
Previously the class `ExplodedGraph` had a data member called `Roots` which could (in theory) store multiple root nodes -- but in practice exploded graphs always had at most one root node (zero was possible for empty and partially copied graphs) and introducing a graph with multiple roots would've caused severe malfuncitons (e.g. in code that used the pattern `*roots_begin()` to refer to _the_ root node). I don't see any practical use case for adding multiple root nodes in a single graph (this seems to be yet another of the "generalize for the sake of generalization" decisions which were common in the early history of the analyzer), so this commit replaces the vector `Roots` with `ExplodedNode *Root` (which may be null when the graph is empty or under construction). Note that the complicated logic of `ExplodedGraph::trim` deserves a through cleanup, but I left that for a follow-up commit.
4118 lines
153 KiB
C++
4118 lines
153 KiB
C++
//===- ExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a meta-engine for path-sensitive dataflow analysis that
|
|
// is built on CoreEngine, but provides the boilerplate to execute transfer
|
|
// functions and build the ExplodedGraph at the expression level.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
|
|
#include "PrettyStackTraceLocationContext.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclBase.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/ParentMap.h"
|
|
#include "clang/AST/PrettyPrinter.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/AST/StmtCXX.h"
|
|
#include "clang/AST/StmtObjC.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/Analysis/AnalysisDeclContext.h"
|
|
#include "clang/Analysis/CFG.h"
|
|
#include "clang/Analysis/ConstructionContext.h"
|
|
#include "clang/Analysis/ProgramPoint.h"
|
|
#include "clang/Basic/IdentifierTable.h"
|
|
#include "clang/Basic/JsonSupport.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "clang/Basic/LangOptions.h"
|
|
#include "clang/Basic/PrettyStackTrace.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/Specifiers.h"
|
|
#include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
|
|
#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
|
|
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
|
|
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/EntryPointStats.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/LoopUnrolling.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/LoopWidening.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
|
|
#include "llvm/ADT/APSInt.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/ImmutableMap.h"
|
|
#include "llvm/ADT/ImmutableSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/DOTGraphTraits.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/GraphWriter.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
#include "llvm/Support/TimeProfiler.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
|
|
#define DEBUG_TYPE "ExprEngine"
|
|
|
|
STAT_COUNTER(NumRemoveDeadBindings,
|
|
"The # of times RemoveDeadBindings is called");
|
|
STAT_COUNTER(
|
|
NumMaxBlockCountReached,
|
|
"The # of aborted paths due to reaching the maximum block count in "
|
|
"a top level function");
|
|
STAT_COUNTER(
|
|
NumMaxBlockCountReachedInInlined,
|
|
"The # of aborted paths due to reaching the maximum block count in "
|
|
"an inlined function");
|
|
STAT_COUNTER(NumTimesRetriedWithoutInlining,
|
|
"The # of times we re-evaluated a call without inlining");
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Internal program state traits.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
// When modeling a C++ constructor, for a variety of reasons we need to track
|
|
// the location of the object for the duration of its ConstructionContext.
|
|
// ObjectsUnderConstruction maps statements within the construction context
|
|
// to the object's location, so that on every such statement the location
|
|
// could have been retrieved.
|
|
|
|
/// ConstructedObjectKey is used for being able to find the path-sensitive
|
|
/// memory region of a freshly constructed object while modeling the AST node
|
|
/// that syntactically represents the object that is being constructed.
|
|
/// Semantics of such nodes may sometimes require access to the region that's
|
|
/// not otherwise present in the program state, or to the very fact that
|
|
/// the construction context was present and contained references to these
|
|
/// AST nodes.
|
|
class ConstructedObjectKey {
|
|
using ConstructedObjectKeyImpl =
|
|
std::pair<ConstructionContextItem, const LocationContext *>;
|
|
const ConstructedObjectKeyImpl Impl;
|
|
|
|
public:
|
|
explicit ConstructedObjectKey(const ConstructionContextItem &Item,
|
|
const LocationContext *LC)
|
|
: Impl(Item, LC) {}
|
|
|
|
const ConstructionContextItem &getItem() const { return Impl.first; }
|
|
const LocationContext *getLocationContext() const { return Impl.second; }
|
|
|
|
ASTContext &getASTContext() const {
|
|
return getLocationContext()->getDecl()->getASTContext();
|
|
}
|
|
|
|
void printJson(llvm::raw_ostream &Out, PrinterHelper *Helper,
|
|
PrintingPolicy &PP) const {
|
|
const Stmt *S = getItem().getStmtOrNull();
|
|
const CXXCtorInitializer *I = nullptr;
|
|
if (!S)
|
|
I = getItem().getCXXCtorInitializer();
|
|
|
|
if (S)
|
|
Out << "\"stmt_id\": " << S->getID(getASTContext());
|
|
else
|
|
Out << "\"init_id\": " << I->getID(getASTContext());
|
|
|
|
// Kind
|
|
Out << ", \"kind\": \"" << getItem().getKindAsString()
|
|
<< "\", \"argument_index\": ";
|
|
|
|
if (getItem().getKind() == ConstructionContextItem::ArgumentKind)
|
|
Out << getItem().getIndex();
|
|
else
|
|
Out << "null";
|
|
|
|
// Pretty-print
|
|
Out << ", \"pretty\": ";
|
|
|
|
if (S) {
|
|
S->printJson(Out, Helper, PP, /*AddQuotes=*/true);
|
|
} else {
|
|
Out << '\"' << I->getAnyMember()->getDeclName() << '\"';
|
|
}
|
|
}
|
|
|
|
void Profile(llvm::FoldingSetNodeID &ID) const {
|
|
ID.Add(Impl.first);
|
|
ID.AddPointer(Impl.second);
|
|
}
|
|
|
|
bool operator==(const ConstructedObjectKey &RHS) const {
|
|
return Impl == RHS.Impl;
|
|
}
|
|
|
|
bool operator<(const ConstructedObjectKey &RHS) const {
|
|
return Impl < RHS.Impl;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
typedef llvm::ImmutableMap<ConstructedObjectKey, SVal>
|
|
ObjectsUnderConstructionMap;
|
|
REGISTER_TRAIT_WITH_PROGRAMSTATE(ObjectsUnderConstruction,
|
|
ObjectsUnderConstructionMap)
|
|
|
|
// This trait is responsible for storing the index of the element that is to be
|
|
// constructed in the next iteration. As a result a CXXConstructExpr is only
|
|
// stored if it is array type. Also the index is the index of the continuous
|
|
// memory region, which is important for multi-dimensional arrays. E.g:: int
|
|
// arr[2][2]; assume arr[1][1] will be the next element under construction, so
|
|
// the index is 3.
|
|
typedef llvm::ImmutableMap<
|
|
std::pair<const CXXConstructExpr *, const LocationContext *>, unsigned>
|
|
IndexOfElementToConstructMap;
|
|
REGISTER_TRAIT_WITH_PROGRAMSTATE(IndexOfElementToConstruct,
|
|
IndexOfElementToConstructMap)
|
|
|
|
// This trait is responsible for holding our pending ArrayInitLoopExprs.
|
|
// It pairs the LocationContext and the initializer CXXConstructExpr with
|
|
// the size of the array that's being copy initialized.
|
|
typedef llvm::ImmutableMap<
|
|
std::pair<const CXXConstructExpr *, const LocationContext *>, unsigned>
|
|
PendingInitLoopMap;
|
|
REGISTER_TRAIT_WITH_PROGRAMSTATE(PendingInitLoop, PendingInitLoopMap)
|
|
|
|
typedef llvm::ImmutableMap<const LocationContext *, unsigned>
|
|
PendingArrayDestructionMap;
|
|
REGISTER_TRAIT_WITH_PROGRAMSTATE(PendingArrayDestruction,
|
|
PendingArrayDestructionMap)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Engine construction and deletion.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static const char* TagProviderName = "ExprEngine";
|
|
|
|
ExprEngine::ExprEngine(cross_tu::CrossTranslationUnitContext &CTU,
|
|
AnalysisManager &mgr, SetOfConstDecls *VisitedCalleesIn,
|
|
FunctionSummariesTy *FS, InliningModes HowToInlineIn)
|
|
: CTU(CTU), IsCTUEnabled(mgr.getAnalyzerOptions().IsNaiveCTUEnabled),
|
|
AMgr(mgr), AnalysisDeclContexts(mgr.getAnalysisDeclContextManager()),
|
|
Engine(*this, FS, mgr.getAnalyzerOptions()), G(Engine.getGraph()),
|
|
StateMgr(getContext(), mgr.getStoreManagerCreator(),
|
|
mgr.getConstraintManagerCreator(), G.getAllocator(), this),
|
|
SymMgr(StateMgr.getSymbolManager()), MRMgr(StateMgr.getRegionManager()),
|
|
svalBuilder(StateMgr.getSValBuilder()), ObjCNoRet(mgr.getASTContext()),
|
|
BR(mgr, *this), VisitedCallees(VisitedCalleesIn),
|
|
HowToInline(HowToInlineIn) {
|
|
unsigned TrimInterval = mgr.options.GraphTrimInterval;
|
|
if (TrimInterval != 0) {
|
|
// Enable eager node reclamation when constructing the ExplodedGraph.
|
|
G.enableNodeReclamation(TrimInterval);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ProgramStateRef ExprEngine::getInitialState(const LocationContext *InitLoc) {
|
|
ProgramStateRef state = StateMgr.getInitialState(InitLoc);
|
|
const Decl *D = InitLoc->getDecl();
|
|
|
|
// Preconditions.
|
|
// FIXME: It would be nice if we had a more general mechanism to add
|
|
// such preconditions. Some day.
|
|
do {
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
|
|
// Precondition: the first argument of 'main' is an integer guaranteed
|
|
// to be > 0.
|
|
const IdentifierInfo *II = FD->getIdentifier();
|
|
if (!II || !(II->getName() == "main" && FD->getNumParams() > 0))
|
|
break;
|
|
|
|
const ParmVarDecl *PD = FD->getParamDecl(0);
|
|
QualType T = PD->getType();
|
|
const auto *BT = dyn_cast<BuiltinType>(T);
|
|
if (!BT || !BT->isInteger())
|
|
break;
|
|
|
|
const MemRegion *R = state->getRegion(PD, InitLoc);
|
|
if (!R)
|
|
break;
|
|
|
|
SVal V = state->getSVal(loc::MemRegionVal(R));
|
|
SVal Constraint_untested = evalBinOp(state, BO_GT, V,
|
|
svalBuilder.makeZeroVal(T),
|
|
svalBuilder.getConditionType());
|
|
|
|
std::optional<DefinedOrUnknownSVal> Constraint =
|
|
Constraint_untested.getAs<DefinedOrUnknownSVal>();
|
|
|
|
if (!Constraint)
|
|
break;
|
|
|
|
if (ProgramStateRef newState = state->assume(*Constraint, true))
|
|
state = newState;
|
|
}
|
|
break;
|
|
}
|
|
while (false);
|
|
|
|
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
|
|
// Precondition: 'self' is always non-null upon entry to an Objective-C
|
|
// method.
|
|
const ImplicitParamDecl *SelfD = MD->getSelfDecl();
|
|
const MemRegion *R = state->getRegion(SelfD, InitLoc);
|
|
SVal V = state->getSVal(loc::MemRegionVal(R));
|
|
|
|
if (std::optional<Loc> LV = V.getAs<Loc>()) {
|
|
// Assume that the pointer value in 'self' is non-null.
|
|
state = state->assume(*LV, true);
|
|
assert(state && "'self' cannot be null");
|
|
}
|
|
}
|
|
|
|
if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
|
|
if (MD->isImplicitObjectMemberFunction()) {
|
|
// Precondition: 'this' is always non-null upon entry to the
|
|
// top-level function. This is our starting assumption for
|
|
// analyzing an "open" program.
|
|
const StackFrameContext *SFC = InitLoc->getStackFrame();
|
|
if (SFC->getParent() == nullptr) {
|
|
loc::MemRegionVal L = svalBuilder.getCXXThis(MD, SFC);
|
|
SVal V = state->getSVal(L);
|
|
if (std::optional<Loc> LV = V.getAs<Loc>()) {
|
|
state = state->assume(*LV, true);
|
|
assert(state && "'this' cannot be null");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
ProgramStateRef ExprEngine::createTemporaryRegionIfNeeded(
|
|
ProgramStateRef State, const LocationContext *LC,
|
|
const Expr *InitWithAdjustments, const Expr *Result,
|
|
const SubRegion **OutRegionWithAdjustments) {
|
|
// FIXME: This function is a hack that works around the quirky AST
|
|
// we're often having with respect to C++ temporaries. If only we modelled
|
|
// the actual execution order of statements properly in the CFG,
|
|
// all the hassle with adjustments would not be necessary,
|
|
// and perhaps the whole function would be removed.
|
|
SVal InitValWithAdjustments = State->getSVal(InitWithAdjustments, LC);
|
|
if (!Result) {
|
|
// If we don't have an explicit result expression, we're in "if needed"
|
|
// mode. Only create a region if the current value is a NonLoc.
|
|
if (!isa<NonLoc>(InitValWithAdjustments)) {
|
|
if (OutRegionWithAdjustments)
|
|
*OutRegionWithAdjustments = nullptr;
|
|
return State;
|
|
}
|
|
Result = InitWithAdjustments;
|
|
} else {
|
|
// We need to create a region no matter what. Make sure we don't try to
|
|
// stuff a Loc into a non-pointer temporary region.
|
|
assert(!isa<Loc>(InitValWithAdjustments) ||
|
|
Loc::isLocType(Result->getType()) ||
|
|
Result->getType()->isMemberPointerType());
|
|
}
|
|
|
|
ProgramStateManager &StateMgr = State->getStateManager();
|
|
MemRegionManager &MRMgr = StateMgr.getRegionManager();
|
|
StoreManager &StoreMgr = StateMgr.getStoreManager();
|
|
|
|
// MaterializeTemporaryExpr may appear out of place, after a few field and
|
|
// base-class accesses have been made to the object, even though semantically
|
|
// it is the whole object that gets materialized and lifetime-extended.
|
|
//
|
|
// For example:
|
|
//
|
|
// `-MaterializeTemporaryExpr
|
|
// `-MemberExpr
|
|
// `-CXXTemporaryObjectExpr
|
|
//
|
|
// instead of the more natural
|
|
//
|
|
// `-MemberExpr
|
|
// `-MaterializeTemporaryExpr
|
|
// `-CXXTemporaryObjectExpr
|
|
//
|
|
// Use the usual methods for obtaining the expression of the base object,
|
|
// and record the adjustments that we need to make to obtain the sub-object
|
|
// that the whole expression 'Ex' refers to. This trick is usual,
|
|
// in the sense that CodeGen takes a similar route.
|
|
|
|
SmallVector<const Expr *, 2> CommaLHSs;
|
|
SmallVector<SubobjectAdjustment, 2> Adjustments;
|
|
|
|
const Expr *Init = InitWithAdjustments->skipRValueSubobjectAdjustments(
|
|
CommaLHSs, Adjustments);
|
|
|
|
// Take the region for Init, i.e. for the whole object. If we do not remember
|
|
// the region in which the object originally was constructed, come up with
|
|
// a new temporary region out of thin air and copy the contents of the object
|
|
// (which are currently present in the Environment, because Init is an rvalue)
|
|
// into that region. This is not correct, but it is better than nothing.
|
|
const TypedValueRegion *TR = nullptr;
|
|
if (const auto *MT = dyn_cast<MaterializeTemporaryExpr>(Result)) {
|
|
if (std::optional<SVal> V = getObjectUnderConstruction(State, MT, LC)) {
|
|
State = finishObjectConstruction(State, MT, LC);
|
|
State = State->BindExpr(Result, LC, *V);
|
|
return State;
|
|
} else if (const ValueDecl *VD = MT->getExtendingDecl()) {
|
|
StorageDuration SD = MT->getStorageDuration();
|
|
assert(SD != SD_FullExpression);
|
|
// If this object is bound to a reference with static storage duration, we
|
|
// put it in a different region to prevent "address leakage" warnings.
|
|
if (SD == SD_Static || SD == SD_Thread) {
|
|
TR = MRMgr.getCXXStaticLifetimeExtendedObjectRegion(Init, VD);
|
|
} else {
|
|
TR = MRMgr.getCXXLifetimeExtendedObjectRegion(Init, VD, LC);
|
|
}
|
|
} else {
|
|
assert(MT->getStorageDuration() == SD_FullExpression);
|
|
TR = MRMgr.getCXXTempObjectRegion(Init, LC);
|
|
}
|
|
} else {
|
|
TR = MRMgr.getCXXTempObjectRegion(Init, LC);
|
|
}
|
|
|
|
SVal Reg = loc::MemRegionVal(TR);
|
|
SVal BaseReg = Reg;
|
|
|
|
// Make the necessary adjustments to obtain the sub-object.
|
|
for (const SubobjectAdjustment &Adj : llvm::reverse(Adjustments)) {
|
|
switch (Adj.Kind) {
|
|
case SubobjectAdjustment::DerivedToBaseAdjustment:
|
|
Reg = StoreMgr.evalDerivedToBase(Reg, Adj.DerivedToBase.BasePath);
|
|
break;
|
|
case SubobjectAdjustment::FieldAdjustment:
|
|
Reg = StoreMgr.getLValueField(Adj.Field, Reg);
|
|
break;
|
|
case SubobjectAdjustment::MemberPointerAdjustment:
|
|
// FIXME: Unimplemented.
|
|
State = State->invalidateRegions(Reg, getCFGElementRef(),
|
|
currBldrCtx->blockCount(), LC, true,
|
|
nullptr, nullptr, nullptr);
|
|
return State;
|
|
}
|
|
}
|
|
|
|
// What remains is to copy the value of the object to the new region.
|
|
// FIXME: In other words, what we should always do is copy value of the
|
|
// Init expression (which corresponds to the bigger object) to the whole
|
|
// temporary region TR. However, this value is often no longer present
|
|
// in the Environment. If it has disappeared, we instead invalidate TR.
|
|
// Still, what we can do is assign the value of expression Ex (which
|
|
// corresponds to the sub-object) to the TR's sub-region Reg. At least,
|
|
// values inside Reg would be correct.
|
|
SVal InitVal = State->getSVal(Init, LC);
|
|
if (InitVal.isUnknown()) {
|
|
InitVal = getSValBuilder().conjureSymbolVal(
|
|
getCFGElementRef(), LC, Init->getType(), currBldrCtx->blockCount());
|
|
State = State->bindLoc(BaseReg.castAs<Loc>(), InitVal, LC, false);
|
|
|
|
// Then we'd need to take the value that certainly exists and bind it
|
|
// over.
|
|
if (InitValWithAdjustments.isUnknown()) {
|
|
// Try to recover some path sensitivity in case we couldn't
|
|
// compute the value.
|
|
InitValWithAdjustments = getSValBuilder().conjureSymbolVal(
|
|
getCFGElementRef(), LC, InitWithAdjustments->getType(),
|
|
currBldrCtx->blockCount());
|
|
}
|
|
State =
|
|
State->bindLoc(Reg.castAs<Loc>(), InitValWithAdjustments, LC, false);
|
|
} else {
|
|
State = State->bindLoc(BaseReg.castAs<Loc>(), InitVal, LC, false);
|
|
}
|
|
|
|
// The result expression would now point to the correct sub-region of the
|
|
// newly created temporary region. Do this last in order to getSVal of Init
|
|
// correctly in case (Result == Init).
|
|
if (Result->isGLValue()) {
|
|
State = State->BindExpr(Result, LC, Reg);
|
|
} else {
|
|
State = State->BindExpr(Result, LC, InitValWithAdjustments);
|
|
}
|
|
|
|
// Notify checkers once for two bindLoc()s.
