiorCallPOSIX::InferiorCallMmap, which depends on
|
|
// functional ThreadPlans working with Native*Protocol.
|
|
#if 1
|
|
return Error("not implemented yet");
|
|
#else
|
|
addr = LLDB_INVALID_ADDRESS;
|
|
|
|
unsigned prot = 0;
|
|
if (permissions & lldb::ePermissionsReadable)
|
|
prot |= eMmapProtRead;
|
|
if (permissions & lldb::ePermissionsWritable)
|
|
prot |= eMmapProtWrite;
|
|
if (permissions & lldb::ePermissionsExecutable)
|
|
prot |= eMmapProtExec;
|
|
|
|
// TODO implement this directly in NativeProcessLinux
|
|
// (and lift to NativeProcessPOSIX if/when that class is
|
|
// refactored out).
|
|
if (InferiorCallMmap(this, addr, 0, size, prot,
|
|
eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
|
|
m_addr_to_mmap_size[addr] = size;
|
|
return Error();
|
|
} else {
|
|
addr = LLDB_INVALID_ADDRESS;
|
|
return Error("unable to allocate %" PRIu64
|
|
" bytes of memory with permissions %s",
|
|
size, GetPermissionsAsCString(permissions));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
|
|
// FIXME see comments in AllocateMemory - required lower-level
|
|
// bits not in place yet (ThreadPlans)
|
|
return Error("not implemented");
|
|
}
|
|
|
|
lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() {
|
|
// punt on this for now
|
|
return LLDB_INVALID_ADDRESS;
|
|
}
|
|
|
|
size_t NativeProcessLinux::UpdateThreads() {
|
|
// The NativeProcessLinux monitoring threads are always up to date
|
|
// with respect to thread state and they keep the thread list
|
|
// populated properly. All this method needs to do is return the
|
|
// thread count.
|
|
return m_threads.size();
|
|
}
|
|
|
|
bool NativeProcessLinux::GetArchitecture(ArchSpec &arch) const {
|
|
arch = m_arch;
|
|
return true;
|
|
}
|
|
|
|
Error NativeProcessLinux::GetSoftwareBreakpointPCOffset(
|
|
uint32_t &actual_opcode_size) {
|
|
// FIXME put this behind a breakpoint protocol class that can be
|
|
// set per architecture. Need ARM, MIPS support here.
|
|
static const uint8_t g_i386_opcode[] = {0xCC};
|
|
static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
|
|
|
|
switch (m_arch.GetMachine()) {
|
|
case llvm::Triple::x86:
|
|
case llvm::Triple::x86_64:
|
|
actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode));
|
|
return Error();
|
|
|
|
case llvm::Triple::systemz:
|
|
actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode));
|
|
return Error();
|
|
|
|
case llvm::Triple::arm:
|
|
case llvm::Triple::aarch64:
|
|
case llvm::Triple::mips64:
|
|
case llvm::Triple::mips64el:
|
|
case llvm::Triple::mips:
|
|
case llvm::Triple::mipsel:
|
|
// On these architectures the PC don't get updated for breakpoint hits
|
|
actual_opcode_size = 0;
|
|
return Error();
|
|
|
|
default:
|
|
assert(false && "CPU type not supported!");
|
|
return Error("CPU type not supported");
|
|
}
|
|
}
|
|
|
|
Error NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
|
|
bool hardware) {
|
|
if (hardware)
|
|
return SetHardwareBreakpoint(addr, size);
|
|
else
|
|
return SetSoftwareBreakpoint(addr, size);
|
|
}
|
|
|
|
Error NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
|
|
if (hardware)
|
|
return RemoveHardwareBreakpoint(addr);
|
|
else
|
|
return NativeProcessProtocol::RemoveBreakpoint(addr);
|
|
}
|
|
|
|
Error NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(
|
|
size_t trap_opcode_size_hint, size_t &actual_opcode_size,
|
|
const uint8_t *&trap_opcode_bytes) {
|
|
// FIXME put this behind a breakpoint protocol class that can be set per
|
|
// architecture. Need MIPS support here.
|
|
static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4};
|
|
// The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
|
|
// linux kernel does otherwise.
