Asher Mancinelli 30f7a6cc42
[flang] Correctly prepare allocatable runtime call arguments (#138727)
When lowering allocatables, the generated calls to runtime functions
were not using the runtime::createArguments utility which handles the
required conversions. createArguments is where I added the implicit
volatile casts to handle converting volatile variables to the
appropriate type based on their volatility in the callee. Because the
calls to allocatable runtime functions were not using this function,
their arguments were not casted to have the appropriate volatility.

Add a test to demonstrate that volatile and allocatable
class/box/reference types are appropriately casted before calling into
the runtime library.

Instead of using a recursive variadic template to perform the
conversions in createArguments, map over the arguments directly so that
createArguments can be called with an ArrayRef of arguments. Some cases
in Allocatable.cpp already had a vector of values at the point where
createArguments needed to be called - the new overload allows calling
with a vector of args or the variadic version with each argument spelled
out at the callsite.

This change resulted in the allocatable runtime calls having their
arguments converted left-to-right, which changed some of the test
results. I used CHECK-DAG to ignore the order.

Add some missing handling of volatile class entities, which I previously
missed because I had not yet enabled volatile class entities in Lower.
2025-05-08 06:36:39 -07:00
..

Flang

Flang is a ground-up implementation of a Fortran front end written in modern C++. It started off as the f18 project (https://github.com/flang-compiler/f18) with an aim to replace the previous flang project (https://github.com/flang-compiler/flang) and address its various deficiencies. F18 was subsequently accepted into the LLVM project and rechristened as Flang.

Please note that flang is not ready yet for production usage.

Getting Started

Read more about flang in the docs directory. Start with the compiler overview.

To better understand Fortran as a language and the specific grammar accepted by flang, read Fortran For C Programmers and flang's specifications of the Fortran grammar and the OpenMP grammar.

Treatment of language extensions is covered in this document.

To understand the compilers handling of intrinsics, see the discussion of intrinsics.

To understand how a flang program communicates with libraries at runtime, see the discussion of runtime descriptors.

If you're interested in contributing to the compiler, read the style guide and also review how flang uses modern C++ features.

If you are interested in writing new documentation, follow LLVM's Markdown style guide.

Consult the Getting Started with Flang for information on building and running flang.