|
|
State = processRegionChange(State, TR, LC);
|
|
|
|
if (OutRegionWithAdjustments)
|
|
*OutRegionWithAdjustments = cast<SubRegion>(Reg.getAsRegion());
|
|
return State;
|
|
}
|
|
|
|
ProgramStateRef ExprEngine::setIndexOfElementToConstruct(
|
|
ProgramStateRef State, const CXXConstructExpr *E,
|
|
const LocationContext *LCtx, unsigned Idx) {
|
|
auto Key = std::make_pair(E, LCtx->getStackFrame());
|
|
|
|
assert(!State->contains<IndexOfElementToConstruct>(Key) || Idx > 0);
|
|
|
|
return State->set<IndexOfElementToConstruct>(Key, Idx);
|
|
}
|
|
|
|
std::optional<unsigned>
|
|
ExprEngine::getPendingInitLoop(ProgramStateRef State, const CXXConstructExpr *E,
|
|
const LocationContext *LCtx) {
|
|
const unsigned *V = State->get<PendingInitLoop>({E, LCtx->getStackFrame()});
|
|
return V ? std::make_optional(*V) : std::nullopt;
|
|
}
|
|
|
|
ProgramStateRef ExprEngine::removePendingInitLoop(ProgramStateRef State,
|
|
const CXXConstructExpr *E,
|
|
const LocationContext *LCtx) {
|
|
auto Key = std::make_pair(E, LCtx->getStackFrame());
|
|
|
|
assert(E && State->contains<PendingInitLoop>(Key));
|
|
return State->remove<PendingInitLoop>(Key);
|
|
}
|
|
|
|
ProgramStateRef ExprEngine::setPendingInitLoop(ProgramStateRef State,
|
|
const CXXConstructExpr *E,
|
|
const LocationContext *LCtx,
|
|
unsigned Size) {
|
|
auto Key = std::make_pair(E, LCtx->getStackFrame());
|
|
|
|
assert(!State->contains<PendingInitLoop>(Key) && Size > 0);
|
|
|
|
return State->set<PendingInitLoop>(Key, Size);
|
|
}
|
|
|
|
std::optional<unsigned>
|
|
ExprEngine::getIndexOfElementToConstruct(ProgramStateRef State,
|
|
const CXXConstructExpr *E,
|
|
const LocationContext *LCtx) {
|
|
const unsigned *V =
|
|
State->get<IndexOfElementToConstruct>({E, LCtx->getStackFrame()});
|
|
return V ? std::make_optional(*V) : std::nullopt;
|
|
}
|
|
|
|
ProgramStateRef
|
|
ExprEngine::removeIndexOfElementToConstruct(ProgramStateRef State,
|
|
const CXXConstructExpr *E,
|
|
const LocationContext *LCtx) {
|
|
auto Key = std::make_pair(E, LCtx->getStackFrame());
|
|
|
|
assert(E && State->contains<IndexOfElementToConstruct>(Key));
|
|
return State->remove<IndexOfElementToConstruct>(Key);
|
|
}
|
|
|
|
std::optional<unsigned>
|
|
ExprEngine::getPendingArrayDestruction(ProgramStateRef State,
|
|
const LocationContext *LCtx) {
|
|
assert(LCtx && "LocationContext shouldn't be null!");
|
|
|
|
const unsigned *V =
|
|
State->get<PendingArrayDestruction>(LCtx->getStackFrame());
|
|
return V ? std::make_optional(*V) : std::nullopt;
|
|
}
|
|
|
|
ProgramStateRef ExprEngine::setPendingArrayDestruction(
|
|
ProgramStateRef State, const LocationContext *LCtx, unsigned Idx) {
|
|
assert(LCtx && "LocationContext shouldn't be null!");
|
|
|
|
auto Key = LCtx->getStackFrame();
|
|
|
|
return State->set<PendingArrayDestruction>(Key, Idx);
|
|
}
|
|
|
|
ProgramStateRef
|
|
ExprEngine::removePendingArrayDestruction(ProgramStateRef State,
|
|
const LocationContext *LCtx) {
|
|
assert(LCtx && "LocationContext shouldn't be null!");
|
|
|
|
auto Key = LCtx->getStackFrame();
|
|
|
|
assert(LCtx && State->contains<PendingArrayDestruction>(Key));
|
|
return State->remove<PendingArrayDestruction>(Key);
|
|
}
|
|
|
|
ProgramStateRef
|
|
ExprEngine::addObjectUnderConstruction(ProgramStateRef State,
|
|
const ConstructionContextItem &Item,
|
|
const LocationContext *LC, SVal V) {
|
|
ConstructedObjectKey Key(Item, LC->getStackFrame());
|
|
|
|
const Expr *Init = nullptr;
|
|
|
|
if (auto DS = dyn_cast_or_null<DeclStmt>(Item.getStmtOrNull())) {
|
|
if (auto VD = dyn_cast_or_null<VarDecl>(DS->getSingleDecl()))
|
|
Init = VD->getInit();
|
|
}
|
|
|
|
if (auto LE = dyn_cast_or_null<LambdaExpr>(Item.getStmtOrNull()))
|
|
Init = *(LE->capture_init_begin() + Item.getIndex());
|
|
|
|
if (!Init && !Item.getStmtOrNull())
|
|
Init = Item.getCXXCtorInitializer()->getInit();
|
|
|
|
// In an ArrayInitLoopExpr the real initializer is returned by
|
|
// getSubExpr(). Note that AILEs can be nested in case of
|
|
// multidimesnional arrays.
|
|
if (const auto *AILE = dyn_cast_or_null<ArrayInitLoopExpr>(Init))
|
|
Init = extractElementInitializerFromNestedAILE(AILE);
|
|
|
|
// FIXME: Currently the state might already contain the marker due to
|
|
// incorrect handling of temporaries bound to default parameters.
|
|
// The state will already contain the marker if we construct elements
|
|
// in an array, as we visit the same statement multiple times before
|
|
// the array declaration. The marker is removed when we exit the
|
|
// constructor call.
|
|
assert((!State->get<ObjectsUnderConstruction>(Key) ||
|
|
Key.getItem().getKind() ==
|
|
ConstructionContextItem::TemporaryDestructorKind ||
|
|
State->contains<IndexOfElementToConstruct>(
|
|
{dyn_cast_or_null<CXXConstructExpr>(Init), LC})) &&
|
|
"The object is already marked as `UnderConstruction`, when it's not "
|
|
"supposed to!");
|
|
return State->set<ObjectsUnderConstruction>(Key, V);
|
|
}
|
|
|
|
std::optional<SVal>
|
|
ExprEngine::getObjectUnderConstruction(ProgramStateRef State,
|
|
const ConstructionContextItem &Item,
|
|
const LocationContext *LC) {
|
|
ConstructedObjectKey Key(Item, LC->getStackFrame());
|
|
const SVal *V = State->get<ObjectsUnderConstruction>(Key);
|
|
return V ? std::make_optional(*V) : std::nullopt;
|
|
}
|
|
|
|
ProgramStateRef
|
|
ExprEngine::finishObjectConstruction(ProgramStateRef State,
|
|
const ConstructionContextItem &Item,
|
|
const LocationContext *LC) {
|
|
ConstructedObjectKey Key(Item, LC->getStackFrame());
|
|
assert(State->contains<ObjectsUnderConstruction>(Key));
|
|
return State->remove<ObjectsUnderConstruction>(Key);
|
|
}
|
|
|
|
ProgramStateRef ExprEngine::elideDestructor(ProgramStateRef State,
|
|
const CXXBindTemporaryExpr *BTE,
|
|
const LocationContext *LC) {
|
|
ConstructedObjectKey Key({BTE, /*IsElided=*/true}, LC);
|
|
// FIXME: Currently the state might already contain the marker due to
|
|
// incorrect handling of temporaries bound to default parameters.
|
|
return State->set<ObjectsUnderConstruction>(Key, UnknownVal());
|
|
}
|
|
|
|
ProgramStateRef
|
|
ExprEngine::cleanupElidedDestructor(ProgramStateRef State,
|
|
const CXXBindTemporaryExpr *BTE,
|
|
const LocationContext *LC) {
|
|
ConstructedObjectKey Key({BTE, /*IsElided=*/true}, LC);
|
|
assert(State->contains<ObjectsUnderConstruction>(Key));
|
|
return State->remove<ObjectsUnderConstruction>(Key);
|
|
}
|
|
|
|
bool ExprEngine::isDestructorElided(ProgramStateRef State,
|
|
const CXXBindTemporaryExpr *BTE,
|
|
const LocationContext *LC) {
|
|
ConstructedObjectKey Key({BTE, /*IsElided=*/true}, LC);
|
|
return State->contains<ObjectsUnderConstruction>(Key);
|
|
}
|
|
|
|
bool ExprEngine::areAllObjectsFullyConstructed(ProgramStateRef State,
|
|
const LocationContext *FromLC,
|
|
const LocationContext *ToLC) {
|
|
const LocationContext *LC = FromLC;
|
|
while (LC != ToLC) {
|
|
assert(LC && "ToLC must be a parent of FromLC!");
|
|
for (auto I : State->get<ObjectsUnderConstruction>())
|
|
if (I.first.getLocationContext() == LC)
|
|
return false;
|
|
|
|
LC = LC->getParent();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top-level transfer function logic (Dispatcher).
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// evalAssume - Called by ConstraintManager. Used to call checker-specific
|
|
/// logic for handling assumptions on symbolic values.
|
|
ProgramStateRef ExprEngine::processAssume(ProgramStateRef state,
|
|
SVal cond, bool assumption) {
|
|
return getCheckerManager().runCheckersForEvalAssume(state, cond, assumption);
|
|
}
|
|
|
|
ProgramStateRef
|
|
ExprEngine::processRegionChanges(ProgramStateRef state,
|
|
const InvalidatedSymbols *invalidated,
|
|
ArrayRef<const MemRegion *> Explicits,
|
|
ArrayRef<const MemRegion *> Regions,
|
|
const LocationContext *LCtx,
|
|
const CallEvent *Call) {
|
|
return getCheckerManager().runCheckersForRegionChanges(state, invalidated,
|
|
Explicits, Regions,
|
|
LCtx, Call);
|
|
}
|
|
|
|
static void
|
|
printObjectsUnderConstructionJson(raw_ostream &Out, ProgramStateRef State,
|
|
const char *NL, const LocationContext *LCtx,
|
|
unsigned int Space = 0, bool IsDot = false) {
|
|
PrintingPolicy PP =
|
|
LCtx->getAnalysisDeclContext()->getASTContext().getPrintingPolicy();
|
|
|
|
++Space;
|
|
bool HasItem = false;
|
|
|
|
// Store the last key.
|
|
const ConstructedObjectKey *LastKey = nullptr;
|
|
for (const auto &I : State->get<ObjectsUnderConstruction>()) {
|
|
const ConstructedObjectKey &Key = I.first;
|
|
if (Key.getLocationContext() != LCtx)
|
|
continue;
|
|
|
|
if (!HasItem) {
|
|
Out << '[' << NL;
|
|
HasItem = true;
|
|
}
|
|
|
|
LastKey = &Key;
|
|
}
|
|
|
|
for (const auto &I : State->get<ObjectsUnderConstruction>()) {
|
|
const ConstructedObjectKey &Key = I.first;
|
|
SVal Value = I.second;
|
|
if (Key.getLocationContext() != LCtx)
|
|
continue;
|
|
|
|
Indent(Out, Space, IsDot) << "{ ";
|
|
Key.printJson(Out, nullptr, PP);
|
|
Out << ", \"value\": \"" << Value << "\" }";
|
|
|
|
if (&Key != LastKey)
|
|
Out << ',';
|
|
Out << NL;
|
|
}
|
|
|
|
if (HasItem)
|
|
Indent(Out, --Space, IsDot) << ']'; // End of "location_context".
|
|
else {
|
|
Out << "null ";
|
|
}
|
|
}
|
|
|
|
static void printIndicesOfElementsToConstructJson(
|
|
raw_ostream &Out, ProgramStateRef State, const char *NL,
|
|
const LocationContext *LCtx, unsigned int Space = 0, bool IsDot = false) {
|
|
using KeyT = std::pair<const Expr *, const LocationContext *>;
|
|
|
|
const auto &Context = LCtx->getAnalysisDeclContext()->getASTContext();
|
|
PrintingPolicy PP = Context.getPrintingPolicy();
|
|
|
|
++Space;
|
|
bool HasItem = false;
|
|
|
|
// Store the last key.
|
|
KeyT LastKey;
|
|
for (const auto &I : State->get<IndexOfElementToConstruct>()) {
|
|
const KeyT &Key = I.first;
|
|
if (Key.second != LCtx)
|
|
continue;
|
|
|
|
if (!HasItem) {
|
|
Out << '[' << NL;
|
|
HasItem = true;
|
|
}
|
|
|
|
LastKey = Key;
|
|
}
|
|
|
|
for (const auto &I : State->get<IndexOfElementToConstruct>()) {
|
|
const KeyT &Key = I.first;
|
|
unsigned Value = I.second;
|
|
if (Key.second != LCtx)
|
|
continue;
|
|
|
|
Indent(Out, Space, IsDot) << "{ ";
|
|
|
|
// Expr
|
|
const Expr *E = Key.first;
|
|
Out << "\"stmt_id\": " << E->getID(Context);
|
|
|
|
// Kind
|
|
Out << ", \"kind\": null";
|
|
|
|
// Pretty-print
|
|
Out << ", \"pretty\": ";
|
|
Out << "\"" << E->getStmtClassName() << ' '
|
|
<< E->getSourceRange().printToString(Context.getSourceManager()) << " '"
|
|
<< QualType::getAsString(E->getType().split(), PP);
|
|
Out << "'\"";
|
|
|
|
Out << ", \"value\": \"Current index: " << Value - 1 << "\" }";
|
|
|
|
if (Key != LastKey)
|
|
Out << ',';
|
|
Out << NL;
|
|
}
|
|
|
|
if (HasItem)
|
|
Indent(Out, --Space, IsDot) << ']'; // End of "location_context".
|
|
else {
|
|
Out << "null ";
|
|
}
|
|
}
|
|
|
|
static void printPendingInitLoopJson(raw_ostream &Out, ProgramStateRef State,
|
|
const char *NL,
|
|
const LocationContext *LCtx,
|
|
unsigned int Space = 0,
|
|
bool IsDot = false) {
|
|
using KeyT = std::pair<const CXXConstructExpr *, const LocationContext *>;
|
|
|
|
const auto &Context = LCtx->getAnalysisDeclContext()->getASTContext();
|
|
PrintingPolicy PP = Context.getPrintingPolicy();
|
|
|
|
++Space;
|
|
bool HasItem = false;
|
|
|
|
// Store the last key.
|
|
KeyT LastKey;
|
|
for (const auto &I : State->get<PendingInitLoop>()) {
|
|
const KeyT &Key = I.first;
|
|
if (Key.second != LCtx)
|
|
continue;
|
|
|
|
if (!HasItem) {
|
|
Out << '[' << NL;
|
|
HasItem = true;
|
|
}
|
|
|
|
LastKey = Key;
|
|
}
|
|
|
|
for (const auto &I : State->get<PendingInitLoop>()) {
|
|
const KeyT &Key = I.first;
|
|
unsigned Value = I.second;
|
|
if (Key.second != LCtx)
|
|
continue;
|
|
|
|
Indent(Out, Space, IsDot) << "{ ";
|
|
|
|
const CXXConstructExpr *E = Key.first;
|
|
Out << "\"stmt_id\": " << E->getID(Context);
|
|
|
|
Out << ", \"kind\": null";
|
|
Out << ", \"pretty\": ";
|
|
Out << '\"' << E->getStmtClassName() << ' '
|
|
<< E->getSourceRange().printToString(Context.getSourceManager()) << " '"
|
|
<< QualType::getAsString(E->getType().split(), PP);
|
|
Out << "'\"";
|
|
|
|
Out << ", \"value\": \"Flattened size: " << Value << "\"}";
|
|
|
|
if (Key != LastKey)
|
|
Out << ',';
|
|
Out << NL;
|
|
}
|
|
|
|
if (HasItem)
|
|
Indent(Out, --Space, IsDot) << ']'; // End of "location_context".
|
|
else {
|
|
Out << "null ";
|
|
}
|
|
}
|
|
|
|
static void
|
|
printPendingArrayDestructionsJson(raw_ostream &Out, ProgramStateRef State,
|
|
const char *NL, const LocationContext *LCtx,
|
|
unsigned int Space = 0, bool IsDot = false) {
|
|
using KeyT = const LocationContext *;
|
|
|
|
++Space;
|
|
bool HasItem = false;
|
|
|
|
// Store the last key.
|
|
KeyT LastKey = nullptr;
|
|
for (const auto &I : State->get<PendingArrayDestruction>()) {
|
|
const KeyT &Key = I.first;
|
|
if (Key != LCtx)
|
|
continue;
|
|
|
|
if (!HasItem) {
|
|
Out << '[' << NL;
|
|
HasItem = true;
|
|
}
|
|
|
|
LastKey = Key;
|
|
}
|
|
|
|
for (const auto &I : State->get<PendingArrayDestruction>()) {
|
|
const KeyT &Key = I.first;
|
|
if (Key != LCtx)
|
|
continue;
|
|
|
|
Indent(Out, Space, IsDot) << "{ ";
|
|
|
|
Out << "\"stmt_id\": null";
|
|
Out << ", \"kind\": null";
|
|
Out << ", \"pretty\": \"Current index: \"";
|
|
Out << ", \"value\": \"" << I.second << "\" }";
|
|
|
|
if (Key != LastKey)
|
|
Out << ',';
|
|
Out << NL;
|
|
}
|
|
|
|
if (HasItem)
|
|
Indent(Out, --Space, IsDot) << ']'; // End of "location_context".
|
|
else {
|
|
Out << "null ";
|
|
}
|
|
}
|
|
|
|
/// A helper function to generalize program state trait printing.
|
|
/// The function invokes Printer as 'Printer(Out, State, NL, LC, Space, IsDot,
|
|
/// std::forward<Args>(args)...)'. \n One possible type for Printer is
|
|
/// 'void()(raw_ostream &, ProgramStateRef, const char *, const LocationContext
|
|
/// *, unsigned int, bool, ...)' \n \param Trait The state trait to be printed.
|
|
/// \param Printer A void function that prints Trait.
|
|
/// \param Args An additional parameter pack that is passed to Print upon
|
|
/// invocation.
|
|
template <typename Trait, typename Printer, typename... Args>
|
|
static void printStateTraitWithLocationContextJson(
|
|
raw_ostream &Out, ProgramStateRef State, const LocationContext *LCtx,
|
|
const char *NL, unsigned int Space, bool IsDot,
|
|
const char *jsonPropertyName, Printer printer, Args &&...args) {
|
|
|
|
using RequiredType =
|
|
void (*)(raw_ostream &, ProgramStateRef, const char *,
|
|
const LocationContext *, unsigned int, bool, Args &&...);
|
|
|
|
// Try to do as much compile time checking as possible.
|
|
// FIXME: check for invocable instead of function?
|
|
static_assert(std::is_function_v<std::remove_pointer_t<Printer>>,
|
|
"Printer is not a function!");
|
|
static_assert(std::is_convertible_v<Printer, RequiredType>,
|
|
"Printer doesn't have the required type!");
|
|
|
|
if (LCtx && !State->get<Trait>().isEmpty()) {
|
|
Indent(Out, Space, IsDot) << '\"' << jsonPropertyName << "\": ";
|
|
++Space;
|
|
Out << '[' << NL;
|
|
LCtx->printJson(Out, NL, Space, IsDot, [&](const LocationContext *LC) {
|
|
printer(Out, State, NL, LC, Space, IsDot, std::forward<Args>(args)...);
|
|
});
|
|
|
|
--Space;
|
|
Indent(Out, Space, IsDot) << "]," << NL; // End of "jsonPropertyName".
|
|
}
|
|
}
|
|
|
|
void ExprEngine::printJson(raw_ostream &Out, ProgramStateRef State,
|
|
const LocationContext *LCtx, const char *NL,
|
|
unsigned int Space, bool IsDot) const {
|
|
|
|
printStateTraitWithLocationContextJson<ObjectsUnderConstruction>(
|
|
Out, State, LCtx, NL, Space, IsDot, "constructing_objects",
|
|
printObjectsUnderConstructionJson);
|
|
printStateTraitWithLocationContextJson<IndexOfElementToConstruct>(
|
|
Out, State, LCtx, NL, Space, IsDot, "index_of_element",
|
|
printIndicesOfElementsToConstructJson);
|
|
printStateTraitWithLocationContextJson<PendingInitLoop>(
|
|
Out, State, LCtx, NL, Space, IsDot, "pending_init_loops",
|
|
printPendingInitLoopJson);
|
|
printStateTraitWithLocationContextJson<PendingArrayDestruction>(
|
|
Out, State, LCtx, NL, Space, IsDot, "pending_destructors",
|
|
printPendingArrayDestructionsJson);
|
|
|
|
getCheckerManager().runCheckersForPrintStateJson(Out, State, NL, Space,
|
|
IsDot);
|
|
}
|
|
|
|
void ExprEngine::processEndWorklist() {
|
|
// This prints the name of the top-level function if we crash.