|
|
static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
|
|
static const uint8_t g_i386_opcode[] = {0xCC};
|
|
static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d};
|
|
static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00};
|
|
static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
|
|
static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde};
|
|
|
|
switch (m_arch.GetMachine()) {
|
|
case llvm::Triple::aarch64:
|
|
trap_opcode_bytes = g_aarch64_opcode;
|
|
actual_opcode_size = sizeof(g_aarch64_opcode);
|
|
return Error();
|
|
|
|
case llvm::Triple::arm:
|
|
switch (trap_opcode_size_hint) {
|
|
case 2:
|
|
trap_opcode_bytes = g_thumb_breakpoint_opcode;
|
|
actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
|
|
return Error();
|
|
case 4:
|
|
trap_opcode_bytes = g_arm_breakpoint_opcode;
|
|
actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
|
|
return Error();
|
|
default:
|
|
assert(false && "Unrecognised trap opcode size hint!");
|
|
return Error("Unrecognised trap opcode size hint!");
|
|
}
|
|
|
|
case llvm::Triple::x86:
|
|
case llvm::Triple::x86_64:
|
|
trap_opcode_bytes = g_i386_opcode;
|
|
actual_opcode_size = sizeof(g_i386_opcode);
|
|
return Error();
|
|
|
|
case llvm::Triple::mips:
|
|
case llvm::Triple::mips64:
|
|
trap_opcode_bytes = g_mips64_opcode;
|
|
actual_opcode_size = sizeof(g_mips64_opcode);
|
|
return Error();
|
|
|
|
case llvm::Triple::mipsel:
|
|
case llvm::Triple::mips64el:
|
|
trap_opcode_bytes = g_mips64el_opcode;
|
|
actual_opcode_size = sizeof(g_mips64el_opcode);
|
|
return Error();
|
|
|
|
case llvm::Triple::systemz:
|
|
trap_opcode_bytes = g_s390x_opcode;
|
|
actual_opcode_size = sizeof(g_s390x_opcode);
|
|
return Error();
|
|
|
|
default:
|
|
assert(false && "CPU type not supported!");
|
|
return Error("CPU type not supported");
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
ProcessMessage::CrashReason
|
|
NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
|
|
{
|
|
ProcessMessage::CrashReason reason;
|
|
assert(info->si_signo == SIGSEGV);
|
|
|
|
reason = ProcessMessage::eInvalidCrashReason;
|
|
|
|
switch (info->si_code)
|
|
{
|
|
default:
|
|
assert(false && "unexpected si_code for SIGSEGV");
|
|
break;
|
|
case SI_KERNEL:
|
|
// Linux will occasionally send spurious SI_KERNEL codes.
|
|
// (this is poorly documented in sigaction)
|
|
// One way to get this is via unaligned SIMD loads.
|
|
reason = ProcessMessage::eInvalidAddress; // for lack of anything better
|
|
break;
|
|
case SEGV_MAPERR:
|
|
reason = ProcessMessage::eInvalidAddress;
|
|
break;
|
|
case SEGV_ACCERR:
|
|
reason = ProcessMessage::ePrivilegedAddress;
|
|
break;
|
|
}
|
|
|
|
return reason;
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
ProcessMessage::CrashReason
|
|
NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
|
|
{
|
|
ProcessMessage::CrashReason reason;
|
|
assert(info->si_signo == SIGILL);
|
|
|
|
reason = ProcessMessage::eInvalidCrashReason;
|
|
|
|
switch (info->si_code)
|
|
{
|
|
default:
|
|
assert(false && "unexpected si_code for SIGILL");
|
|
break;
|
|
case ILL_ILLOPC:
|
|
reason = ProcessMessage::eIllegalOpcode;
|
|
break;
|
|
case ILL_ILLOPN:
|
|
reason = ProcessMessage::eIllegalOperand;
|
|
break;
|
|
case ILL_ILLADR:
|
|
reason = ProcessMessage::eIllegalAddressingMode;
|
|
break;
|
|
case ILL_ILLTRP:
|
|
reason = ProcessMessage::eIllegalTrap;
|
|
break;
|
|
case ILL_PRVOPC:
|
|
reason = ProcessMessage::ePrivilegedOpcode;
|
|
break;
|
|
case ILL_PRVREG:
|
|
reason = ProcessMessage::ePrivilegedRegister;
|
|
break;
|
|
case ILL_COPROC:
|
|
reason = ProcessMessage::eCoprocessorError;
|
|
break;
|
|
case ILL_BADSTK:
|
|
reason = ProcessMessage::eInternalStackError;
|
|
break;
|
|
}
|
|
|
|
return reason;
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
ProcessMessage::CrashReason
|
|
NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
|
|
{
|
|
ProcessMessage::CrashReason reason;
|
|
assert(info->si_signo == SIGFPE);
|
|
|
|
reason = ProcessMessage::eInvalidCrashReason;
|
|
|
|
switch (info->si_code)
|
|
{
|
|
default:
|
|
assert(false && "unexpected si_code for SIGFPE");
|
|
break;
|
|
case FPE_INTDIV:
|
|
reason = ProcessMessage::eIntegerDivideByZero;
|
|
break;
|
|
case FPE_INTOVF:
|
|
reason = ProcessMessage::eIntegerOverflow;
|
|
break;
|
|
case FPE_FLTDIV:
|
|
reason = ProcessMessage::eFloatDivideByZero;
|
|
break;
|
|
case FPE_FLTOVF:
|
|
reason = ProcessMessage::eFloatOverflow;
|
|
break;
|
|
case FPE_FLTUND:
|
|
reason = ProcessMessage::eFloatUnderflow;
|
|
break;
|
|
case FPE_FLTRES:
|
|
reason = ProcessMessage::eFloatInexactResult;
|
|
break;
|
|
case FPE_FLTINV:
|
|
reason = ProcessMessage::eFloatInvalidOperation;
|
|
break;
|
|
case FPE_FLTSUB:
|
|
reason = ProcessMessage::eFloatSubscriptRange;
|
|
break;
|
|
}
|
|
|
|
return reason;
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
ProcessMessage::CrashReason
|
|
NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
|
|
{
|
|
ProcessMessage::CrashReason reason;
|
|
assert(info->si_signo == SIGBUS);
|
|
|
|
reason = ProcessMessage::eInvalidCrashReason;
|
|
|
|
switch (info->si_code)
|
|
{
|
|
default:
|
|
assert(false && "unexpected si_code for SIGBUS");
|
|
break;
|
|
case BUS_ADRALN:
|
|
reason = ProcessMessage::eIllegalAlignment;
|
|
break;
|
|
case BUS_ADRERR:
|
|
reason = ProcessMessage::eIllegalAddress;
|
|
break;
|
|
case BUS_OBJERR:
|
|
reason = ProcessMessage::eHardwareError;
|
|
break;
|
|
}
|
|
|
|
return reason;
|
|
}
|
|
#endif
|
|
|
|
Error NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
|
|
size_t &bytes_read) {
|
|
if (ProcessVmReadvSupported()) {
|
|
// The process_vm_readv path is about 50 times faster than ptrace api. We
|
|
// want to use
|
|
// this syscall if it is supported.
|
|
|
|
const ::pid_t pid = GetID();
|
|
|
|
struct iovec local_iov, remote_iov;
|
|
local_iov.iov_base = buf;
|
|
local_iov.iov_len = size;
|
|
remote_iov.iov_base = reinterpret_cast<void *>(addr);
|
|
remote_iov.iov_len = size;
|
|
|
|
bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
|
|
const bool success = bytes_read == size;
|
|
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
|
|
LLDB_LOG(log,
|
|
"using process_vm_readv to read {0} bytes from inferior "
|
|
"address {1:x}: {2}",
|
|
size, addr, success ? "Success" : strerror(errno));
|
|
|
|
if (success)
|
|
return Error();
|
|
// else the call failed for some reason, let's retry the read using ptrace
|
|
// api.