|
|
PrettyStackTraceLocationContext CrashInfo(getRootLocationContext());
|
|
getCheckerManager().runCheckersForEndAnalysis(G, BR, *this);
|
|
}
|
|
|
|
void ExprEngine::processCFGElement(const CFGElement E, ExplodedNode *Pred,
|
|
unsigned StmtIdx, NodeBuilderContext *Ctx) {
|
|
PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
|
|
currStmtIdx = StmtIdx;
|
|
currBldrCtx = Ctx;
|
|
|
|
switch (E.getKind()) {
|
|
case CFGElement::Statement:
|
|
case CFGElement::Constructor:
|
|
case CFGElement::CXXRecordTypedCall:
|
|
ProcessStmt(E.castAs<CFGStmt>().getStmt(), Pred);
|
|
return;
|
|
case CFGElement::Initializer:
|
|
ProcessInitializer(E.castAs<CFGInitializer>(), Pred);
|
|
return;
|
|
case CFGElement::NewAllocator:
|
|
ProcessNewAllocator(E.castAs<CFGNewAllocator>().getAllocatorExpr(),
|
|
Pred);
|
|
return;
|
|
case CFGElement::AutomaticObjectDtor:
|
|
case CFGElement::DeleteDtor:
|
|
case CFGElement::BaseDtor:
|
|
case CFGElement::MemberDtor:
|
|
case CFGElement::TemporaryDtor:
|
|
ProcessImplicitDtor(E.castAs<CFGImplicitDtor>(), Pred);
|
|
return;
|
|
case CFGElement::LoopExit:
|
|
ProcessLoopExit(E.castAs<CFGLoopExit>().getLoopStmt(), Pred);
|
|
return;
|
|
case CFGElement::LifetimeEnds:
|
|
case CFGElement::CleanupFunction:
|
|
case CFGElement::ScopeBegin:
|
|
case CFGElement::ScopeEnd:
|
|
return;
|
|
}
|
|
}
|
|
|
|
static bool shouldRemoveDeadBindings(AnalysisManager &AMgr,
|
|
const Stmt *S,
|
|
const ExplodedNode *Pred,
|
|
const LocationContext *LC) {
|
|
// Are we never purging state values?
|
|
if (AMgr.options.AnalysisPurgeOpt == PurgeNone)
|
|
return false;
|
|
|
|
// Is this the beginning of a basic block?
|
|
if (Pred->getLocation().getAs<BlockEntrance>())
|
|
return true;
|
|
|
|
// Is this on a non-expression?
|
|
if (!isa<Expr>(S))
|
|
return true;
|
|
|
|
// Run before processing a call.
|
|
if (CallEvent::isCallStmt(S))
|
|
return true;
|
|
|
|
// Is this an expression that is consumed by another expression? If so,
|
|
// postpone cleaning out the state.
|
|
ParentMap &PM = LC->getAnalysisDeclContext()->getParentMap();
|
|
return !PM.isConsumedExpr(cast<Expr>(S));
|
|
}
|
|
|
|
void ExprEngine::removeDead(ExplodedNode *Pred, ExplodedNodeSet &Out,
|
|
const Stmt *ReferenceStmt,
|
|
const LocationContext *LC,
|
|
const Stmt *DiagnosticStmt,
|
|
ProgramPoint::Kind K) {
|
|
llvm::TimeTraceScope TimeScope("ExprEngine::removeDead");
|
|
assert((K == ProgramPoint::PreStmtPurgeDeadSymbolsKind ||
|
|
ReferenceStmt == nullptr || isa<ReturnStmt>(ReferenceStmt))
|
|
&& "PostStmt is not generally supported by the SymbolReaper yet");
|
|
assert(LC && "Must pass the current (or expiring) LocationContext");
|
|
|
|
if (!DiagnosticStmt) {
|
|
DiagnosticStmt = ReferenceStmt;
|
|
assert(DiagnosticStmt && "Required for clearing a LocationContext");
|
|
}
|
|
|
|
NumRemoveDeadBindings++;
|
|
ProgramStateRef CleanedState = Pred->getState();
|
|
|
|
// LC is the location context being destroyed, but SymbolReaper wants a
|
|
// location context that is still live. (If this is the top-level stack
|
|
// frame, this will be null.)
|
|
if (!ReferenceStmt) {
|
|
assert(K == ProgramPoint::PostStmtPurgeDeadSymbolsKind &&
|
|
"Use PostStmtPurgeDeadSymbolsKind for clearing a LocationContext");
|
|
LC = LC->getParent();
|
|
}
|
|
|
|
const StackFrameContext *SFC = LC ? LC->getStackFrame() : nullptr;
|
|
SymbolReaper SymReaper(SFC, ReferenceStmt, SymMgr, getStoreManager());
|
|
|
|
for (auto I : CleanedState->get<ObjectsUnderConstruction>()) {
|
|
if (SymbolRef Sym = I.second.getAsSymbol())
|
|
SymReaper.markLive(Sym);
|
|
if (const MemRegion *MR = I.second.getAsRegion())
|
|
SymReaper.markLive(MR);
|
|
}
|
|
|
|
getCheckerManager().runCheckersForLiveSymbols(CleanedState, SymReaper);
|
|
|
|
// Create a state in which dead bindings are removed from the environment
|
|
// and the store. TODO: The function should just return new env and store,
|
|
// not a new state.
|
|
CleanedState = StateMgr.removeDeadBindingsFromEnvironmentAndStore(
|
|
CleanedState, SFC, SymReaper);
|
|
|
|
// Process any special transfer function for dead symbols.
|
|
// Call checkers with the non-cleaned state so that they could query the
|
|
// values of the soon to be dead symbols.
|
|
ExplodedNodeSet CheckedSet;
|
|
getCheckerManager().runCheckersForDeadSymbols(CheckedSet, Pred, SymReaper,
|
|
DiagnosticStmt, *this, K);
|
|
|
|
// For each node in CheckedSet, generate CleanedNodes that have the
|
|
// environment, the store, and the constraints cleaned up but have the
|
|
// user-supplied states as the predecessors.
|
|
StmtNodeBuilder Bldr(CheckedSet, Out, *currBldrCtx);
|
|
for (const auto I : CheckedSet) {
|
|
ProgramStateRef CheckerState = I->getState();
|
|
|
|
// The constraint manager has not been cleaned up yet, so clean up now.
|
|
CheckerState =
|
|
getConstraintManager().removeDeadBindings(CheckerState, SymReaper);
|
|
|
|
assert(StateMgr.haveEqualEnvironments(CheckerState, Pred->getState()) &&
|
|
"Checkers are not allowed to modify the Environment as a part of "
|
|
"checkDeadSymbols processing.");
|
|
assert(StateMgr.haveEqualStores(CheckerState, Pred->getState()) &&
|
|
"Checkers are not allowed to modify the Store as a part of "
|
|
"checkDeadSymbols processing.");
|
|
|
|
// Create a state based on CleanedState with CheckerState GDM and
|
|
// generate a transition to that state.
|
|
ProgramStateRef CleanedCheckerSt =
|
|
StateMgr.getPersistentStateWithGDM(CleanedState, CheckerState);
|
|
Bldr.generateNode(DiagnosticStmt, I, CleanedCheckerSt, cleanupNodeTag(), K);
|
|
}
|
|
}
|
|
|
|
const ProgramPointTag *ExprEngine::cleanupNodeTag() {
|
|
static SimpleProgramPointTag cleanupTag(TagProviderName, "Clean Node");
|
|
return &cleanupTag;
|
|
}
|
|
|
|
void ExprEngine::ProcessStmt(const Stmt *currStmt, ExplodedNode *Pred) {
|
|
// Reclaim any unnecessary nodes in the ExplodedGraph.
|
|
G.reclaimRecentlyAllocatedNodes();
|
|
|
|
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
|
|
currStmt->getBeginLoc(),
|
|
"Error evaluating statement");
|
|
|
|
// Remove dead bindings and symbols.
|
|
ExplodedNodeSet CleanedStates;
|
|
if (shouldRemoveDeadBindings(AMgr, currStmt, Pred,
|
|
Pred->getLocationContext())) {
|
|
removeDead(Pred, CleanedStates, currStmt,
|
|
Pred->getLocationContext());
|
|
} else
|
|
CleanedStates.Add(Pred);
|
|
|
|
// Visit the statement.
|
|
ExplodedNodeSet Dst;
|
|
for (const auto I : CleanedStates) {
|
|
ExplodedNodeSet DstI;
|
|
// Visit the statement.
|
|
Visit(currStmt, I, DstI);
|
|
Dst.insert(DstI);
|
|
}
|
|
|
|
// Enqueue the new nodes onto the work list.
|
|
Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
|
|
}
|
|
|
|
void ExprEngine::ProcessLoopExit(const Stmt* S, ExplodedNode *Pred) {
|
|
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
|
|
S->getBeginLoc(),
|
|
"Error evaluating end of the loop");
|
|
ExplodedNodeSet Dst;
|
|
Dst.Add(Pred);
|
|
NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
ProgramStateRef NewState = Pred->getState();
|
|
|
|
if(AMgr.options.ShouldUnrollLoops)
|
|
NewState = processLoopEnd(S, NewState);
|
|
|
|
LoopExit PP(S, Pred->getLocationContext());
|
|
Bldr.generateNode(PP, NewState, Pred);
|
|
// Enqueue the new nodes onto the work list.
|
|
Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
|
|
}
|
|
|
|
void ExprEngine::ProcessInitializer(const CFGInitializer CFGInit,
|
|
ExplodedNode *Pred) {
|
|
const CXXCtorInitializer *BMI = CFGInit.getInitializer();
|
|
const Expr *Init = BMI->getInit()->IgnoreImplicit();
|
|
const LocationContext *LC = Pred->getLocationContext();
|
|
|
|
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
|
|
BMI->getSourceLocation(),
|
|
"Error evaluating initializer");
|
|
|
|
// We don't clean up dead bindings here.
|
|
const auto *stackFrame = cast<StackFrameContext>(Pred->getLocationContext());
|
|
const auto *decl = cast<CXXConstructorDecl>(stackFrame->getDecl());
|
|
|
|
ProgramStateRef State = Pred->getState();
|
|
SVal thisVal = State->getSVal(svalBuilder.getCXXThis(decl, stackFrame));
|
|
|
|
ExplodedNodeSet Tmp;
|
|
SVal FieldLoc;
|
|
|
|
// Evaluate the initializer, if necessary
|
|
if (BMI->isAnyMemberInitializer()) {
|
|
// Constructors build the object directly in the field,
|
|
// but non-objects must be copied in from the initializer.
|
|
if (getObjectUnderConstruction(State, BMI, LC)) {
|
|
// The field was directly constructed, so there is no need to bind.
|
|
// But we still need to stop tracking the object under construction.
|
|
State = finishObjectConstruction(State, BMI, LC);
|
|
NodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
|
|
PostStore PS(Init, LC, /*Loc*/ nullptr, /*tag*/ nullptr);
|
|
Bldr.generateNode(PS, State, Pred);
|
|
} else {
|
|
const ValueDecl *Field;
|
|
if (BMI->isIndirectMemberInitializer()) {
|
|
Field = BMI->getIndirectMember();
|
|
FieldLoc = State->getLValue(BMI->getIndirectMember(), thisVal);
|
|
} else {
|
|
Field = BMI->getMember();
|
|
FieldLoc = State->getLValue(BMI->getMember(), thisVal);
|
|
}
|
|
|
|
SVal InitVal;
|
|
if (Init->getType()->isArrayType()) {
|
|
// Handle arrays of trivial type. We can represent this with a
|
|
// primitive load/copy from the base array region.
|
|
const ArraySubscriptExpr *ASE;
|
|
while ((ASE = dyn_cast<ArraySubscriptExpr>(Init)))
|
|
Init = ASE->getBase()->IgnoreImplicit();
|
|
|
|
InitVal = State->getSVal(Init, stackFrame);
|
|
|
|
// If we fail to get the value for some reason, use a symbolic value.
|
|
if (InitVal.isUnknownOrUndef()) {
|
|
SValBuilder &SVB = getSValBuilder();
|
|
InitVal =
|
|
SVB.conjureSymbolVal(getCFGElementRef(), stackFrame,
|
|
Field->getType(), currBldrCtx->blockCount());
|
|
}
|
|
} else {
|
|
InitVal = State->getSVal(BMI->getInit(), stackFrame);
|
|
}
|
|
|
|
PostInitializer PP(BMI, FieldLoc.getAsRegion(), stackFrame);
|
|
evalBind(Tmp, Init, Pred, FieldLoc, InitVal, /*isInit=*/true, &PP);
|
|
}
|
|
} else if (BMI->isBaseInitializer() && isa<InitListExpr>(Init)) {
|
|
// When the base class is initialized with an initialization list and the
|
|
// base class does not have a ctor, there will not be a CXXConstructExpr to
|
|
// initialize the base region. Hence, we need to make the bind for it.
|
|
SVal BaseLoc = getStoreManager().evalDerivedToBase(
|
|
thisVal, QualType(BMI->getBaseClass(), 0), BMI->isBaseVirtual());
|
|
SVal InitVal = State->getSVal(Init, stackFrame);
|
|
evalBind(Tmp, Init, Pred, BaseLoc, InitVal, /*isInit=*/true);
|
|
} else {
|
|
assert(BMI->isBaseInitializer() || BMI->isDelegatingInitializer());
|
|
Tmp.insert(Pred);
|
|
// We already did all the work when visiting the CXXConstructExpr.
|
|
}
|
|
|
|
// Construct PostInitializer nodes whether the state changed or not,
|
|
// so that the diagnostics don't get confused.
|
|
PostInitializer PP(BMI, FieldLoc.getAsRegion(), stackFrame);
|
|
ExplodedNodeSet Dst;
|
|
NodeBuilder Bldr(Tmp, Dst, *currBldrCtx);
|
|
for (const auto I : Tmp) {
|
|
ProgramStateRef State = I->getState();
|
|
Bldr.generateNode(PP, State, I);
|
|
}
|
|
|
|
// Enqueue the new nodes onto the work list.
|
|
Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
|
|
}
|
|
|
|
std::pair<ProgramStateRef, uint64_t>
|
|
ExprEngine::prepareStateForArrayDestruction(const ProgramStateRef State,
|
|
const MemRegion *Region,
|
|
const QualType &ElementTy,
|
|
const LocationContext *LCtx,
|
|
SVal *ElementCountVal) {
|
|
assert(Region != nullptr && "Not-null region expected");
|
|
|
|
QualType Ty = ElementTy.getDesugaredType(getContext());
|
|
while (const auto *NTy = dyn_cast<ArrayType>(Ty))
|
|
Ty = NTy->getElementType().getDesugaredType(getContext());
|
|
|
|
auto ElementCount = getDynamicElementCount(State, Region, svalBuilder, Ty);
|
|
|
|
if (ElementCountVal)
|
|
*ElementCountVal = ElementCount;
|
|
|
|
// Note: the destructors are called in reverse order.
|
|
unsigned Idx = 0;
|
|
if (auto OptionalIdx = getPendingArrayDestruction(State, LCtx)) {
|
|
Idx = *OptionalIdx;
|
|
} else {
|
|
// The element count is either unknown, or an SVal that's not an integer.
|
|
if (!ElementCount.isConstant())
|
|
return {State, 0};
|
|
|
|
Idx = ElementCount.getAsInteger()->getLimitedValue();
|
|
}
|
|
|
|
if (Idx == 0)
|
|
return {State, 0};
|
|
|
|
--Idx;
|
|
|
|
return {setPendingArrayDestruction(State, LCtx, Idx), Idx};
|
|
}
|
|
|
|
void ExprEngine::ProcessImplicitDtor(const CFGImplicitDtor D,
|
|
ExplodedNode *Pred) {
|
|
ExplodedNodeSet Dst;
|
|
switch (D.getKind()) {
|
|
case CFGElement::AutomaticObjectDtor:
|
|
ProcessAutomaticObjDtor(D.castAs<CFGAutomaticObjDtor>(), Pred, Dst);
|
|
break;
|
|
case CFGElement::BaseDtor:
|
|
ProcessBaseDtor(D.castAs<CFGBaseDtor>(), Pred, Dst);
|
|
break;
|
|
case CFGElement::MemberDtor:
|
|
ProcessMemberDtor(D.castAs<CFGMemberDtor>(), Pred, Dst);
|
|
break;
|
|
case CFGElement::TemporaryDtor:
|
|
ProcessTemporaryDtor(D.castAs<CFGTemporaryDtor>(), Pred, Dst);
|
|
break;
|
|
case CFGElement::DeleteDtor:
|
|
ProcessDeleteDtor(D.castAs<CFGDeleteDtor>(), Pred, Dst);
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unexpected dtor kind.");
|
|
}
|
|
|
|
// Enqueue the new nodes onto the work list.
|
|
Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
|
|
}
|
|
|
|
void ExprEngine::ProcessNewAllocator(const CXXNewExpr *NE,
|
|
ExplodedNode *Pred) {
|
|
ExplodedNodeSet Dst;
|
|
AnalysisManager &AMgr = getAnalysisManager();
|
|
AnalyzerOptions &Opts = AMgr.options;
|
|
// TODO: We're not evaluating allocators for all cases just yet as
|
|
// we're not handling the return value correctly, which causes false
|
|
// positives when the alpha.cplusplus.NewDeleteLeaks check is on.
|
|
if (Opts.MayInlineCXXAllocator)
|
|
VisitCXXNewAllocatorCall(NE, Pred, Dst);
|
|
else {
|
|
NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
PostImplicitCall PP(NE->getOperatorNew(), NE->getBeginLoc(), LCtx,
|
|
getCFGElementRef());
|
|
Bldr.generateNode(PP, Pred->getState(), Pred);
|
|
}
|
|
Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
|
|
}
|
|
|
|
void ExprEngine::ProcessAutomaticObjDtor(const CFGAutomaticObjDtor Dtor,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
const auto *DtorDecl = Dtor.getDestructorDecl(getContext());
|
|
const VarDecl *varDecl = Dtor.getVarDecl();
|
|
QualType varType = varDecl->getType();
|
|
|
|
ProgramStateRef state = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
|
|
SVal dest = state->getLValue(varDecl, LCtx);
|
|
const MemRegion *Region = dest.castAs<loc::MemRegionVal>().getRegion();
|
|
|
|
if (varType->isReferenceType()) {
|
|
const MemRegion *ValueRegion = state->getSVal(Region).getAsRegion();
|
|
if (!ValueRegion) {
|
|
// FIXME: This should not happen. The language guarantees a presence
|
|
// of a valid initializer here, so the reference shall not be undefined.
|
|
// It seems that we're calling destructors over variables that
|
|
// were not initialized yet.
|
|
return;
|
|
}
|
|
Region = ValueRegion->getBaseRegion();
|
|
varType = cast<TypedValueRegion>(Region)->getValueType();
|
|
}
|
|
|
|
unsigned Idx = 0;
|
|
if (isa<ArrayType>(varType)) {
|
|
SVal ElementCount;
|
|
std::tie(state, Idx) = prepareStateForArrayDestruction(
|
|
state, Region, varType, LCtx, &ElementCount);
|
|
|
|
if (ElementCount.isConstant()) {
|
|
uint64_t ArrayLength = ElementCount.getAsInteger()->getLimitedValue();
|
|
assert(ArrayLength &&
|
|
"An automatic dtor for a 0 length array shouldn't be triggered!");
|
|
|
|
// Still handle this case if we don't have assertions enabled.
|
|
if (!ArrayLength) {
|
|
static SimpleProgramPointTag PT(
|
|
"ExprEngine", "Skipping automatic 0 length array destruction, "
|
|
"which shouldn't be in the CFG.");
|
|
PostImplicitCall PP(DtorDecl, varDecl->getLocation(), LCtx,
|
|
getCFGElementRef(), &PT);
|
|
NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
Bldr.generateSink(PP, Pred->getState(), Pred);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
EvalCallOptions CallOpts;
|
|
Region = makeElementRegion(state, loc::MemRegionVal(Region), varType,
|
|
CallOpts.IsArrayCtorOrDtor, Idx)
|
|
.getAsRegion();
|
|
|
|
NodeBuilder Bldr(Pred, Dst, getBuilderContext());
|
|
|
|
static SimpleProgramPointTag PT("ExprEngine",
|
|
"Prepare for object destruction");
|
|
PreImplicitCall PP(DtorDecl, varDecl->getLocation(), LCtx, getCFGElementRef(),
|
|
&PT);
|
|
Pred = Bldr.generateNode(PP, state, Pred);
|
|
|
|
if (!Pred)
|
|
return;
|
|
Bldr.takeNodes(Pred);
|
|
|
|
VisitCXXDestructor(varType, Region, Dtor.getTriggerStmt(),
|
|
/*IsBase=*/false, Pred, Dst, CallOpts);
|
|
}
|
|
|
|
void ExprEngine::ProcessDeleteDtor(const CFGDeleteDtor Dtor,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
ProgramStateRef State = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
const CXXDeleteExpr *DE = Dtor.getDeleteExpr();
|
|
const Stmt *Arg = DE->getArgument();
|
|
QualType DTy = DE->getDestroyedType();
|
|
SVal ArgVal = State->getSVal(Arg, LCtx);
|
|
|
|
// If the argument to delete is known to be a null value,
|
|
// don't run destructor.