|
|
}
|
|
|
|
unsigned char *dst = static_cast<unsigned char *>(buf);
|
|
size_t remainder;
|
|
long data;
|
|
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
|
|
LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
|
|
|
|
for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
|
|
Error error = NativeProcessLinux::PtraceWrapper(
|
|
PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
|
|
if (error.Fail())
|
|
return error;
|
|
|
|
remainder = size - bytes_read;
|
|
remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
|
|
|
|
// Copy the data into our buffer
|
|
memcpy(dst, &data, remainder);
|
|
|
|
LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
|
|
addr += k_ptrace_word_size;
|
|
dst += k_ptrace_word_size;
|
|
}
|
|
return Error();
|
|
}
|
|
|
|
Error NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf,
|
|
size_t size,
|
|
size_t &bytes_read) {
|
|
Error error = ReadMemory(addr, buf, size, bytes_read);
|
|
if (error.Fail())
|
|
return error;
|
|
return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
|
|
}
|
|
|
|
Error NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
|
|
size_t size, size_t &bytes_written) {
|
|
const unsigned char *src = static_cast<const unsigned char *>(buf);
|
|
size_t remainder;
|
|
Error error;
|
|
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
|
|
LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
|
|
|
|
for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
|
|
remainder = size - bytes_written;
|
|
remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
|
|
|
|
if (remainder == k_ptrace_word_size) {
|
|
unsigned long data = 0;
|
|
memcpy(&data, src, k_ptrace_word_size);
|
|
|
|
LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
|
|
error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
|
|
(void *)addr, (void *)data);
|
|
if (error.Fail())
|
|
return error;
|
|
} else {
|
|
unsigned char buff[8];
|
|
size_t bytes_read;
|
|
error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
|
|
if (error.Fail())
|
|
return error;
|
|
|
|
memcpy(buff, src, remainder);
|
|
|
|
size_t bytes_written_rec;
|
|
error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
|
|
if (error.Fail())
|
|
return error;
|
|
|
|
LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
|
|
*(unsigned long *)buff);
|
|
}
|
|
|
|
addr += k_ptrace_word_size;
|
|
src += k_ptrace_word_size;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
Error NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
|
|
return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
|
|
}
|
|
|
|
Error NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
|
|
unsigned long *message) {
|
|
return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
|
|
}
|
|
|
|
Error NativeProcessLinux::Detach(lldb::tid_t tid) {
|
|
if (tid == LLDB_INVALID_THREAD_ID)
|
|
return Error();
|
|
|
|
return PtraceWrapper(PTRACE_DETACH, tid);
|
|
}
|
|
|
|
bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
|
|
for (auto thread_sp : m_threads) {
|
|
assert(thread_sp && "thread list should not contain NULL threads");
|
|
if (thread_sp->GetID() == thread_id) {
|
|
// We have this thread.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// We don't have this thread.
|
|
return false;
|
|
}
|
|
|
|
bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
|
|
Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
|
|
LLDB_LOG(log, "tid: {0})", thread_id);
|
|
|
|
bool found = false;
|
|
for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
|
|
if (*it && ((*it)->GetID() == thread_id)) {
|
|
m_threads.erase(it);
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
SignalIfAllThreadsStopped();
|
|
return found;
|
|
}
|
|
|
|
NativeThreadLinuxSP NativeProcessLinux::AddThread(lldb::tid_t thread_id) {
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
|
|
LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
|
|
|
|
assert(!HasThreadNoLock(thread_id) &&
|
|
"attempted to add a thread by id that already exists");
|
|
|
|
// If this is the first thread, save it as the current thread
|
|
if (m_threads.empty())
|
|
SetCurrentThreadID(thread_id);
|
|
|
|
auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id);
|
|
m_threads.push_back(thread_sp);
|
|
return thread_sp;
|
|
}
|
|
|
|
Error NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) {
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
|
|
|
|
Error error;
|
|
|
|
// Find out the size of a breakpoint (might depend on where we are in the
|
|
// code).
|
|
NativeRegisterContextSP context_sp = thread.GetRegisterContext();
|
|
if (!context_sp) {
|
|
error.SetErrorString("cannot get a NativeRegisterContext for the thread");
|
|
LLDB_LOG(log, "failed: {0}", error);
|
|
return error;
|
|
}
|
|
|
|
uint32_t breakpoint_size = 0;
|
|
error = GetSoftwareBreakpointPCOffset(breakpoint_size);
|
|
if (error.Fail()) {
|
|
LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error);
|
|
return error;
|
|
} else
|
|
LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size);
|
|
|
|
// First try probing for a breakpoint at a software breakpoint location: PC -
|
|
// breakpoint size.
|
|
const lldb::addr_t initial_pc_addr =
|
|
context_sp->GetPCfromBreakpointLocation();
|
|
lldb::addr_t breakpoint_addr = initial_pc_addr;
|
|
if (breakpoint_size > 0) {
|
|
// Do not allow breakpoint probe to wrap around.
|
|
if (breakpoint_addr >= breakpoint_size)
|
|
breakpoint_addr -= breakpoint_size;
|
|
}
|
|
|
|
// Check if we stopped because of a breakpoint.
|
|
NativeBreakpointSP breakpoint_sp;
|
|
error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp);
|
|
if (!error.Success() || !breakpoint_sp) {
|
|
// We didn't find one at a software probe location. Nothing to do.
|
|
LLDB_LOG(log,
|
|
"pid {0} no lldb breakpoint found at current pc with "
|
|
"adjustment: {1}",
|
|
GetID(), breakpoint_addr);
|
|
return Error();
|
|
}
|
|
|
|
// If the breakpoint is not a software breakpoint, nothing to do.