|
|
if (State->isNull(ArgVal).isConstrainedTrue()) {
|
|
QualType BTy = getContext().getBaseElementType(DTy);
|
|
const CXXRecordDecl *RD = BTy->getAsCXXRecordDecl();
|
|
const CXXDestructorDecl *Dtor = RD->getDestructor();
|
|
|
|
PostImplicitCall PP(Dtor, DE->getBeginLoc(), LCtx, getCFGElementRef());
|
|
NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
Bldr.generateNode(PP, Pred->getState(), Pred);
|
|
return;
|
|
}
|
|
|
|
auto getDtorDecl = [](const QualType &DTy) {
|
|
const CXXRecordDecl *RD = DTy->getAsCXXRecordDecl();
|
|
return RD->getDestructor();
|
|
};
|
|
|
|
unsigned Idx = 0;
|
|
EvalCallOptions CallOpts;
|
|
const MemRegion *ArgR = ArgVal.getAsRegion();
|
|
|
|
if (DE->isArrayForm()) {
|
|
CallOpts.IsArrayCtorOrDtor = true;
|
|
// Yes, it may even be a multi-dimensional array.
|
|
while (const auto *AT = getContext().getAsArrayType(DTy))
|
|
DTy = AT->getElementType();
|
|
|
|
if (ArgR) {
|
|
SVal ElementCount;
|
|
std::tie(State, Idx) = prepareStateForArrayDestruction(
|
|
State, ArgR, DTy, LCtx, &ElementCount);
|
|
|
|
// If we're about to destruct a 0 length array, don't run any of the
|
|
// destructors.
|
|
if (ElementCount.isConstant() &&
|
|
ElementCount.getAsInteger()->getLimitedValue() == 0) {
|
|
|
|
static SimpleProgramPointTag PT(
|
|
"ExprEngine", "Skipping 0 length array delete destruction");
|
|
PostImplicitCall PP(getDtorDecl(DTy), DE->getBeginLoc(), LCtx,
|
|
getCFGElementRef(), &PT);
|
|
NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
Bldr.generateNode(PP, Pred->getState(), Pred);
|
|
return;
|
|
}
|
|
|
|
ArgR = State->getLValue(DTy, svalBuilder.makeArrayIndex(Idx), ArgVal)
|
|
.getAsRegion();
|
|
}
|
|
}
|
|
|
|
NodeBuilder Bldr(Pred, Dst, getBuilderContext());
|
|
static SimpleProgramPointTag PT("ExprEngine",
|
|
"Prepare for object destruction");
|
|
PreImplicitCall PP(getDtorDecl(DTy), DE->getBeginLoc(), LCtx,
|
|
getCFGElementRef(), &PT);
|
|
Pred = Bldr.generateNode(PP, State, Pred);
|
|
|
|
if (!Pred)
|
|
return;
|
|
Bldr.takeNodes(Pred);
|
|
|
|
VisitCXXDestructor(DTy, ArgR, DE, /*IsBase=*/false, Pred, Dst, CallOpts);
|
|
}
|
|
|
|
void ExprEngine::ProcessBaseDtor(const CFGBaseDtor D,
|
|
ExplodedNode *Pred, ExplodedNodeSet &Dst) {
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
|
|
const auto *CurDtor = cast<CXXDestructorDecl>(LCtx->getDecl());
|
|
Loc ThisPtr = getSValBuilder().getCXXThis(CurDtor,
|
|
LCtx->getStackFrame());
|
|
SVal ThisVal = Pred->getState()->getSVal(ThisPtr);
|
|
|
|
// Create the base object region.
|
|
const CXXBaseSpecifier *Base = D.getBaseSpecifier();
|
|
QualType BaseTy = Base->getType();
|
|
SVal BaseVal = getStoreManager().evalDerivedToBase(ThisVal, BaseTy,
|
|
Base->isVirtual());
|
|
|
|
EvalCallOptions CallOpts;
|
|
VisitCXXDestructor(BaseTy, BaseVal.getAsRegion(), CurDtor->getBody(),
|
|
/*IsBase=*/true, Pred, Dst, CallOpts);
|
|
}
|
|
|
|
void ExprEngine::ProcessMemberDtor(const CFGMemberDtor D,
|
|
ExplodedNode *Pred, ExplodedNodeSet &Dst) {
|
|
const auto *DtorDecl = D.getDestructorDecl(getContext());
|
|
const FieldDecl *Member = D.getFieldDecl();
|
|
QualType T = Member->getType();
|
|
ProgramStateRef State = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
|
|
const auto *CurDtor = cast<CXXDestructorDecl>(LCtx->getDecl());
|
|
Loc ThisStorageLoc =
|
|
getSValBuilder().getCXXThis(CurDtor, LCtx->getStackFrame());
|
|
Loc ThisLoc = State->getSVal(ThisStorageLoc).castAs<Loc>();
|
|
SVal FieldVal = State->getLValue(Member, ThisLoc);
|
|
|
|
unsigned Idx = 0;
|
|
if (isa<ArrayType>(T)) {
|
|
SVal ElementCount;
|
|
std::tie(State, Idx) = prepareStateForArrayDestruction(
|
|
State, FieldVal.getAsRegion(), T, LCtx, &ElementCount);
|
|
|
|
if (ElementCount.isConstant()) {
|
|
uint64_t ArrayLength = ElementCount.getAsInteger()->getLimitedValue();
|
|
assert(ArrayLength &&
|
|
"A member dtor for a 0 length array shouldn't be triggered!");
|
|
|
|
// Still handle this case if we don't have assertions enabled.
|
|
if (!ArrayLength) {
|
|
static SimpleProgramPointTag PT(
|
|
"ExprEngine", "Skipping member 0 length array destruction, which "
|
|
"shouldn't be in the CFG.");
|
|
PostImplicitCall PP(DtorDecl, Member->getLocation(), LCtx,
|
|
getCFGElementRef(), &PT);
|
|
NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
Bldr.generateSink(PP, Pred->getState(), Pred);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
EvalCallOptions CallOpts;
|
|
FieldVal =
|
|
makeElementRegion(State, FieldVal, T, CallOpts.IsArrayCtorOrDtor, Idx);
|
|
|
|
NodeBuilder Bldr(Pred, Dst, getBuilderContext());
|
|
|
|
static SimpleProgramPointTag PT("ExprEngine",
|
|
"Prepare for object destruction");
|
|
PreImplicitCall PP(DtorDecl, Member->getLocation(), LCtx, getCFGElementRef(),
|
|
&PT);
|
|
Pred = Bldr.generateNode(PP, State, Pred);
|
|
|
|
if (!Pred)
|
|
return;
|
|
Bldr.takeNodes(Pred);
|
|
|
|
VisitCXXDestructor(T, FieldVal.getAsRegion(), CurDtor->getBody(),
|
|
/*IsBase=*/false, Pred, Dst, CallOpts);
|
|
}
|
|
|
|
void ExprEngine::ProcessTemporaryDtor(const CFGTemporaryDtor D,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
const CXXBindTemporaryExpr *BTE = D.getBindTemporaryExpr();
|
|
ProgramStateRef State = Pred->getState();
|
|
const LocationContext *LC = Pred->getLocationContext();
|
|
const MemRegion *MR = nullptr;
|
|
|
|
if (std::optional<SVal> V = getObjectUnderConstruction(
|
|
State, D.getBindTemporaryExpr(), Pred->getLocationContext())) {
|
|
// FIXME: Currently we insert temporary destructors for default parameters,
|
|
// but we don't insert the constructors, so the entry in
|
|
// ObjectsUnderConstruction may be missing.
|
|
State = finishObjectConstruction(State, D.getBindTemporaryExpr(),
|
|
Pred->getLocationContext());
|
|
MR = V->getAsRegion();
|
|
}
|
|
|
|
// If copy elision has occurred, and the constructor corresponding to the
|
|
// destructor was elided, we need to skip the destructor as well.
|
|
if (isDestructorElided(State, BTE, LC)) {
|
|
State = cleanupElidedDestructor(State, BTE, LC);
|
|
NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
PostImplicitCall PP(D.getDestructorDecl(getContext()),
|
|
D.getBindTemporaryExpr()->getBeginLoc(),
|
|
Pred->getLocationContext(), getCFGElementRef());
|
|
Bldr.generateNode(PP, State, Pred);
|
|
return;
|
|
}
|
|
|
|
ExplodedNodeSet CleanDtorState;
|
|
StmtNodeBuilder StmtBldr(Pred, CleanDtorState, *currBldrCtx);
|
|
StmtBldr.generateNode(D.getBindTemporaryExpr(), Pred, State);
|
|
|
|
QualType T = D.getBindTemporaryExpr()->getSubExpr()->getType();
|
|
// FIXME: Currently CleanDtorState can be empty here due to temporaries being
|
|
// bound to default parameters.
|
|
assert(CleanDtorState.size() <= 1);
|
|
ExplodedNode *CleanPred =
|
|
CleanDtorState.empty() ? Pred : *CleanDtorState.begin();
|
|
|
|
EvalCallOptions CallOpts;
|
|
CallOpts.IsTemporaryCtorOrDtor = true;
|
|
if (!MR) {
|
|
// FIXME: If we have no MR, we still need to unwrap the array to avoid
|
|
// destroying the whole array at once.
|
|
//
|
|
// For this case there is no universal solution as there is no way to
|
|
// directly create an array of temporary objects. There are some expressions
|
|
// however which can create temporary objects and have an array type.
|
|
//
|
|
// E.g.: std::initializer_list<S>{S(), S()};
|
|
//
|
|
// The expression above has a type of 'const struct S[2]' but it's a single
|
|
// 'std::initializer_list<>'. The destructors of the 2 temporary 'S()'
|
|
// objects will be called anyway, because they are 2 separate objects in 2
|
|
// separate clusters, i.e.: not an array.
|
|
//
|
|
// Now the 'std::initializer_list<>' is not an array either even though it
|
|
// has the type of an array. The point is, we only want to invoke the
|
|
// destructor for the initializer list once not twice or so.
|
|
while (const ArrayType *AT = getContext().getAsArrayType(T)) {
|
|
T = AT->getElementType();
|
|
|
|
// FIXME: Enable this flag once we handle this case properly.
|
|
// CallOpts.IsArrayCtorOrDtor = true;
|
|
}
|
|
} else {
|
|
// FIXME: We'd eventually need to makeElementRegion() trick here,
|
|
// but for now we don't have the respective construction contexts,
|
|
// so MR would always be null in this case. Do nothing for now.
|
|
}
|
|
VisitCXXDestructor(T, MR, D.getBindTemporaryExpr(),
|
|
/*IsBase=*/false, CleanPred, Dst, CallOpts);
|
|
}
|
|
|
|
void ExprEngine::processCleanupTemporaryBranch(const CXXBindTemporaryExpr *BTE,
|
|
NodeBuilderContext &BldCtx,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst,
|
|
const CFGBlock *DstT,
|
|
const CFGBlock *DstF) {
|
|
BranchNodeBuilder TempDtorBuilder(Pred, Dst, BldCtx, DstT, DstF);
|
|
ProgramStateRef State = Pred->getState();
|
|
const LocationContext *LC = Pred->getLocationContext();
|
|
if (getObjectUnderConstruction(State, BTE, LC)) {
|
|
TempDtorBuilder.generateNode(State, true, Pred);
|
|
} else {
|
|
TempDtorBuilder.generateNode(State, false, Pred);
|
|
}
|
|
}
|
|
|
|
void ExprEngine::VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *BTE,
|
|
ExplodedNodeSet &PreVisit,
|
|
ExplodedNodeSet &Dst) {
|
|
// This is a fallback solution in case we didn't have a construction
|
|
// context when we were constructing the temporary. Otherwise the map should
|
|
// have been populated there.
|
|
if (!getAnalysisManager().options.ShouldIncludeTemporaryDtorsInCFG) {
|
|
// In case we don't have temporary destructors in the CFG, do not mark
|
|
// the initialization - we would otherwise never clean it up.
|
|
Dst = PreVisit;
|
|
return;
|
|
}
|
|
StmtNodeBuilder StmtBldr(PreVisit, Dst, *currBldrCtx);
|
|
for (ExplodedNode *Node : PreVisit) {
|
|
ProgramStateRef State = Node->getState();
|
|
const LocationContext *LC = Node->getLocationContext();
|
|
if (!getObjectUnderConstruction(State, BTE, LC)) {
|
|
// FIXME: Currently the state might also already contain the marker due to
|
|
// incorrect handling of temporaries bound to default parameters; for
|
|
// those, we currently skip the CXXBindTemporaryExpr but rely on adding
|
|
// temporary destructor nodes.
|
|
State = addObjectUnderConstruction(State, BTE, LC, UnknownVal());
|
|
}
|
|
StmtBldr.generateNode(BTE, Node, State);
|
|
}
|
|
}
|
|
|
|
ProgramStateRef ExprEngine::escapeValues(ProgramStateRef State,
|
|
ArrayRef<SVal> Vs,
|
|
PointerEscapeKind K,
|
|
const CallEvent *Call) const {
|
|
class CollectReachableSymbolsCallback final : public SymbolVisitor {
|
|
InvalidatedSymbols &Symbols;
|
|
|
|
public:
|
|
explicit CollectReachableSymbolsCallback(InvalidatedSymbols &Symbols)
|
|
: Symbols(Symbols) {}
|
|
|
|
const InvalidatedSymbols &getSymbols() const { return Symbols; }
|
|
|
|
bool VisitSymbol(SymbolRef Sym) override {
|
|
Symbols.insert(Sym);
|
|
return true;
|
|
}
|
|
};
|
|
InvalidatedSymbols Symbols;
|
|
CollectReachableSymbolsCallback CallBack(Symbols);
|
|
for (SVal V : Vs)
|
|
State->scanReachableSymbols(V, CallBack);
|
|
|
|
return getCheckerManager().runCheckersForPointerEscape(
|
|
State, CallBack.getSymbols(), Call, K, nullptr);
|
|
}
|
|
|
|
void ExprEngine::Visit(const Stmt *S, ExplodedNode *Pred,
|
|
ExplodedNodeSet &DstTop) {
|
|
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
|
|
S->getBeginLoc(), "Error evaluating statement");
|
|
ExplodedNodeSet Dst;
|
|
StmtNodeBuilder Bldr(Pred, DstTop, *currBldrCtx);
|
|
|
|
assert(!isa<Expr>(S) || S == cast<Expr>(S)->IgnoreParens());
|
|
|
|
switch (S->getStmtClass()) {
|
|
// C++, OpenMP and ARC stuff we don't support yet.
|
|
case Stmt::CXXDependentScopeMemberExprClass:
|
|
case Stmt::CXXTryStmtClass:
|
|
case Stmt::CXXTypeidExprClass:
|
|
case Stmt::CXXUuidofExprClass:
|
|
case Stmt::CXXFoldExprClass:
|
|
case Stmt::MSPropertyRefExprClass:
|
|
case Stmt::MSPropertySubscriptExprClass:
|
|
case Stmt::CXXUnresolvedConstructExprClass:
|
|
case Stmt::DependentScopeDeclRefExprClass:
|
|
case Stmt::ArrayTypeTraitExprClass:
|
|
case Stmt::ExpressionTraitExprClass:
|
|
case Stmt::UnresolvedLookupExprClass:
|
|
case Stmt::UnresolvedMemberExprClass:
|
|
case Stmt::TypoExprClass:
|
|
case Stmt::RecoveryExprClass:
|
|
case Stmt::CXXNoexceptExprClass:
|
|
case Stmt::PackExpansionExprClass:
|
|
case Stmt::PackIndexingExprClass:
|
|
case Stmt::SubstNonTypeTemplateParmPackExprClass:
|
|
case Stmt::FunctionParmPackExprClass:
|
|
case Stmt::CoroutineBodyStmtClass:
|
|
case Stmt::CoawaitExprClass:
|
|
case Stmt::DependentCoawaitExprClass:
|
|
case Stmt::CoreturnStmtClass:
|
|
case Stmt::CoyieldExprClass:
|
|
case Stmt::SEHTryStmtClass:
|
|
case Stmt::SEHExceptStmtClass:
|
|
case Stmt::SEHLeaveStmtClass:
|
|
case Stmt::SEHFinallyStmtClass:
|
|
case Stmt::OMPCanonicalLoopClass:
|
|
case Stmt::OMPParallelDirectiveClass:
|
|
case Stmt::OMPSimdDirectiveClass:
|
|
case Stmt::OMPForDirectiveClass:
|
|
case Stmt::OMPForSimdDirectiveClass:
|
|
case Stmt::OMPSectionsDirectiveClass:
|
|
case Stmt::OMPSectionDirectiveClass:
|
|
case Stmt::OMPScopeDirectiveClass:
|
|
case Stmt::OMPSingleDirectiveClass:
|
|
case Stmt::OMPMasterDirectiveClass:
|
|
case Stmt::OMPCriticalDirectiveClass:
|
|
case Stmt::OMPParallelForDirectiveClass:
|
|
case Stmt::OMPParallelForSimdDirectiveClass:
|
|
case Stmt::OMPParallelSectionsDirectiveClass:
|
|
case Stmt::OMPParallelMasterDirectiveClass:
|
|
case Stmt::OMPParallelMaskedDirectiveClass:
|
|
case Stmt::OMPTaskDirectiveClass:
|
|
case Stmt::OMPTaskyieldDirectiveClass:
|
|
case Stmt::OMPBarrierDirectiveClass:
|
|
case Stmt::OMPTaskwaitDirectiveClass:
|
|
case Stmt::OMPErrorDirectiveClass:
|
|
case Stmt::OMPTaskgroupDirectiveClass:
|
|
case Stmt::OMPFlushDirectiveClass:
|
|
case Stmt::OMPDepobjDirectiveClass:
|
|
case Stmt::OMPScanDirectiveClass:
|
|
case Stmt::OMPOrderedDirectiveClass:
|
|
case Stmt::OMPAtomicDirectiveClass:
|
|
case Stmt::OMPAssumeDirectiveClass:
|
|
case Stmt::OMPTargetDirectiveClass:
|
|
case Stmt::OMPTargetDataDirectiveClass:
|
|
case Stmt::OMPTargetEnterDataDirectiveClass:
|
|
case Stmt::OMPTargetExitDataDirectiveClass:
|
|
case Stmt::OMPTargetParallelDirectiveClass:
|
|
case Stmt::OMPTargetParallelForDirectiveClass:
|
|
case Stmt::OMPTargetUpdateDirectiveClass:
|
|
case Stmt::OMPTeamsDirectiveClass:
|
|
case Stmt::OMPCancellationPointDirectiveClass:
|
|
case Stmt::OMPCancelDirectiveClass:
|
|
case Stmt::OMPTaskLoopDirectiveClass:
|
|
case Stmt::OMPTaskLoopSimdDirectiveClass:
|
|
case Stmt::OMPMasterTaskLoopDirectiveClass:
|
|
case Stmt::OMPMaskedTaskLoopDirectiveClass:
|
|
case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
|
|
case Stmt::OMPMaskedTaskLoopSimdDirectiveClass:
|
|
case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
|
|
case Stmt::OMPParallelMaskedTaskLoopDirectiveClass:
|
|
case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
|
|
case Stmt::OMPParallelMaskedTaskLoopSimdDirectiveClass:
|
|
case Stmt::OMPDistributeDirectiveClass:
|
|
case Stmt::OMPDistributeParallelForDirectiveClass:
|
|
case Stmt::OMPDistributeParallelForSimdDirectiveClass:
|
|
case Stmt::OMPDistributeSimdDirectiveClass:
|
|
case Stmt::OMPTargetParallelForSimdDirectiveClass:
|
|
case Stmt::OMPTargetSimdDirectiveClass:
|
|
case Stmt::OMPTeamsDistributeDirectiveClass:
|
|
case Stmt::OMPTeamsDistributeSimdDirectiveClass:
|
|
case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
|
|
case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
|
|
case Stmt::OMPTargetTeamsDirectiveClass:
|
|
case Stmt::OMPTargetTeamsDistributeDirectiveClass:
|
|
case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
|
|
case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
|
|
case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
|
|
case Stmt::OMPReverseDirectiveClass:
|
|
case Stmt::OMPStripeDirectiveClass:
|
|
case Stmt::OMPTileDirectiveClass:
|
|
case Stmt::OMPInterchangeDirectiveClass:
|
|
case Stmt::OMPInteropDirectiveClass:
|
|
case Stmt::OMPDispatchDirectiveClass:
|
|
case Stmt::OMPMaskedDirectiveClass:
|
|
case Stmt::OMPGenericLoopDirectiveClass:
|
|
case Stmt::OMPTeamsGenericLoopDirectiveClass:
|
|
case Stmt::OMPTargetTeamsGenericLoopDirectiveClass:
|
|
case Stmt::OMPParallelGenericLoopDirectiveClass:
|
|
case Stmt::OMPTargetParallelGenericLoopDirectiveClass:
|
|
case Stmt::CapturedStmtClass:
|
|
case Stmt::SYCLKernelCallStmtClass:
|
|
case Stmt::OpenACCComputeConstructClass:
|
|
case Stmt::OpenACCLoopConstructClass:
|
|
case Stmt::OpenACCCombinedConstructClass:
|
|
case Stmt::OpenACCDataConstructClass:
|
|
case Stmt::OpenACCEnterDataConstructClass:
|
|
case Stmt::OpenACCExitDataConstructClass:
|
|
case Stmt::OpenACCHostDataConstructClass:
|
|
case Stmt::OpenACCWaitConstructClass:
|
|
case Stmt::OpenACCCacheConstructClass:
|
|
case Stmt::OpenACCInitConstructClass:
|
|
case Stmt::OpenACCShutdownConstructClass:
|
|
case Stmt::OpenACCSetConstructClass:
|
|
case Stmt::OpenACCUpdateConstructClass:
|
|
case Stmt::OpenACCAtomicConstructClass:
|
|
case Stmt::OMPUnrollDirectiveClass:
|
|
case Stmt::OMPMetaDirectiveClass:
|
|
case Stmt::HLSLOutArgExprClass: {
|
|
const ExplodedNode *node = Bldr.generateSink(S, Pred, Pred->getState());
|
|
Engine.addAbortedBlock(node, currBldrCtx->getBlock());
|
|
break;
|
|
}
|
|
|
|
case Stmt::ParenExprClass:
|
|
llvm_unreachable("ParenExprs already handled.");
|
|
case Stmt::GenericSelectionExprClass:
|
|
llvm_unreachable("GenericSelectionExprs already handled.");
|
|
// Cases that should never be evaluated simply because they shouldn't
|
|
// appear in the CFG.
|
|
case Stmt::BreakStmtClass:
|
|
case Stmt::CaseStmtClass:
|
|
case Stmt::CompoundStmtClass:
|
|
case Stmt::ContinueStmtClass:
|
|
case Stmt::CXXForRangeStmtClass:
|
|
case Stmt::DefaultStmtClass:
|
|
case Stmt::DoStmtClass:
|
|
case Stmt::ForStmtClass:
|
|
case Stmt::GotoStmtClass:
|
|
case Stmt::IfStmtClass:
|
|
case Stmt::IndirectGotoStmtClass:
|
|
case Stmt::LabelStmtClass:
|
|
case Stmt::NoStmtClass:
|
|
case Stmt::NullStmtClass:
|
|
case Stmt::SwitchStmtClass:
|
|
case Stmt::WhileStmtClass:
|
|
case Expr::MSDependentExistsStmtClass:
|
|
llvm_unreachable("Stmt should not be in analyzer evaluation loop");
|
|
case Stmt::ImplicitValueInitExprClass:
|
|
// These nodes are shared in the CFG and would case caching out.
|
|
// Moreover, no additional evaluation required for them, the
|
|
// analyzer can reconstruct these values from the AST.
|
|
llvm_unreachable("Should be pruned from CFG");
|
|
|
|
case Stmt::ObjCSubscriptRefExprClass:
|
|
case Stmt::ObjCPropertyRefExprClass:
|
|
llvm_unreachable("These are handled by PseudoObjectExpr");
|
|
|
|
case Stmt::GNUNullExprClass: {
|
|
// GNU __null is a pointer-width integer, not an actual pointer.
|
|
ProgramStateRef state = Pred->getState();
|
|
state = state->BindExpr(
|
|
S, Pred->getLocationContext(),
|
|
svalBuilder.makeIntValWithWidth(getContext().VoidPtrTy, 0));
|
|
Bldr.generateNode(S, Pred, state);
|
|
break;
|
|
}
|
|
|
|
case Stmt::ObjCAtSynchronizedStmtClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Expr::ConstantExprClass:
|
|
case Stmt::ExprWithCleanupsClass:
|
|
// Handled due to fully linearised CFG.
|
|
break;
|
|
|
|
case Stmt::CXXBindTemporaryExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
ExplodedNodeSet PreVisit;
|
|
getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
|
|
ExplodedNodeSet Next;
|
|
VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), PreVisit, Next);
|
|
getCheckerManager().runCheckersForPostStmt(Dst, Next, S, *this);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::ArrayInitLoopExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitArrayInitLoopExpr(cast<ArrayInitLoopExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
// Cases not handled yet; but will handle some day.
|
|
case Stmt::DesignatedInitExprClass:
|
|
case Stmt::DesignatedInitUpdateExprClass:
|
|
case Stmt::ArrayInitIndexExprClass:
|
|
case Stmt::ExtVectorElementExprClass:
|
|
case Stmt::ImaginaryLiteralClass:
|
|
case Stmt::ObjCAtCatchStmtClass:
|
|
case Stmt::ObjCAtFinallyStmtClass:
|
|
case Stmt::ObjCAtTryStmtClass:
|
|
case Stmt::ObjCAutoreleasePoolStmtClass:
|
|
case Stmt::ObjCEncodeExprClass:
|
|
case Stmt::ObjCIsaExprClass:
|
|
case Stmt::ObjCProtocolExprClass:
|
|
case Stmt::ObjCSelectorExprClass:
|
|
case Stmt::ParenListExprClass:
|
|
case Stmt::ShuffleVectorExprClass:
|
|
case Stmt::ConvertVectorExprClass:
|
|
case Stmt::VAArgExprClass:
|
|
case Stmt::CUDAKernelCallExprClass:
|
|
case Stmt::OpaqueValueExprClass:
|
|
case Stmt::AsTypeExprClass:
|
|
case Stmt::ConceptSpecializationExprClass:
|
|
case Stmt::CXXRewrittenBinaryOperatorClass:
|
|
case Stmt::RequiresExprClass:
|
|
case Expr::CXXParenListInitExprClass:
|
|
case Stmt::EmbedExprClass:
|
|
// Fall through.
|
|
|
|
// Cases we intentionally don't evaluate, since they don't need
|
|
// to be explicitly evaluated.
|
|
case Stmt::PredefinedExprClass:
|
|
case Stmt::AddrLabelExprClass:
|
|
case Stmt::IntegerLiteralClass:
|
|
case Stmt::FixedPointLiteralClass:
|
|
case Stmt::CharacterLiteralClass:
|
|
case Stmt::CXXScalarValueInitExprClass:
|
|
case Stmt::CXXBoolLiteralExprClass:
|
|
case Stmt::ObjCBoolLiteralExprClass:
|
|
case Stmt::ObjCAvailabilityCheckExprClass:
|
|
case Stmt::FloatingLiteralClass:
|
|
case Stmt::NoInitExprClass:
|
|
case Stmt::SizeOfPackExprClass:
|
|
case Stmt::StringLiteralClass:
|
|
case Stmt::SourceLocExprClass:
|
|
case Stmt::ObjCStringLiteralClass:
|
|
case Stmt::CXXPseudoDestructorExprClass:
|
|
case Stmt::SubstNonTypeTemplateParmExprClass:
|
|
case Stmt::CXXNullPtrLiteralExprClass:
|
|
case Stmt::ArraySectionExprClass:
|
|
case Stmt::OMPArrayShapingExprClass:
|
|
case Stmt::OMPIteratorExprClass:
|
|
case Stmt::SYCLUniqueStableNameExprClass:
|
|
case Stmt::OpenACCAsteriskSizeExprClass:
|
|
case Stmt::TypeTraitExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
ExplodedNodeSet preVisit;
|
|
getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this);
|
|
getCheckerManager().runCheckersForPostStmt(Dst, preVisit, S, *this);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::AttributedStmtClass: {
|
|
Bldr.takeNodes(Pred);
|
|
VisitAttributedStmt(cast<AttributedStmt>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXDefaultArgExprClass:
|
|
case Stmt::CXXDefaultInitExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
ExplodedNodeSet PreVisit;
|
|
getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
|
|
|
|
ExplodedNodeSet Tmp;
|
|
StmtNodeBuilder Bldr2(PreVisit, Tmp, *currBldrCtx);
|
|
|
|
const Expr *ArgE;
|
|
if (const auto *DefE = dyn_cast<CXXDefaultArgExpr>(S))
|
|
ArgE = DefE->getExpr();
|
|
else if (const auto *DefE = dyn_cast<CXXDefaultInitExpr>(S))
|
|
ArgE = DefE->getExpr();
|
|
else
|
|
llvm_unreachable("unknown constant wrapper kind");
|
|
|
|
bool IsTemporary = false;
|
|
if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(ArgE)) {
|
|
ArgE = MTE->getSubExpr();
|
|
IsTemporary = true;
|
|
}
|
|
|
|
std::optional<SVal> ConstantVal = svalBuilder.getConstantVal(ArgE);
|
|
if (!ConstantVal)
|
|
ConstantVal = UnknownVal();
|
|
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
for (const auto I : PreVisit) {
|
|
ProgramStateRef State = I->getState();
|
|
State = State->BindExpr(S, LCtx, *ConstantVal);
|
|
if (IsTemporary)
|
|
State = createTemporaryRegionIfNeeded(State, LCtx,
|
|
cast<Expr>(S),
|
|
cast<Expr>(S));
|
|
Bldr2.generateNode(S, I, State);
|
|
}
|
|
|
|
getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
// Cases we evaluate as opaque expressions, conjuring a symbol.
|
|
case Stmt::CXXStdInitializerListExprClass:
|
|
case Expr::ObjCArrayLiteralClass:
|
|
case Expr::ObjCDictionaryLiteralClass:
|
|
case Expr::ObjCBoxedExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
|
|
ExplodedNodeSet preVisit;
|
|
getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this);
|
|
|
|
ExplodedNodeSet Tmp;
|
|
StmtNodeBuilder Bldr2(preVisit, Tmp, *currBldrCtx);
|
|
|
|
const auto *Ex = cast<Expr>(S);
|
|
QualType resultType = Ex->getType();
|
|
|
|
for (const auto N : preVisit) {
|
|
const LocationContext *LCtx = N->getLocationContext();
|
|
SVal result = svalBuilder.conjureSymbolVal(
|
|
/*symbolTag=*/nullptr, getCFGElementRef(), LCtx, resultType,
|
|
currBldrCtx->blockCount());
|
|
ProgramStateRef State = N->getState()->BindExpr(Ex, LCtx, result);
|
|
|
|
// Escape pointers passed into the list, unless it's an ObjC boxed
|
|
// expression which is not a boxable C structure.
|
|
if (!(isa<ObjCBoxedExpr>(Ex) &&
|
|
!cast<ObjCBoxedExpr>(Ex)->getSubExpr()
|
|
->getType()->isRecordType()))
|
|
for (auto Child : Ex->children()) {
|
|
assert(Child);
|
|
SVal Val = State->getSVal(Child, LCtx);
|
|
State = escapeValues(State, Val, PSK_EscapeOther);
|
|
}
|
|
|
|
Bldr2.generateNode(S, N, State);
|
|
}
|
|
|
|
getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::ArraySubscriptExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::MatrixSubscriptExprClass:
|
|
llvm_unreachable("Support for MatrixSubscriptExpr is not implemented.");
|
|
break;
|
|
|
|
case Stmt::GCCAsmStmtClass: {
|
|
Bldr.takeNodes(Pred);
|
|
ExplodedNodeSet PreVisit;
|
|
getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
|
|
ExplodedNodeSet PostVisit;
|
|
for (ExplodedNode *const N : PreVisit)
|
|
VisitGCCAsmStmt(cast<GCCAsmStmt>(S), N, PostVisit);
|
|
getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::MSAsmStmtClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitMSAsmStmt(cast<MSAsmStmt>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::BlockExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitBlockExpr(cast<BlockExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::LambdaExprClass:
|
|
if (AMgr.options.ShouldInlineLambdas) {
|
|
Bldr.takeNodes(Pred);
|
|
VisitLambdaExpr(cast<LambdaExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
} else {
|
|
const ExplodedNode *node = Bldr.generateSink(S, Pred, Pred->getState());
|
|
Engine.addAbortedBlock(node, currBldrCtx->getBlock());
|
|
}
|
|
break;
|
|
|
|
case Stmt::BinaryOperatorClass: {
|
|
const auto *B = cast<BinaryOperator>(S);
|
|
if (B->isLogicalOp()) {
|
|
Bldr.takeNodes(Pred);
|
|
VisitLogicalExpr(B, Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
else if (B->getOpcode() == BO_Comma) {
|
|
ProgramStateRef state = Pred->getState();
|
|
Bldr.generateNode(B, Pred,
|
|
state->BindExpr(B, Pred->getLocationContext(),
|
|
state->getSVal(B->getRHS(),
|
|
Pred->getLocationContext())));
|
|
break;
|
|
}
|
|
|
|
Bldr.takeNodes(Pred);
|
|
|
|
if (AMgr.options.ShouldEagerlyAssume &&
|
|
(B->isRelationalOp() || B->isEqualityOp())) {
|
|
ExplodedNodeSet Tmp;
|
|
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp);
|
|
evalEagerlyAssumeBifurcation(Dst, Tmp, cast<Expr>(S));
|
|
}
|
|
else
|
|
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
|
|
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXOperatorCallExprClass: {
|
|
const auto *OCE = cast<CXXOperatorCallExpr>(S);
|
|
|
|
// For instance method operators, make sure the 'this' argument has a
|
|
// valid region.
|
|
const Decl *Callee = OCE->getCalleeDecl();
|
|
if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Callee)) {
|
|
if (MD->isImplicitObjectMemberFunction()) {
|
|
ProgramStateRef State = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
ProgramStateRef NewState =
|
|
createTemporaryRegionIfNeeded(State, LCtx, OCE->getArg(0));
|
|
if (NewState != State) {
|
|
Pred = Bldr.generateNode(OCE, Pred, NewState, /*tag=*/nullptr,
|
|
ProgramPoint::PreStmtKind);
|
|
// Did we cache out?
|
|
if (!Pred)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
[[fallthrough]];
|
|
}
|
|
|
|
case Stmt::CallExprClass:
|
|
case Stmt::CXXMemberCallExprClass:
|
|
case Stmt::UserDefinedLiteralClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitCallExpr(cast<CallExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::CXXCatchStmtClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitCXXCatchStmt(cast<CXXCatchStmt>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::CXXTemporaryObjectExprClass:
|
|
case Stmt::CXXConstructExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitCXXConstructExpr(cast<CXXConstructExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::CXXInheritedCtorInitExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitCXXInheritedCtorInitExpr(cast<CXXInheritedCtorInitExpr>(S), Pred,
|
|
Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::CXXNewExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
|
|
ExplodedNodeSet PreVisit;
|
|
getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
|
|
|
|
ExplodedNodeSet PostVisit;
|
|
for (const auto i : PreVisit)
|
|
VisitCXXNewExpr(cast<CXXNewExpr>(S), i, PostVisit);
|
|
|
|
getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXDeleteExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
ExplodedNodeSet PreVisit;
|
|
const auto *CDE = cast<CXXDeleteExpr>(S);
|
|
getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
|
|
ExplodedNodeSet PostVisit;
|
|
getCheckerManager().runCheckersForPostStmt(PostVisit, PreVisit, S, *this);
|
|
|
|
for (const auto i : PostVisit)
|
|
VisitCXXDeleteExpr(CDE, i, Dst);
|
|
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
// FIXME: ChooseExpr is really a constant. We need to fix
|
|
// the CFG do not model them as explicit control-flow.
|
|
|
|
case Stmt::ChooseExprClass: { // __builtin_choose_expr
|
|
Bldr.takeNodes(Pred);
|
|
const auto *C = cast<ChooseExpr>(S);
|
|
VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CompoundAssignOperatorClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::CompoundLiteralExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::BinaryConditionalOperatorClass:
|
|
case Stmt::ConditionalOperatorClass: { // '?' operator
|
|
Bldr.takeNodes(Pred);
|
|
const auto *C = cast<AbstractConditionalOperator>(S);
|
|
VisitGuardedExpr(C, C->getTrueExpr(), C->getFalseExpr(), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXThisExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitCXXThisExpr(cast<CXXThisExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::DeclRefExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
const auto *DE = cast<DeclRefExpr>(S);
|
|
VisitCommonDeclRefExpr(DE, DE->getDecl(), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::DeclStmtClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::ImplicitCastExprClass:
|
|
case Stmt::CStyleCastExprClass:
|
|
case Stmt::CXXStaticCastExprClass:
|
|
case Stmt::CXXDynamicCastExprClass:
|
|
case Stmt::CXXReinterpretCastExprClass:
|
|
case Stmt::CXXConstCastExprClass:
|
|
case Stmt::CXXFunctionalCastExprClass:
|
|
case Stmt::BuiltinBitCastExprClass:
|
|
case Stmt::ObjCBridgedCastExprClass:
|
|
case Stmt::CXXAddrspaceCastExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
const auto *C = cast<CastExpr>(S);
|
|
ExplodedNodeSet dstExpr;
|
|
VisitCast(C, C->getSubExpr(), Pred, dstExpr);
|
|
|
|
// Handle the postvisit checks.
|
|
getCheckerManager().runCheckersForPostStmt(Dst, dstExpr, C, *this);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Expr::MaterializeTemporaryExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
const auto *MTE = cast<MaterializeTemporaryExpr>(S);
|
|
ExplodedNodeSet dstPrevisit;
|
|
getCheckerManager().runCheckersForPreStmt(dstPrevisit, Pred, MTE, *this);
|
|
ExplodedNodeSet dstExpr;
|
|
for (const auto i : dstPrevisit)
|
|
CreateCXXTemporaryObject(MTE, i, dstExpr);
|
|
getCheckerManager().runCheckersForPostStmt(Dst, dstExpr, MTE, *this);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::InitListExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::MemberExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::AtomicExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitAtomicExpr(cast<AtomicExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::ObjCIvarRefExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitLvalObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::ObjCForCollectionStmtClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::ObjCMessageExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitObjCMessage(cast<ObjCMessageExpr>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::ObjCAtThrowStmtClass:
|
|
case Stmt::CXXThrowExprClass:
|
|
// FIXME: This is not complete. We basically treat @throw as
|
|
// an abort.
|
|
Bldr.generateSink(S, Pred, Pred->getState());
|
|
break;
|
|
|
|
case Stmt::ReturnStmtClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::OffsetOfExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
ExplodedNodeSet PreVisit;
|
|
getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
|
|
|
|
ExplodedNodeSet PostVisit;
|
|
for (const auto Node : PreVisit)
|
|
VisitOffsetOfExpr(cast<OffsetOfExpr>(S), Node, PostVisit);
|
|
|
|
getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::UnaryExprOrTypeTraitExprClass:
|
|
Bldr.takeNodes(Pred);
|
|
VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
|
|
Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
|
|
case Stmt::StmtExprClass: {
|
|
const auto *SE = cast<StmtExpr>(S);
|
|
|
|
if (SE->getSubStmt()->body_empty()) {
|
|
// Empty statement expression.
|
|
assert(SE->getType() == getContext().VoidTy
|
|
&& "Empty statement expression must have void type.");
|
|
break;
|
|
}
|
|
|
|
if (const auto *LastExpr =
|
|
dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) {
|
|
ProgramStateRef state = Pred->getState();
|
|
Bldr.generateNode(SE, Pred,
|
|
state->BindExpr(SE, Pred->getLocationContext(),
|
|
state->getSVal(LastExpr,
|
|
Pred->getLocationContext())));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Stmt::UnaryOperatorClass: {
|
|
Bldr.takeNodes(Pred);
|
|
const auto *U = cast<UnaryOperator>(S);
|
|
if (AMgr.options.ShouldEagerlyAssume && (U->getOpcode() == UO_LNot)) {
|
|
ExplodedNodeSet Tmp;
|
|
VisitUnaryOperator(U, Pred, Tmp);
|
|
evalEagerlyAssumeBifurcation(Dst, Tmp, U);
|
|
}
|
|
else
|
|
VisitUnaryOperator(U, Pred, Dst);
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::PseudoObjectExprClass: {
|
|
Bldr.takeNodes(Pred);
|
|
ProgramStateRef state = Pred->getState();
|
|
const auto *PE = cast<PseudoObjectExpr>(S);
|
|
if (const Expr *Result = PE->getResultExpr()) {
|
|
SVal V = state->getSVal(Result, Pred->getLocationContext());
|
|
Bldr.generateNode(S, Pred,
|
|
state->BindExpr(S, Pred->getLocationContext(), V));
|
|
}
|
|
else
|
|
Bldr.generateNode(S, Pred,
|
|
state->BindExpr(S, Pred->getLocationContext(),
|
|
UnknownVal()));
|
|
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
|
|
case Expr::ObjCIndirectCopyRestoreExprClass: {
|
|
// ObjCIndirectCopyRestoreExpr implies passing a temporary for
|
|
// correctness of lifetime management. Due to limited analysis
|
|
// of ARC, this is implemented as direct arg passing.