|
|
if (!breakpoint_sp->IsSoftwareBreakpoint()) {
|
|
LLDB_LOG(
|
|
log,
|
|
"pid {0} breakpoint found at {1:x}, not software, nothing to adjust",
|
|
GetID(), breakpoint_addr);
|
|
return Error();
|
|
}
|
|
|
|
//
|
|
// We have a software breakpoint and need to adjust the PC.
|
|
//
|
|
|
|
// Sanity check.
|
|
if (breakpoint_size == 0) {
|
|
// Nothing to do! How did we get here?
|
|
LLDB_LOG(log,
|
|
"pid {0} breakpoint found at {1:x}, it is software, but the "
|
|
"size is zero, nothing to do (unexpected)",
|
|
GetID(), breakpoint_addr);
|
|
return Error();
|
|
}
|
|
|
|
// Change the program counter.
|
|
LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(),
|
|
thread.GetID(), initial_pc_addr, breakpoint_addr);
|
|
|
|
error = context_sp->SetPC(breakpoint_addr);
|
|
if (error.Fail()) {
|
|
LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(),
|
|
thread.GetID(), error);
|
|
return error;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
Error NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
|
|
FileSpec &file_spec) {
|
|
Error error = PopulateMemoryRegionCache();
|
|
if (error.Fail())
|
|
return error;
|
|
|
|
FileSpec module_file_spec(module_path, true);
|
|
|
|
file_spec.Clear();
|
|
for (const auto &it : m_mem_region_cache) {
|
|
if (it.second.GetFilename() == module_file_spec.GetFilename()) {
|
|
file_spec = it.second;
|
|
return Error();
|
|
}
|
|
}
|
|
return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
|
|
module_file_spec.GetFilename().AsCString(), GetID());
|
|
}
|
|
|
|
Error NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
|
|
lldb::addr_t &load_addr) {
|
|
load_addr = LLDB_INVALID_ADDRESS;
|
|
Error error = PopulateMemoryRegionCache();
|
|
if (error.Fail())
|
|
return error;
|
|
|
|
FileSpec file(file_name, false);
|
|
for (const auto &it : m_mem_region_cache) {
|
|
if (it.second == file) {
|
|
load_addr = it.first.GetRange().GetRangeBase();
|
|
return Error();
|
|
}
|
|
}
|
|
return Error("No load address found for specified file.");
|
|
}
|
|
|
|
NativeThreadLinuxSP NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
|
|
return std::static_pointer_cast<NativeThreadLinux>(
|
|
NativeProcessProtocol::GetThreadByID(tid));
|
|
}
|
|
|
|
Error NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
|
|
lldb::StateType state, int signo) {
|
|
Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
|
|
LLDB_LOG(log, "tid: {0}", thread.GetID());
|
|
|
|
// Before we do the resume below, first check if we have a pending
|
|
// stop notification that is currently waiting for
|
|
// all threads to stop. This is potentially a buggy situation since
|
|
// we're ostensibly waiting for threads to stop before we send out the
|
|
// pending notification, and here we are resuming one before we send
|
|
// out the pending stop notification.
|
|
if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
|
|
LLDB_LOG(log,
|
|
"about to resume tid {0} per explicit request but we have a "
|
|
"pending stop notification (tid {1}) that is actively "
|
|
"waiting for this thread to stop. Valid sequence of events?",
|
|
thread.GetID(), m_pending_notification_tid);
|
|
}
|
|
|
|
// Request a resume. We expect this to be synchronous and the system
|
|
// to reflect it is running after this completes.
|
|
switch (state) {
|
|
case eStateRunning: {
|
|
const auto resume_result = thread.Resume(signo);
|
|
if (resume_result.Success())
|
|
SetState(eStateRunning, true);
|
|
return resume_result;
|
|
}
|
|
case eStateStepping: {
|
|
const auto step_result = thread.SingleStep(signo);
|
|
if (step_result.Success())
|
|
SetState(eStateRunning, true);
|
|
return step_result;
|
|
}
|
|
default:
|
|
LLDB_LOG(log, "Unhandled state {0}.", state);
|
|
llvm_unreachable("Unhandled state for resume");
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
|
|
Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
|
|
LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
|
|
triggering_tid);
|
|
|
|
m_pending_notification_tid = triggering_tid;
|
|
|
|
// Request a stop for all the thread stops that need to be stopped
|
|
// and are not already known to be stopped.