|
|
Bldr.takeNodes(Pred);
|
|
ProgramStateRef state = Pred->getState();
|
|
const auto *OIE = cast<ObjCIndirectCopyRestoreExpr>(S);
|
|
const Expr *E = OIE->getSubExpr();
|
|
SVal V = state->getSVal(E, Pred->getLocationContext());
|
|
Bldr.generateNode(S, Pred,
|
|
state->BindExpr(S, Pred->getLocationContext(), V));
|
|
Bldr.addNodes(Dst);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ExprEngine::replayWithoutInlining(ExplodedNode *N,
|
|
const LocationContext *CalleeLC) {
|
|
const StackFrameContext *CalleeSF = CalleeLC->getStackFrame();
|
|
const StackFrameContext *CallerSF = CalleeSF->getParent()->getStackFrame();
|
|
assert(CalleeSF && CallerSF);
|
|
ExplodedNode *BeforeProcessingCall = nullptr;
|
|
const Stmt *CE = CalleeSF->getCallSite();
|
|
|
|
// Find the first node before we started processing the call expression.
|
|
while (N) {
|
|
ProgramPoint L = N->getLocation();
|
|
BeforeProcessingCall = N;
|
|
N = N->pred_empty() ? nullptr : *(N->pred_begin());
|
|
|
|
// Skip the nodes corresponding to the inlined code.
|
|
if (L.getStackFrame() != CallerSF)
|
|
continue;
|
|
// We reached the caller. Find the node right before we started
|
|
// processing the call.
|
|
if (L.isPurgeKind())
|
|
continue;
|
|
if (L.getAs<PreImplicitCall>())
|
|
continue;
|
|
if (L.getAs<CallEnter>())
|
|
continue;
|
|
if (std::optional<StmtPoint> SP = L.getAs<StmtPoint>())
|
|
if (SP->getStmt() == CE)
|
|
continue;
|
|
break;
|
|
}
|
|
|
|
if (!BeforeProcessingCall)
|
|
return false;
|
|
|
|
// TODO: Clean up the unneeded nodes.
|
|
|
|
// Build an Epsilon node from which we will restart the analyzes.
|
|
// Note that CE is permitted to be NULL!
|
|
static SimpleProgramPointTag PT("ExprEngine", "Replay without inlining");
|
|
ProgramPoint NewNodeLoc = EpsilonPoint(
|
|
BeforeProcessingCall->getLocationContext(), CE, nullptr, &PT);
|
|
// Add the special flag to GDM to signal retrying with no inlining.
|
|
// Note, changing the state ensures that we are not going to cache out.
|
|
ProgramStateRef NewNodeState = BeforeProcessingCall->getState();
|
|
NewNodeState =
|
|
NewNodeState->set<ReplayWithoutInlining>(const_cast<Stmt *>(CE));
|
|
|
|
// Make the new node a successor of BeforeProcessingCall.
|
|
bool IsNew = false;
|
|
ExplodedNode *NewNode = G.getNode(NewNodeLoc, NewNodeState, false, &IsNew);
|
|
// We cached out at this point. Caching out is common due to us backtracking
|
|
// from the inlined function, which might spawn several paths.
|
|
if (!IsNew)
|
|
return true;
|
|
|
|
NewNode->addPredecessor(BeforeProcessingCall, G);
|
|
|
|
// Add the new node to the work list.
|
|
Engine.enqueueStmtNode(NewNode, CalleeSF->getCallSiteBlock(),
|
|
CalleeSF->getIndex());
|
|
NumTimesRetriedWithoutInlining++;
|
|
return true;
|
|
}
|
|
|
|
/// Return the innermost location context which is inlined at `Node`, unless
|
|
/// it's the top-level (entry point) location context.
|
|
static const LocationContext *getInlinedLocationContext(ExplodedNode *Node,
|
|
ExplodedGraph &G) {
|
|
const LocationContext *CalleeLC = Node->getLocation().getLocationContext();
|
|
const LocationContext *RootLC =
|
|
G.getRoot()->getLocation().getLocationContext();
|
|
|
|
if (CalleeLC->getStackFrame() == RootLC->getStackFrame())
|
|
return nullptr;
|
|
|
|
return CalleeLC;
|
|
}
|
|
|
|
/// Block entrance. (Update counters).
|
|
void ExprEngine::processCFGBlockEntrance(const BlockEdge &L,
|
|
NodeBuilderWithSinks &nodeBuilder,
|
|
ExplodedNode *Pred) {
|
|
PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
|
|
// If we reach a loop which has a known bound (and meets
|
|
// other constraints) then consider completely unrolling it.
|
|
if(AMgr.options.ShouldUnrollLoops) {
|
|
unsigned maxBlockVisitOnPath = AMgr.options.maxBlockVisitOnPath;
|
|
const Stmt *Term = nodeBuilder.getContext().getBlock()->getTerminatorStmt();
|
|
if (Term) {
|
|
ProgramStateRef NewState = updateLoopStack(Term, AMgr.getASTContext(),
|
|
Pred, maxBlockVisitOnPath);
|
|
if (NewState != Pred->getState()) {
|
|
ExplodedNode *UpdatedNode = nodeBuilder.generateNode(NewState, Pred);
|
|
if (!UpdatedNode)
|
|
return;
|
|
Pred = UpdatedNode;
|
|
}
|
|
}
|
|
// Is we are inside an unrolled loop then no need the check the counters.
|
|
if(isUnrolledState(Pred->getState()))
|
|
return;
|
|
}
|
|
|
|
// If this block is terminated by a loop and it has already been visited the
|
|
// maximum number of times, widen the loop.
|
|
unsigned int BlockCount = nodeBuilder.getContext().blockCount();
|
|
if (BlockCount == AMgr.options.maxBlockVisitOnPath - 1 &&
|
|
AMgr.options.ShouldWidenLoops) {
|
|
const Stmt *Term = nodeBuilder.getContext().getBlock()->getTerminatorStmt();
|
|
if (!isa_and_nonnull<ForStmt, WhileStmt, DoStmt, CXXForRangeStmt>(Term))
|
|
return;
|
|
|
|
// Widen.
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
|
|
// FIXME:
|
|
// We cannot use the CFG element from the via `ExprEngine::getCFGElementRef`
|
|
// since we are currently at the block entrance and the current reference
|
|
// would be stale. Ideally, we should pass on the terminator of the CFG
|
|
// block, but the terminator cannot be referred as a CFG element.
|
|
// Here we just pass the the first CFG element in the block.
|
|
ProgramStateRef WidenedState =
|
|
getWidenedLoopState(Pred->getState(), LCtx, BlockCount,
|
|
*nodeBuilder.getContext().getBlock()->ref_begin());
|
|
nodeBuilder.generateNode(WidenedState, Pred);
|
|
return;
|
|
}
|
|
|
|
// FIXME: Refactor this into a checker.
|
|
if (BlockCount >= AMgr.options.maxBlockVisitOnPath) {
|
|
static SimpleProgramPointTag tag(TagProviderName, "Block count exceeded");
|
|
const ExplodedNode *Sink =
|
|
nodeBuilder.generateSink(Pred->getState(), Pred, &tag);
|
|
|
|
if (const LocationContext *LC = getInlinedLocationContext(Pred, G)) {
|
|
// FIXME: This will unconditionally prevent inlining this function (even
|
|
// from other entry points), which is not a reasonable heuristic: even if
|
|
// we reached max block count on this particular execution path, there
|
|
// may be other execution paths (especially with other parametrizations)
|
|
// where the analyzer can reach the end of the function (so there is no
|
|
// natural reason to avoid inlining it). However, disabling this would
|
|
// significantly increase the analysis time (because more entry points
|
|
// would exhaust their allocated budget), so it must be compensated by a
|
|
// different (more reasonable) reduction of analysis scope.
|
|
Engine.FunctionSummaries->markShouldNotInline(
|
|
LC->getStackFrame()->getDecl());
|
|
|
|
// Re-run the call evaluation without inlining it, by storing the
|
|
// no-inlining policy in the state and enqueuing the new work item on
|
|
// the list. Replay should almost never fail. Use the stats to catch it
|
|
// if it does.
|
|
if ((!AMgr.options.NoRetryExhausted && replayWithoutInlining(Pred, LC)))
|
|
return;
|
|
NumMaxBlockCountReachedInInlined++;
|
|
} else
|
|
NumMaxBlockCountReached++;
|
|
|
|
// Make sink nodes as exhausted(for stats) only if retry failed.
|
|
Engine.blocksExhausted.push_back(std::make_pair(L, Sink));
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Branch processing.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// RecoverCastedSymbol - A helper function for ProcessBranch that is used
|
|
/// to try to recover some path-sensitivity for casts of symbolic
|
|
/// integers that promote their values (which are currently not tracked well).
|
|
/// This function returns the SVal bound to Condition->IgnoreCasts if all the
|
|
// cast(s) did was sign-extend the original value.
|
|
static SVal RecoverCastedSymbol(ProgramStateRef state,
|
|
const Stmt *Condition,
|
|
const LocationContext *LCtx,
|
|
ASTContext &Ctx) {
|
|
|
|
const auto *Ex = dyn_cast<Expr>(Condition);
|
|
if (!Ex)
|
|
return UnknownVal();
|
|
|
|
uint64_t bits = 0;
|
|
bool bitsInit = false;
|
|
|
|
while (const auto *CE = dyn_cast<CastExpr>(Ex)) {
|
|
QualType T = CE->getType();
|
|
|
|
if (!T->isIntegralOrEnumerationType())
|
|
return UnknownVal();
|
|
|
|
uint64_t newBits = Ctx.getTypeSize(T);
|
|
if (!bitsInit || newBits < bits) {
|
|
bitsInit = true;
|
|
bits = newBits;
|
|
}
|
|
|
|
Ex = CE->getSubExpr();
|
|
}
|
|
|
|
// We reached a non-cast. Is it a symbolic value?
|
|
QualType T = Ex->getType();
|
|
|
|
if (!bitsInit || !T->isIntegralOrEnumerationType() ||
|
|
Ctx.getTypeSize(T) > bits)
|
|
return UnknownVal();
|
|
|
|
return state->getSVal(Ex, LCtx);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static const Stmt *getRightmostLeaf(const Stmt *Condition) {
|
|
while (Condition) {
|
|
const auto *BO = dyn_cast<BinaryOperator>(Condition);
|
|
if (!BO || !BO->isLogicalOp()) {
|
|
return Condition;
|
|
}
|
|
Condition = BO->getRHS()->IgnoreParens();
|
|
}
|
|
return nullptr;
|
|
}
|
|
#endif
|
|
|
|
// Returns the condition the branch at the end of 'B' depends on and whose value
|
|
// has been evaluated within 'B'.
|
|
// In most cases, the terminator condition of 'B' will be evaluated fully in
|
|
// the last statement of 'B'; in those cases, the resolved condition is the
|
|
// given 'Condition'.
|
|
// If the condition of the branch is a logical binary operator tree, the CFG is
|
|
// optimized: in that case, we know that the expression formed by all but the
|
|
// rightmost leaf of the logical binary operator tree must be true, and thus
|
|
// the branch condition is at this point equivalent to the truth value of that
|
|
// rightmost leaf; the CFG block thus only evaluates this rightmost leaf
|
|
// expression in its final statement. As the full condition in that case was
|
|
// not evaluated, and is thus not in the SVal cache, we need to use that leaf
|
|
// expression to evaluate the truth value of the condition in the current state
|
|
// space.
|
|
static const Stmt *ResolveCondition(const Stmt *Condition,
|
|
const CFGBlock *B) {
|
|
if (const auto *Ex = dyn_cast<Expr>(Condition))
|
|
Condition = Ex->IgnoreParens();
|
|
|
|
const auto *BO = dyn_cast<BinaryOperator>(Condition);
|
|
if (!BO || !BO->isLogicalOp())
|
|
return Condition;
|
|
|
|
assert(B->getTerminator().isStmtBranch() &&
|
|
"Other kinds of branches are handled separately!");
|
|
|
|
// For logical operations, we still have the case where some branches
|
|
// use the traditional "merge" approach and others sink the branch
|
|
// directly into the basic blocks representing the logical operation.
|
|
// We need to distinguish between those two cases here.
|
|
|
|
// The invariants are still shifting, but it is possible that the
|
|
// last element in a CFGBlock is not a CFGStmt. Look for the last
|
|
// CFGStmt as the value of the condition.
|
|
for (CFGElement Elem : llvm::reverse(*B)) {
|
|
std::optional<CFGStmt> CS = Elem.getAs<CFGStmt>();
|
|
if (!CS)
|
|
continue;
|
|
const Stmt *LastStmt = CS->getStmt();
|
|
assert(LastStmt == Condition || LastStmt == getRightmostLeaf(Condition));
|
|
return LastStmt;
|
|
}
|
|
llvm_unreachable("could not resolve condition");
|
|
}
|
|
|
|
using ObjCForLctxPair =
|
|
std::pair<const ObjCForCollectionStmt *, const LocationContext *>;
|
|
|
|
REGISTER_MAP_WITH_PROGRAMSTATE(ObjCForHasMoreIterations, ObjCForLctxPair, bool)
|
|
|
|
ProgramStateRef ExprEngine::setWhetherHasMoreIteration(
|
|
ProgramStateRef State, const ObjCForCollectionStmt *O,
|
|
const LocationContext *LC, bool HasMoreIteraton) {
|
|
assert(!State->contains<ObjCForHasMoreIterations>({O, LC}));
|
|
return State->set<ObjCForHasMoreIterations>({O, LC}, HasMoreIteraton);
|
|
}
|
|
|
|
ProgramStateRef
|
|
ExprEngine::removeIterationState(ProgramStateRef State,
|
|
const ObjCForCollectionStmt *O,
|
|
const LocationContext *LC) {
|
|
assert(State->contains<ObjCForHasMoreIterations>({O, LC}));
|
|
return State->remove<ObjCForHasMoreIterations>({O, LC});
|
|
}
|
|
|
|
bool ExprEngine::hasMoreIteration(ProgramStateRef State,
|
|
const ObjCForCollectionStmt *O,
|
|
const LocationContext *LC) {
|
|
assert(State->contains<ObjCForHasMoreIterations>({O, LC}));
|
|
return *State->get<ObjCForHasMoreIterations>({O, LC});
|
|
}
|
|
|
|
/// Split the state on whether there are any more iterations left for this loop.
|
|
/// Returns a (HasMoreIteration, HasNoMoreIteration) pair, or std::nullopt when
|
|
/// the acquisition of the loop condition value failed.
|
|
static std::optional<std::pair<ProgramStateRef, ProgramStateRef>>
|
|
assumeCondition(const Stmt *Condition, ExplodedNode *N) {
|
|
ProgramStateRef State = N->getState();
|
|
if (const auto *ObjCFor = dyn_cast<ObjCForCollectionStmt>(Condition)) {
|
|
bool HasMoreIteraton =
|
|
ExprEngine::hasMoreIteration(State, ObjCFor, N->getLocationContext());
|
|
// Checkers have already ran on branch conditions, so the current
|
|
// information as to whether the loop has more iteration becomes outdated
|
|
// after this point.
|
|
State = ExprEngine::removeIterationState(State, ObjCFor,
|
|
N->getLocationContext());
|
|
if (HasMoreIteraton)
|
|
return std::pair<ProgramStateRef, ProgramStateRef>{State, nullptr};
|
|
else
|
|
return std::pair<ProgramStateRef, ProgramStateRef>{nullptr, State};
|
|
}
|
|
SVal X = State->getSVal(Condition, N->getLocationContext());
|
|
|
|
if (X.isUnknownOrUndef()) {
|
|
// Give it a chance to recover from unknown.
|
|
if (const auto *Ex = dyn_cast<Expr>(Condition)) {
|
|
if (Ex->getType()->isIntegralOrEnumerationType()) {
|
|
// Try to recover some path-sensitivity. Right now casts of symbolic
|
|
// integers that promote their values are currently not tracked well.
|
|
// If 'Condition' is such an expression, try and recover the
|
|
// underlying value and use that instead.
|
|
SVal recovered =
|
|
RecoverCastedSymbol(State, Condition, N->getLocationContext(),
|
|
N->getState()->getStateManager().getContext());
|
|
|
|
if (!recovered.isUnknown()) {
|
|
X = recovered;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the condition is still unknown, give up.
|
|
if (X.isUnknownOrUndef())
|
|
return std::nullopt;
|
|
|
|
DefinedSVal V = X.castAs<DefinedSVal>();
|
|
|
|
ProgramStateRef StTrue, StFalse;
|
|
return State->assume(V);
|
|
}
|
|
|
|
void ExprEngine::processBranch(
|
|
const Stmt *Condition, NodeBuilderContext &BldCtx, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst, const CFGBlock *DstT, const CFGBlock *DstF,
|
|
std::optional<unsigned> IterationsCompletedInLoop) {
|
|
assert((!Condition || !isa<CXXBindTemporaryExpr>(Condition)) &&
|
|
"CXXBindTemporaryExprs are handled by processBindTemporary.");
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
PrettyStackTraceLocationContext StackCrashInfo(LCtx);
|
|
currBldrCtx = &BldCtx;
|
|
|
|
// Check for NULL conditions; e.g. "for(;;)"
|
|
if (!Condition) {
|
|
BranchNodeBuilder NullCondBldr(Pred, Dst, BldCtx, DstT, DstF);
|
|
NullCondBldr.generateNode(Pred->getState(), true, Pred);
|
|
return;
|
|
}
|
|
|
|
if (const auto *Ex = dyn_cast<Expr>(Condition))
|
|
Condition = Ex->IgnoreParens();
|
|
|
|
Condition = ResolveCondition(Condition, BldCtx.getBlock());
|
|
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
|
|
Condition->getBeginLoc(),
|
|
"Error evaluating branch");
|
|
|
|
ExplodedNodeSet CheckersOutSet;
|
|
getCheckerManager().runCheckersForBranchCondition(Condition, CheckersOutSet,
|
|
Pred, *this);
|
|
// We generated only sinks.
|
|
if (CheckersOutSet.empty())
|
|
return;
|
|
|
|
BranchNodeBuilder Builder(CheckersOutSet, Dst, BldCtx, DstT, DstF);
|
|
for (ExplodedNode *PredN : CheckersOutSet) {
|
|
if (PredN->isSink())
|
|
continue;
|
|
|
|
ProgramStateRef PrevState = PredN->getState();
|
|
|
|
ProgramStateRef StTrue = PrevState, StFalse = PrevState;
|
|
if (const auto KnownCondValueAssumption = assumeCondition(Condition, PredN))
|
|
std::tie(StTrue, StFalse) = *KnownCondValueAssumption;
|
|
|
|
if (StTrue && StFalse)
|
|
assert(!isa<ObjCForCollectionStmt>(Condition));
|
|
|
|
// We want to ensure consistent behavior between `eagerly-assume=false`,
|
|
// when the state split is always performed by the `assumeCondition()`
|
|
// call within this function and `eagerly-assume=true` (the default), when
|
|
// some conditions (comparison operators, unary negation) can trigger a
|
|
// state split before this callback. There are some contrived corner cases
|
|
// that behave differently with and without `eagerly-assume`, but I don't
|
|
// know about an example that could plausibly appear in "real" code.
|
|
bool BothFeasible =
|
|
(StTrue && StFalse) ||
|
|
didEagerlyAssumeBifurcateAt(PrevState, dyn_cast<Expr>(Condition));
|
|
|
|
if (StTrue) {
|
|
// In a loop, if both branches are feasible (i.e. the analyzer doesn't
|
|
// understand the loop condition) and two iterations have already been
|
|
// completed, then don't assume a third iteration because it is a
|
|
// redundant execution path (unlikely to be different from earlier loop
|
|
// exits) and can cause false positives if e.g. the loop iterates over a
|
|
// two-element structure with an opaque condition.
|
|
//
|
|
// The iteration count "2" is hardcoded because it's the natural limit:
|
|
// * the fact that the programmer wrote a loop (and not just an `if`)
|
|
// implies that they thought that the loop body might be executed twice;
|
|
// * however, there are situations where the programmer knows that there
|
|
// are at most two iterations but writes a loop that appears to be
|
|
// generic, because there is no special syntax for "loop with at most
|
|
// two iterations". (This pattern is common in FFMPEG and appears in
|
|
// many other projects as well.)
|
|
bool CompletedTwoIterations = IterationsCompletedInLoop.value_or(0) >= 2;
|
|
bool SkipTrueBranch = BothFeasible && CompletedTwoIterations;
|
|
|
|
// FIXME: This "don't assume third iteration" heuristic partially
|
|
// conflicts with the widen-loop analysis option (which is off by
|
|
// default). If we intend to support and stabilize the loop widening,
|
|
// we must ensure that it 'plays nicely' with this logic.
|
|
if (!SkipTrueBranch || AMgr.options.ShouldWidenLoops) {
|
|
Builder.generateNode(StTrue, true, PredN);
|
|
} else if (!AMgr.options.InlineFunctionsWithAmbiguousLoops) {
|
|
// FIXME: There is an ancient and arbitrary heuristic in
|
|
// `ExprEngine::processCFGBlockEntrance` which prevents all further
|
|
// inlining of a function if it finds an execution path within that
|
|
// function which reaches the `MaxBlockVisitOnPath` limit (a/k/a
|
|
// `analyzer-max-loop`, by default four iterations in a loop). Adding
|
|
// this "don't assume third iteration" logic significantly increased
|
|
// the analysis runtime on some inputs because less functions were
|
|
// arbitrarily excluded from being inlined, so more entry points used
|
|
// up their full allocated budget. As a hacky compensation for this,
|
|
// here we apply the "should not inline" mark in cases when the loop
|
|
// could potentially reach the `MaxBlockVisitOnPath` limit without the
|
|
// "don't assume third iteration" logic. This slightly overcompensates
|
|
// (activates if the third iteration can be entered, and will not
|
|
// recognize cases where the fourth iteration would't be completed), but
|
|
// should be good enough for practical purposes.
|
|
if (const LocationContext *LC = getInlinedLocationContext(Pred, G)) {
|
|
Engine.FunctionSummaries->markShouldNotInline(
|
|
LC->getStackFrame()->getDecl());
|
|
}
|
|
}
|
|
}
|
|
|
|
if (StFalse) {
|
|
// In a loop, if both branches are feasible (i.e. the analyzer doesn't
|
|
// understand the loop condition), we are before the first iteration and
|
|
// the analyzer option `assume-at-least-one-iteration` is set to `true`,
|
|
// then avoid creating the execution path where the loop is skipped.
|
|
//
|
|
// In some situations this "loop is skipped" execution path is an
|
|
// important corner case that may evade the notice of the developer and
|
|
// hide significant bugs -- however, there are also many situations where
|
|
// it's guaranteed that at least one iteration will happen (e.g. some
|
|
// data structure is always nonempty), but the analyzer cannot realize
|
|
// this and will produce false positives when it assumes that the loop is
|
|
// skipped.
|
|
bool BeforeFirstIteration = IterationsCompletedInLoop == std::optional{0};
|
|
bool SkipFalseBranch = BothFeasible && BeforeFirstIteration &&
|
|
AMgr.options.ShouldAssumeAtLeastOneIteration;
|
|
if (!SkipFalseBranch)
|
|
Builder.generateNode(StFalse, false, PredN);
|
|
}
|
|
}
|
|
currBldrCtx = nullptr;
|
|
}
|
|
|
|
/// The GDM component containing the set of global variables which have been
|
|
/// previously initialized with explicit initializers.
|
|
REGISTER_TRAIT_WITH_PROGRAMSTATE(InitializedGlobalsSet,
|
|
llvm::ImmutableSet<const VarDecl *>)
|
|
|
|
void ExprEngine::processStaticInitializer(const DeclStmt *DS,
|
|
NodeBuilderContext &BuilderCtx,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst,
|
|
const CFGBlock *DstT,
|
|
const CFGBlock *DstF) {
|
|
PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
|
|
currBldrCtx = &BuilderCtx;
|
|
|
|
const auto *VD = cast<VarDecl>(DS->getSingleDecl());
|
|
ProgramStateRef state = Pred->getState();
|
|
bool initHasRun = state->contains<InitializedGlobalsSet>(VD);
|
|
BranchNodeBuilder Builder(Pred, Dst, BuilderCtx, DstT, DstF);
|
|
|
|
if (!initHasRun) {
|
|
state = state->add<InitializedGlobalsSet>(VD);
|
|
}
|
|
|
|
Builder.generateNode(state, initHasRun, Pred);
|
|
|
|
currBldrCtx = nullptr;
|
|
}
|
|
|
|
/// processIndirectGoto - Called by CoreEngine. Used to generate successor
|
|
/// nodes by processing the 'effects' of a computed goto jump.
|
|
void ExprEngine::processIndirectGoto(IndirectGotoNodeBuilder &builder) {
|
|
ProgramStateRef state = builder.getState();
|
|
SVal V = state->getSVal(builder.getTarget(), builder.getLocationContext());
|
|
|
|
// Three possibilities:
|
|
//
|
|
// (1) We know the computed label.
|
|
// (2) The label is NULL (or some other constant), or Undefined.
|
|
// (3) We have no clue about the label. Dispatch to all targets.
|
|
//
|
|
|
|
using iterator = IndirectGotoNodeBuilder::iterator;
|
|
|
|
if (std::optional<loc::GotoLabel> LV = V.getAs<loc::GotoLabel>()) {
|
|
const LabelDecl *L = LV->getLabel();
|
|
|
|
for (iterator Succ : builder) {
|
|
if (Succ.getLabel() == L) {
|
|
builder.generateNode(Succ, state);
|
|
return;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("No block with label.");
|
|
}
|
|
|
|
if (isa<UndefinedVal, loc::ConcreteInt>(V)) {
|
|
// Dispatch to the first target and mark it as a sink.
|
|
//ExplodedNode* N = builder.generateNode(builder.begin(), state, true);
|
|
// FIXME: add checker visit.
|
|
// UndefBranches.insert(N);
|
|
return;
|
|
}
|
|
|
|
// This is really a catch-all. We don't support symbolics yet.
|
|
// FIXME: Implement dispatch for symbolic pointers.
|
|
|
|
for (iterator Succ : builder)
|
|
builder.generateNode(Succ, state);
|
|
}
|
|
|
|
void ExprEngine::processBeginOfFunction(NodeBuilderContext &BC,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst,
|
|
const BlockEdge &L) {
|
|
SaveAndRestore<const NodeBuilderContext *> NodeContextRAII(currBldrCtx, &BC);
|
|
getCheckerManager().runCheckersForBeginFunction(Dst, L, Pred, *this);
|
|
}
|
|
|
|
/// ProcessEndPath - Called by CoreEngine. Used to generate end-of-path
|
|
/// nodes when the control reaches the end of a function.
|
|
void ExprEngine::processEndOfFunction(NodeBuilderContext& BC,
|
|
ExplodedNode *Pred,
|
|
const ReturnStmt *RS) {
|
|
ProgramStateRef State = Pred->getState();
|
|
|
|
if (!Pred->getStackFrame()->inTopFrame())
|
|
State = finishArgumentConstruction(
|
|
State, *getStateManager().getCallEventManager().getCaller(
|
|
Pred->getStackFrame(), Pred->getState()));
|
|
|
|
// FIXME: We currently cannot assert that temporaries are clear, because
|
|
// lifetime extended temporaries are not always modelled correctly. In some
|
|
// cases when we materialize the temporary, we do
|
|
// createTemporaryRegionIfNeeded(), and the region changes, and also the
|
|
// respective destructor becomes automatic from temporary. So for now clean up
|
|
// the state manually before asserting. Ideally, this braced block of code
|
|
// should go away.
|
|
{
|
|
const LocationContext *FromLC = Pred->getLocationContext();
|
|
const LocationContext *ToLC = FromLC->getStackFrame()->getParent();
|
|
const LocationContext *LC = FromLC;
|
|
while (LC != ToLC) {
|
|
assert(LC && "ToLC must be a parent of FromLC!");
|
|
for (auto I : State->get<ObjectsUnderConstruction>())
|
|
if (I.first.getLocationContext() == LC) {
|
|
// The comment above only pardons us for not cleaning up a
|
|
// temporary destructor. If any other statements are found here,
|
|
// it must be a separate problem.
|
|
assert(I.first.getItem().getKind() ==
|
|
ConstructionContextItem::TemporaryDestructorKind ||
|
|
I.first.getItem().getKind() ==
|
|
ConstructionContextItem::ElidedDestructorKind);
|
|
State = State->remove<ObjectsUnderConstruction>(I.first);
|
|
}
|
|
LC = LC->getParent();
|
|
}
|
|
}
|
|
|
|
// Perform the transition with cleanups.
|
|
if (State != Pred->getState()) {
|
|
ExplodedNodeSet PostCleanup;
|
|
NodeBuilder Bldr(Pred, PostCleanup, BC);
|
|
Pred = Bldr.generateNode(Pred->getLocation(), State, Pred);
|
|
if (!Pred) {
|
|
// The node with clean temporaries already exists. We might have reached
|
|
// it on a path on which we initialize different temporaries.
|
|
return;
|
|
}
|
|
}
|
|
|
|
assert(areAllObjectsFullyConstructed(Pred->getState(),
|
|
Pred->getLocationContext(),
|
|
Pred->getStackFrame()->getParent()));
|
|
|
|
PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
|
|
|
|
ExplodedNodeSet Dst;
|
|
if (Pred->getLocationContext()->inTopFrame()) {
|
|
// Remove dead symbols.
|
|
ExplodedNodeSet AfterRemovedDead;
|
|
removeDeadOnEndOfFunction(BC, Pred, AfterRemovedDead);
|
|
|
|
// Notify checkers.
|
|
for (const auto I : AfterRemovedDead)
|
|
getCheckerManager().runCheckersForEndFunction(BC, Dst, I, *this, RS);
|
|
} else {
|
|
getCheckerManager().runCheckersForEndFunction(BC, Dst, Pred, *this, RS);
|
|
}
|
|
|
|
Engine.enqueueEndOfFunction(Dst, RS);
|
|
}
|
|
|
|
/// ProcessSwitch - Called by CoreEngine. Used to generate successor
|
|
/// nodes by processing the 'effects' of a switch statement.
|
|
void ExprEngine::processSwitch(SwitchNodeBuilder& builder) {
|
|
using iterator = SwitchNodeBuilder::iterator;
|
|
|
|
ProgramStateRef state = builder.getState();
|
|
const Expr *CondE = builder.getCondition();
|
|
SVal CondV_untested = state->getSVal(CondE, builder.getLocationContext());
|
|
|
|
if (CondV_untested.isUndef()) {
|
|
//ExplodedNode* N = builder.generateDefaultCaseNode(state, true);
|
|
// FIXME: add checker
|
|
//UndefBranches.insert(N);
|
|
|
|
return;
|
|
}
|
|
DefinedOrUnknownSVal CondV = CondV_untested.castAs<DefinedOrUnknownSVal>();
|
|
|
|
ProgramStateRef DefaultSt = state;
|
|
|
|
iterator I = builder.begin(), EI = builder.end();
|
|
bool defaultIsFeasible = I == EI;
|
|
|
|
for ( ; I != EI; ++I) {
|
|
// Successor may be pruned out during CFG construction.
|
|
if (!I.getBlock())
|
|
continue;
|
|
|
|
const CaseStmt *Case = I.getCase();
|
|
|
|
// Evaluate the LHS of the case value.
|
|
llvm::APSInt V1 = Case->getLHS()->EvaluateKnownConstInt(getContext());
|
|
assert(V1.getBitWidth() == getContext().getIntWidth(CondE->getType()));
|
|
|
|
// Get the RHS of the case, if it exists.
|
|
llvm::APSInt V2;
|
|
if (const Expr *E = Case->getRHS())
|
|
V2 = E->EvaluateKnownConstInt(getContext());
|
|
else
|
|
V2 = V1;
|
|
|
|
ProgramStateRef StateCase;
|
|
if (std::optional<NonLoc> NL = CondV.getAs<NonLoc>())
|
|
std::tie(StateCase, DefaultSt) =
|
|
DefaultSt->assumeInclusiveRange(*NL, V1, V2);
|
|
else // UnknownVal
|
|
StateCase = DefaultSt;
|
|
|
|
if (StateCase)
|
|
builder.generateCaseStmtNode(I, StateCase);
|
|
|
|
// Now "assume" that the case doesn't match. Add this state
|
|
// to the default state (if it is feasible).
|
|
if (DefaultSt)
|
|
defaultIsFeasible = true;
|
|
else {
|
|
defaultIsFeasible = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!defaultIsFeasible)
|
|
return;
|
|
|
|
// If we have switch(enum value), the default branch is not
|
|
// feasible if all of the enum constants not covered by 'case:' statements
|
|
// are not feasible values for the switch condition.
|
|
//
|
|
// Note that this isn't as accurate as it could be. Even if there isn't
|
|
// a case for a particular enum value as long as that enum value isn't
|
|
// feasible then it shouldn't be considered for making 'default:' reachable.
|
|
const SwitchStmt *SS = builder.getSwitch();
|
|
const Expr *CondExpr = SS->getCond()->IgnoreParenImpCasts();
|
|
if (CondExpr->getType()->getAs<EnumType>()) {
|
|
if (SS->isAllEnumCasesCovered())
|
|
return;
|
|
}
|
|
|
|
builder.generateDefaultCaseNode(DefaultSt);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transfer functions: Loads and stores.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ExprEngine::VisitCommonDeclRefExpr(const Expr *Ex, const NamedDecl *D,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
|
|
ProgramStateRef state = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
|
|
auto resolveAsLambdaCapturedVar =
|
|
[&](const ValueDecl *VD) -> std::optional<std::pair<SVal, QualType>> {
|
|
const auto *MD = dyn_cast<CXXMethodDecl>(LCtx->getDecl());
|
|
const auto *DeclRefEx = dyn_cast<DeclRefExpr>(Ex);
|
|
if (AMgr.options.ShouldInlineLambdas && DeclRefEx &&
|
|
DeclRefEx->refersToEnclosingVariableOrCapture() && MD &&
|
|
MD->getParent()->isLambda()) {
|
|
// Lookup the field of the lambda.
|
|
const CXXRecordDecl *CXXRec = MD->getParent();
|
|
llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields;
|
|
FieldDecl *LambdaThisCaptureField;
|
|
CXXRec->getCaptureFields(LambdaCaptureFields, LambdaThisCaptureField);
|
|
|
|
// Sema follows a sequence of complex rules to determine whether the
|
|
// variable should be captured.
|
|
if (const FieldDecl *FD = LambdaCaptureFields[VD]) {
|
|
Loc CXXThis = svalBuilder.getCXXThis(MD, LCtx->getStackFrame());
|
|
SVal CXXThisVal = state->getSVal(CXXThis);
|
|
return std::make_pair(state->getLValue(FD, CXXThisVal), FD->getType());
|
|
}
|
|
}
|
|
|
|
return std::nullopt;
|
|
};
|
|
|
|
if (const auto *VD = dyn_cast<VarDecl>(D)) {
|
|
// C permits "extern void v", and if you cast the address to a valid type,
|
|
// you can even do things with it. We simply pretend
|
|
assert(Ex->isGLValue() || VD->getType()->isVoidType());
|
|
const LocationContext *LocCtxt = Pred->getLocationContext();
|
|
std::optional<std::pair<SVal, QualType>> VInfo =
|
|
resolveAsLambdaCapturedVar(VD);
|
|
|
|
if (!VInfo)
|
|
VInfo = std::make_pair(state->getLValue(VD, LocCtxt), VD->getType());
|
|
|
|
SVal V = VInfo->first;
|
|
bool IsReference = VInfo->second->isReferenceType();
|
|
|
|
// For references, the 'lvalue' is the pointer address stored in the
|
|
// reference region.
|
|
if (IsReference) {
|
|
if (const MemRegion *R = V.getAsRegion())
|
|
V = state->getSVal(R);
|
|
else
|
|
V = UnknownVal();
|
|
}
|
|
|
|
Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr,
|
|
ProgramPoint::PostLValueKind);
|
|
return;
|
|
}
|
|
if (const auto *ED = dyn_cast<EnumConstantDecl>(D)) {
|
|
assert(!Ex->isGLValue());
|
|
SVal V = svalBuilder.makeIntVal(ED->getInitVal());
|
|
Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V));
|
|
return;
|
|
}
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
|
|
SVal V = svalBuilder.getFunctionPointer(FD);
|
|
Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr,
|
|
ProgramPoint::PostLValueKind);
|
|
return;
|
|
}
|
|
if (isa<FieldDecl, IndirectFieldDecl>(D)) {
|
|
// Delegate all work related to pointer to members to the surrounding
|
|
// operator&.
|
|
return;
|
|
}
|
|
if (const auto *BD = dyn_cast<BindingDecl>(D)) {
|
|
// Handle structured bindings captured by lambda.
|
|
if (std::optional<std::pair<SVal, QualType>> VInfo =
|
|
resolveAsLambdaCapturedVar(BD)) {
|
|
auto [V, T] = VInfo.value();
|
|
|
|
if (T->isReferenceType()) {
|
|
if (const MemRegion *R = V.getAsRegion())
|
|
V = state->getSVal(R);
|
|
else
|
|
V = UnknownVal();
|
|
}
|
|
|
|
Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr,
|
|
ProgramPoint::PostLValueKind);
|
|
return;
|
|
}
|
|
|
|
const auto *DD = cast<DecompositionDecl>(BD->getDecomposedDecl());
|
|
|
|
SVal Base = state->getLValue(DD, LCtx);
|
|
if (DD->getType()->isReferenceType()) {
|
|
if (const MemRegion *R = Base.getAsRegion())
|
|
Base = state->getSVal(R);
|
|
else
|
|
Base = UnknownVal();
|
|
}
|
|
|
|
SVal V = UnknownVal();
|
|
|
|
// Handle binding to data members
|
|
if (const auto *ME = dyn_cast<MemberExpr>(BD->getBinding())) {
|
|
const auto *Field = cast<FieldDecl>(ME->getMemberDecl());
|
|
V = state->getLValue(Field, Base);
|
|
}
|
|
// Handle binding to arrays
|
|
else if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BD->getBinding())) {
|
|
SVal Idx = state->getSVal(ASE->getIdx(), LCtx);
|
|
|
|
// Note: the index of an element in a structured binding is automatically
|
|
// created and it is a unique identifier of the specific element. Thus it
|
|
// cannot be a value that varies at runtime.
|
|
assert(Idx.isConstant() && "BindingDecl array index is not a constant!");
|
|
|
|
V = state->getLValue(BD->getType(), Idx, Base);
|
|
}
|
|
// Handle binding to tuple-like structures
|
|
else if (const auto *HV = BD->getHoldingVar()) {
|
|
V = state->getLValue(HV, LCtx);
|
|
|
|
if (HV->getType()->isReferenceType()) {
|
|
if (const MemRegion *R = V.getAsRegion())
|
|
V = state->getSVal(R);
|
|
else
|
|
V = UnknownVal();
|
|
}
|
|
} else
|
|
llvm_unreachable("An unknown case of structured binding encountered!");
|
|
|
|
// In case of tuple-like types the references are already handled, so we
|
|
// don't want to handle them again.
|
|
if (BD->getType()->isReferenceType() && !BD->getHoldingVar()) {
|
|
if (const MemRegion *R = V.getAsRegion())
|
|
V = state->getSVal(R);
|
|
else
|
|
V = UnknownVal();
|
|
}
|
|
|
|
Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr,
|
|
ProgramPoint::PostLValueKind);
|
|
|
|
return;
|
|
}
|
|
|
|
if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) {
|
|
// FIXME: We should meaningfully implement this.
|
|
(void)TPO;
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("Support for this Decl not implemented.");
|
|
}
|
|
|
|
/// VisitArrayInitLoopExpr - Transfer function for array init loop.
|
|
void ExprEngine::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *Ex,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
ExplodedNodeSet CheckerPreStmt;
|
|
getCheckerManager().runCheckersForPreStmt(CheckerPreStmt, Pred, Ex, *this);
|
|
|
|
ExplodedNodeSet EvalSet;
|
|
StmtNodeBuilder Bldr(CheckerPreStmt, EvalSet, *currBldrCtx);
|
|
|
|
const Expr *Arr = Ex->getCommonExpr()->getSourceExpr();
|
|
|
|
for (auto *Node : CheckerPreStmt) {
|
|
|
|
// The constructor visitior has already taken care of everything.
|
|
if (isa<CXXConstructExpr>(Ex->getSubExpr()))
|
|
break;
|
|
|
|
const LocationContext *LCtx = Node->getLocationContext();
|
|
ProgramStateRef state = Node->getState();
|
|
|
|
SVal Base = UnknownVal();
|
|
|
|
// As in case of this expression the sub-expressions are not visited by any
|
|
// other transfer functions, they are handled by matching their AST.
|
|
|
|
// Case of implicit copy or move ctor of object with array member
|
|
//
|
|
// Note: ExprEngine::VisitMemberExpr is not able to bind the array to the
|
|
// environment.
|
|
//
|
|
// struct S {
|
|
// int arr[2];
|
|
// };
|
|
//
|
|
//
|
|
// S a;
|
|
// S b = a;
|
|
//
|
|
// The AST in case of a *copy constructor* looks like this:
|
|
// ArrayInitLoopExpr
|
|
// |-OpaqueValueExpr
|
|
// | `-MemberExpr <-- match this
|
|
// | `-DeclRefExpr
|
|
// ` ...
|
|
//
|
|
//
|
|
// S c;
|
|
// S d = std::move(d);
|
|
//
|
|
// In case of a *move constructor* the resulting AST looks like:
|
|
// ArrayInitLoopExpr
|
|
// |-OpaqueValueExpr
|
|
// | `-MemberExpr <-- match this first
|
|
// | `-CXXStaticCastExpr <-- match this after
|
|
// | `-DeclRefExpr
|
|
// ` ...
|
|
if (const auto *ME = dyn_cast<MemberExpr>(Arr)) {
|
|
Expr *MEBase = ME->getBase();
|
|
|
|
// Move ctor
|
|
if (auto CXXSCE = dyn_cast<CXXStaticCastExpr>(MEBase)) {
|
|
MEBase = CXXSCE->getSubExpr();
|
|
}
|
|
|
|
auto ObjDeclExpr = cast<DeclRefExpr>(MEBase);
|
|
SVal Obj = state->getLValue(cast<VarDecl>(ObjDeclExpr->getDecl()), LCtx);
|
|
|
|
Base = state->getLValue(cast<FieldDecl>(ME->getMemberDecl()), Obj);
|
|
}
|
|
|
|
// Case of lambda capture and decomposition declaration
|
|
//
|
|
// int arr[2];
|
|
//
|
|
// [arr]{ int a = arr[0]; }();
|
|
// auto[a, b] = arr;
|
|
//
|
|
// In both of these cases the AST looks like the following:
|
|
// ArrayInitLoopExpr
|
|
// |-OpaqueValueExpr
|
|
// | `-DeclRefExpr <-- match this
|
|
// ` ...