|
|
for (const auto &thread_sp : m_threads) {
|
|
if (StateIsRunningState(thread_sp->GetState()))
|
|
static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
|
|
}
|
|
|
|
SignalIfAllThreadsStopped();
|
|
LLDB_LOG(log, "event processing done");
|
|
}
|
|
|
|
void NativeProcessLinux::SignalIfAllThreadsStopped() {
|
|
if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
|
|
return; // No pending notification. Nothing to do.
|
|
|
|
for (const auto &thread_sp : m_threads) {
|
|
if (StateIsRunningState(thread_sp->GetState()))
|
|
return; // Some threads are still running. Don't signal yet.
|
|
}
|
|
|
|
// We have a pending notification and all threads have stopped.
|
|
Log *log(
|
|
GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
|
|
|
|
// Clear any temporary breakpoints we used to implement software single
|
|
// stepping.
|
|
for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
|
|
Error error = RemoveBreakpoint(thread_info.second);
|
|
if (error.Fail())
|
|
LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
|
|
thread_info.first, error);
|
|
}
|
|
m_threads_stepping_with_breakpoint.clear();
|
|
|
|
// Notify the delegate about the stop
|
|
SetCurrentThreadID(m_pending_notification_tid);
|
|
SetState(StateType::eStateStopped, true);
|
|
m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
|
|
}
|
|
|
|
void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
|
|
Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
|
|
LLDB_LOG(log, "tid: {0}", thread.GetID());
|
|
|
|
if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
|
|
StateIsRunningState(thread.GetState())) {
|
|
// We will need to wait for this new thread to stop as well before firing
|
|
// the
|
|
// notification.
|
|
thread.RequestStop();
|
|
}
|
|
}
|
|
|
|
void NativeProcessLinux::SigchldHandler() {
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
|
|
// Process all pending waitpid notifications.
|
|
while (true) {
|
|
int status = -1;
|
|
::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG);
|
|
|
|
if (wait_pid == 0)
|
|
break; // We are done.
|
|
|
|
if (wait_pid == -1) {
|
|
if (errno == EINTR)
|
|
continue;
|
|
|
|
Error error(errno, eErrorTypePOSIX);
|
|
LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
|
|
break;
|
|
}
|
|
|
|
bool exited = false;
|
|
int signal = 0;
|
|
int exit_status = 0;
|
|
const char *status_cstr = nullptr;
|
|
if (WIFSTOPPED(status)) {
|
|
signal = WSTOPSIG(status);
|
|
status_cstr = "STOPPED";
|
|
} else if (WIFEXITED(status)) {
|
|
exit_status = WEXITSTATUS(status);
|
|
status_cstr = "EXITED";
|
|
exited = true;
|
|
} else if (WIFSIGNALED(status)) {
|
|
signal = WTERMSIG(status);
|
|
status_cstr = "SIGNALED";
|
|
if (wait_pid == static_cast<::pid_t>(GetID())) {
|
|
exited = true;
|
|
exit_status = -1;
|
|
}
|
|
} else
|
|
status_cstr = "(\?\?\?)";
|
|
|
|
LLDB_LOG(log,
|
|
"waitpid (-1, &status, _) => pid = {0}, status = {1:x} "
|
|
"({2}), signal = {3}, exit_state = {4}",
|
|
wait_pid, status, status_cstr, signal, exit_status);
|
|
|
|
MonitorCallback(wait_pid, exited, signal, exit_status);
|
|
}
|
|
}
|
|
|
|
// Wrapper for ptrace to catch errors and log calls.
|
|
// Note that ptrace sets errno on error because -1 can be a valid result (i.e.
|
|
// for PTRACE_PEEK*)
|
|
Error NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
|
|
void *data, size_t data_size,
|
|
long *result) {
|
|
Error error;
|
|
long int ret;
|
|
|
|
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
|
|
|
|
PtraceDisplayBytes(req, data, data_size);
|
|
|
|
errno = 0;
|
|
if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
|
|
ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
|
|
*(unsigned int *)addr, data);
|
|
else
|
|
ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
|
|
addr, data);
|
|
|
|
if (ret == -1)
|
|
error.SetErrorToErrno();
|
|
|
|
if (result)
|
|
*result = ret;
|
|
|
|
LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
|
|
data_size, ret);
|
|
|
|
PtraceDisplayBytes(req, data, data_size);
|
|
|
|
if (error.Fail())
|
|
LLDB_LOG(log, "ptrace() failed: {0}", error);
|
|
|
|
return error;
|
|
}
|