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arr))
|
|
Base = state->getLValue(cast<VarDecl>(DRE->getDecl()), LCtx);
|
|
|
|
// Create a lazy compound value to the original array
|
|
if (const MemRegion *R = Base.getAsRegion())
|
|
Base = state->getSVal(R);
|
|
else
|
|
Base = UnknownVal();
|
|
|
|
Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, Base));
|
|
}
|
|
|
|
getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this);
|
|
}
|
|
|
|
/// VisitArraySubscriptExpr - Transfer function for array accesses
|
|
void ExprEngine::VisitArraySubscriptExpr(const ArraySubscriptExpr *A,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst){
|
|
const Expr *Base = A->getBase()->IgnoreParens();
|
|
const Expr *Idx = A->getIdx()->IgnoreParens();
|
|
|
|
ExplodedNodeSet CheckerPreStmt;
|
|
getCheckerManager().runCheckersForPreStmt(CheckerPreStmt, Pred, A, *this);
|
|
|
|
ExplodedNodeSet EvalSet;
|
|
StmtNodeBuilder Bldr(CheckerPreStmt, EvalSet, *currBldrCtx);
|
|
|
|
bool IsVectorType = A->getBase()->getType()->isVectorType();
|
|
|
|
// The "like" case is for situations where C standard prohibits the type to
|
|
// be an lvalue, e.g. taking the address of a subscript of an expression of
|
|
// type "void *".
|
|
bool IsGLValueLike = A->isGLValue() ||
|
|
(A->getType().isCForbiddenLValueType() && !AMgr.getLangOpts().CPlusPlus);
|
|
|
|
for (auto *Node : CheckerPreStmt) {
|
|
const LocationContext *LCtx = Node->getLocationContext();
|
|
ProgramStateRef state = Node->getState();
|
|
|
|
if (IsGLValueLike) {
|
|
QualType T = A->getType();
|
|
|
|
// One of the forbidden LValue types! We still need to have sensible
|
|
// symbolic locations to represent this stuff. Note that arithmetic on
|
|
// void pointers is a GCC extension.
|
|
if (T->isVoidType())
|
|
T = getContext().CharTy;
|
|
|
|
SVal V = state->getLValue(T,
|
|
state->getSVal(Idx, LCtx),
|
|
state->getSVal(Base, LCtx));
|
|
Bldr.generateNode(A, Node, state->BindExpr(A, LCtx, V), nullptr,
|
|
ProgramPoint::PostLValueKind);
|
|
} else if (IsVectorType) {
|
|
// FIXME: non-glvalue vector reads are not modelled.
|
|
Bldr.generateNode(A, Node, state, nullptr);
|
|
} else {
|
|
llvm_unreachable("Array subscript should be an lValue when not \
|
|
a vector and not a forbidden lvalue type");
|
|
}
|
|
}
|
|
|
|
getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, A, *this);
|
|
}
|
|
|
|
/// VisitMemberExpr - Transfer function for member expressions.
|
|
void ExprEngine::VisitMemberExpr(const MemberExpr *M, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
// FIXME: Prechecks eventually go in ::Visit().
|
|
ExplodedNodeSet CheckedSet;
|
|
getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, M, *this);
|
|
|
|
ExplodedNodeSet EvalSet;
|
|
ValueDecl *Member = M->getMemberDecl();
|
|
|
|
// Handle static member variables and enum constants accessed via
|
|
// member syntax.
|
|
if (isa<VarDecl, EnumConstantDecl>(Member)) {
|
|
for (const auto I : CheckedSet)
|
|
VisitCommonDeclRefExpr(M, Member, I, EvalSet);
|
|
} else {
|
|
StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
|
|
ExplodedNodeSet Tmp;
|
|
|
|
for (const auto I : CheckedSet) {
|
|
ProgramStateRef state = I->getState();
|
|
const LocationContext *LCtx = I->getLocationContext();
|
|
Expr *BaseExpr = M->getBase();
|
|
|
|
// Handle C++ method calls.
|
|
if (const auto *MD = dyn_cast<CXXMethodDecl>(Member)) {
|
|
if (MD->isImplicitObjectMemberFunction())
|
|
state = createTemporaryRegionIfNeeded(state, LCtx, BaseExpr);
|
|
|
|
SVal MDVal = svalBuilder.getFunctionPointer(MD);
|
|
state = state->BindExpr(M, LCtx, MDVal);
|
|
|
|
Bldr.generateNode(M, I, state);
|
|
continue;
|
|
}
|
|
|
|
// Handle regular struct fields / member variables.
|
|
const SubRegion *MR = nullptr;
|
|
state = createTemporaryRegionIfNeeded(state, LCtx, BaseExpr,
|
|
/*Result=*/nullptr,
|
|
/*OutRegionWithAdjustments=*/&MR);
|
|
SVal baseExprVal =
|
|
MR ? loc::MemRegionVal(MR) : state->getSVal(BaseExpr, LCtx);
|
|
|
|
// FIXME: Copied from RegionStoreManager::bind()
|
|
if (const auto *SR =
|
|
dyn_cast_or_null<SymbolicRegion>(baseExprVal.getAsRegion())) {
|
|
QualType T = SR->getPointeeStaticType();
|
|
baseExprVal =
|
|
loc::MemRegionVal(getStoreManager().GetElementZeroRegion(SR, T));
|
|
}
|
|
|
|
const auto *field = cast<FieldDecl>(Member);
|
|
SVal L = state->getLValue(field, baseExprVal);
|
|
|
|
if (M->isGLValue() || M->getType()->isArrayType()) {
|
|
// We special-case rvalues of array type because the analyzer cannot
|
|
// reason about them, since we expect all regions to be wrapped in Locs.
|
|
// We instead treat these as lvalues and assume that they will decay to
|
|
// pointers as soon as they are used.
|
|
if (!M->isGLValue()) {
|
|
assert(M->getType()->isArrayType());
|
|
const auto *PE =
|
|
dyn_cast<ImplicitCastExpr>(I->getParentMap().getParentIgnoreParens(M));
|
|
if (!PE || PE->getCastKind() != CK_ArrayToPointerDecay) {
|
|
llvm_unreachable("should always be wrapped in ArrayToPointerDecay");
|
|
}
|
|
}
|
|
|
|
if (field->getType()->isReferenceType()) {
|
|
if (const MemRegion *R = L.getAsRegion())
|
|
L = state->getSVal(R);
|
|
else
|
|
L = UnknownVal();
|
|
}
|
|
|
|
Bldr.generateNode(M, I, state->BindExpr(M, LCtx, L), nullptr,
|
|
ProgramPoint::PostLValueKind);
|
|
} else {
|
|
Bldr.takeNodes(I);
|
|
evalLoad(Tmp, M, M, I, state, L);
|
|
Bldr.addNodes(Tmp);
|
|
}
|
|
}
|
|
}
|
|
|
|
getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, M, *this);
|
|
}
|
|
|
|
void ExprEngine::VisitAtomicExpr(const AtomicExpr *AE, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
ExplodedNodeSet AfterPreSet;
|
|
getCheckerManager().runCheckersForPreStmt(AfterPreSet, Pred, AE, *this);
|
|
|
|
// For now, treat all the arguments to C11 atomics as escaping.
|
|
// FIXME: Ideally we should model the behavior of the atomics precisely here.
|
|
|
|
ExplodedNodeSet AfterInvalidateSet;
|
|
StmtNodeBuilder Bldr(AfterPreSet, AfterInvalidateSet, *currBldrCtx);
|
|
|
|
for (const auto I : AfterPreSet) {
|
|
ProgramStateRef State = I->getState();
|
|
const LocationContext *LCtx = I->getLocationContext();
|
|
|
|
SmallVector<SVal, 8> ValuesToInvalidate;
|
|
for (unsigned SI = 0, Count = AE->getNumSubExprs(); SI != Count; SI++) {
|
|
const Expr *SubExpr = AE->getSubExprs()[SI];
|
|
SVal SubExprVal = State->getSVal(SubExpr, LCtx);
|
|
ValuesToInvalidate.push_back(SubExprVal);
|
|
}
|
|
|
|
State = State->invalidateRegions(ValuesToInvalidate, getCFGElementRef(),
|
|
currBldrCtx->blockCount(), LCtx,
|
|
/*CausedByPointerEscape*/ true,
|
|
/*Symbols=*/nullptr);
|
|
|
|
SVal ResultVal = UnknownVal();
|
|
State = State->BindExpr(AE, LCtx, ResultVal);
|
|
Bldr.generateNode(AE, I, State, nullptr,
|
|
ProgramPoint::PostStmtKind);
|
|
}
|
|
|
|
getCheckerManager().runCheckersForPostStmt(Dst, AfterInvalidateSet, AE, *this);
|
|
}
|
|
|
|
// A value escapes in four possible cases:
|
|
// (1) We are binding to something that is not a memory region.
|
|
// (2) We are binding to a MemRegion that does not have stack storage.
|
|
// (3) We are binding to a top-level parameter region with a non-trivial
|
|
// destructor. We won't see the destructor during analysis, but it's there.
|
|
// (4) We are binding to a MemRegion with stack storage that the store
|
|
// does not understand.
|
|
ProgramStateRef ExprEngine::processPointerEscapedOnBind(
|
|
ProgramStateRef State, ArrayRef<std::pair<SVal, SVal>> LocAndVals,
|
|
const LocationContext *LCtx, PointerEscapeKind Kind,
|
|
const CallEvent *Call) {
|
|
SmallVector<SVal, 8> Escaped;
|
|
for (const std::pair<SVal, SVal> &LocAndVal : LocAndVals) {
|
|
// Cases (1) and (2).
|
|
const MemRegion *MR = LocAndVal.first.getAsRegion();
|
|
const MemSpaceRegion *Space = MR ? MR->getMemorySpace(State) : nullptr;
|
|
if (!MR || !isa<StackSpaceRegion, StaticGlobalSpaceRegion>(Space)) {
|
|
Escaped.push_back(LocAndVal.second);
|
|
continue;
|
|
}
|
|
|
|
// Case (3).
|
|
if (const auto *VR = dyn_cast<VarRegion>(MR->getBaseRegion()))
|
|
if (isa<StackArgumentsSpaceRegion>(Space) &&
|
|
VR->getStackFrame()->inTopFrame())
|
|
if (const auto *RD = VR->getValueType()->getAsCXXRecordDecl())
|
|
if (!RD->hasTrivialDestructor()) {
|
|
Escaped.push_back(LocAndVal.second);
|
|
continue;
|
|
}
|
|
|
|
// Case (4): in order to test that, generate a new state with the binding
|
|
// added. If it is the same state, then it escapes (since the store cannot
|
|
// represent the binding).
|
|
// Do this only if we know that the store is not supposed to generate the
|
|
// same state.
|
|
SVal StoredVal = State->getSVal(MR);
|
|
if (StoredVal != LocAndVal.second)
|
|
if (State ==
|
|
(State->bindLoc(loc::MemRegionVal(MR), LocAndVal.second, LCtx)))
|
|
Escaped.push_back(LocAndVal.second);
|
|
}
|
|
|
|
if (Escaped.empty())
|
|
return State;
|
|
|
|
return escapeValues(State, Escaped, Kind, Call);
|
|
}
|
|
|
|
ProgramStateRef
|
|
ExprEngine::processPointerEscapedOnBind(ProgramStateRef State, SVal Loc,
|
|
SVal Val, const LocationContext *LCtx) {
|
|
std::pair<SVal, SVal> LocAndVal(Loc, Val);
|
|
return processPointerEscapedOnBind(State, LocAndVal, LCtx, PSK_EscapeOnBind,
|
|
nullptr);
|
|
}
|
|
|
|
ProgramStateRef
|
|
ExprEngine::notifyCheckersOfPointerEscape(ProgramStateRef State,
|
|
const InvalidatedSymbols *Invalidated,
|
|
ArrayRef<const MemRegion *> ExplicitRegions,
|
|
const CallEvent *Call,
|
|
RegionAndSymbolInvalidationTraits &ITraits) {
|
|
if (!Invalidated || Invalidated->empty())
|
|
return State;
|
|
|
|
if (!Call)
|
|
return getCheckerManager().runCheckersForPointerEscape(State,
|
|
*Invalidated,
|
|
nullptr,
|
|
PSK_EscapeOther,
|
|
&ITraits);
|
|
|
|
// If the symbols were invalidated by a call, we want to find out which ones
|
|
// were invalidated directly due to being arguments to the call.
|
|
InvalidatedSymbols SymbolsDirectlyInvalidated;
|
|
for (const auto I : ExplicitRegions) {
|
|
if (const SymbolicRegion *R = I->StripCasts()->getAs<SymbolicRegion>())
|
|
SymbolsDirectlyInvalidated.insert(R->getSymbol());
|
|
}
|
|
|
|
InvalidatedSymbols SymbolsIndirectlyInvalidated;
|
|
for (const auto &sym : *Invalidated) {
|
|
if (SymbolsDirectlyInvalidated.count(sym))
|
|
continue;
|
|
SymbolsIndirectlyInvalidated.insert(sym);
|
|
}
|
|
|
|
if (!SymbolsDirectlyInvalidated.empty())
|
|
State = getCheckerManager().runCheckersForPointerEscape(State,
|
|
SymbolsDirectlyInvalidated, Call, PSK_DirectEscapeOnCall, &ITraits);
|
|
|
|
// Notify about the symbols that get indirectly invalidated by the call.
|
|
if (!SymbolsIndirectlyInvalidated.empty())
|
|
State = getCheckerManager().runCheckersForPointerEscape(State,
|
|
SymbolsIndirectlyInvalidated, Call, PSK_IndirectEscapeOnCall, &ITraits);
|
|
|
|
return State;
|
|
}
|
|
|
|
/// evalBind - Handle the semantics of binding a value to a specific location.
|
|
/// This method is used by evalStore and (soon) VisitDeclStmt, and others.
|
|
void ExprEngine::evalBind(ExplodedNodeSet &Dst, const Stmt *StoreE,
|
|
ExplodedNode *Pred,
|
|
SVal location, SVal Val,
|
|
bool atDeclInit, const ProgramPoint *PP) {
|
|
const LocationContext *LC = Pred->getLocationContext();
|
|
PostStmt PS(StoreE, LC);
|
|
if (!PP)
|
|
PP = &PS;
|
|
|
|
// Do a previsit of the bind.
|
|
ExplodedNodeSet CheckedSet;
|
|
getCheckerManager().runCheckersForBind(CheckedSet, Pred, location, Val,
|
|
StoreE, *this, *PP);
|
|
|
|
StmtNodeBuilder Bldr(CheckedSet, Dst, *currBldrCtx);
|
|
|
|
// If the location is not a 'Loc', it will already be handled by
|
|
// the checkers. There is nothing left to do.
|
|
if (!isa<Loc>(location)) {
|
|
const ProgramPoint L = PostStore(StoreE, LC, /*Loc*/nullptr,
|
|
/*tag*/nullptr);
|
|
ProgramStateRef state = Pred->getState();
|
|
state = processPointerEscapedOnBind(state, location, Val, LC);
|
|
Bldr.generateNode(L, state, Pred);
|
|
return;
|
|
}
|
|
|
|
for (const auto PredI : CheckedSet) {
|
|
ProgramStateRef state = PredI->getState();
|
|
|
|
state = processPointerEscapedOnBind(state, location, Val, LC);
|
|
|
|
// When binding the value, pass on the hint that this is a initialization.
|
|
// For initializations, we do not need to inform clients of region
|
|
// changes.
|
|
state = state->bindLoc(location.castAs<Loc>(),
|
|
Val, LC, /* notifyChanges = */ !atDeclInit);
|
|
|
|
const MemRegion *LocReg = nullptr;
|
|
if (std::optional<loc::MemRegionVal> LocRegVal =
|
|
location.getAs<loc::MemRegionVal>()) {
|
|
LocReg = LocRegVal->getRegion();
|
|
}
|
|
|
|
const ProgramPoint L = PostStore(StoreE, LC, LocReg, nullptr);
|
|
Bldr.generateNode(L, state, PredI);
|
|
}
|
|
}
|
|
|
|
/// evalStore - Handle the semantics of a store via an assignment.
|
|
/// @param Dst The node set to store generated state nodes
|
|
/// @param AssignE The assignment expression if the store happens in an
|
|
/// assignment.
|
|
/// @param LocationE The location expression that is stored to.
|
|
/// @param state The current simulation state
|
|
/// @param location The location to store the value
|
|
/// @param Val The value to be stored
|
|
void ExprEngine::evalStore(ExplodedNodeSet &Dst, const Expr *AssignE,
|
|
const Expr *LocationE,
|
|
ExplodedNode *Pred,
|
|
ProgramStateRef state, SVal location, SVal Val,
|
|
const ProgramPointTag *tag) {
|
|
// Proceed with the store. We use AssignE as the anchor for the PostStore
|
|
// ProgramPoint if it is non-NULL, and LocationE otherwise.
|
|
const Expr *StoreE = AssignE ? AssignE : LocationE;
|
|
|
|
// Evaluate the location (checks for bad dereferences).
|
|
ExplodedNodeSet Tmp;
|
|
evalLocation(Tmp, AssignE, LocationE, Pred, state, location, false);
|
|
|
|
if (Tmp.empty())
|
|
return;
|
|
|
|
if (location.isUndef())
|
|
return;
|
|
|
|
for (const auto I : Tmp)
|
|
evalBind(Dst, StoreE, I, location, Val, false);
|
|
}
|
|
|
|
void ExprEngine::evalLoad(ExplodedNodeSet &Dst,
|
|
const Expr *NodeEx,
|
|
const Expr *BoundEx,
|
|
ExplodedNode *Pred,
|
|
ProgramStateRef state,
|
|
SVal location,
|
|
const ProgramPointTag *tag,
|
|
QualType LoadTy) {
|
|
assert(!isa<NonLoc>(location) && "location cannot be a NonLoc.");
|
|
assert(NodeEx);
|
|
assert(BoundEx);
|
|
// Evaluate the location (checks for bad dereferences).
|
|
ExplodedNodeSet Tmp;
|
|
evalLocation(Tmp, NodeEx, BoundEx, Pred, state, location, true);
|
|
if (Tmp.empty())
|
|
return;
|
|
|
|
StmtNodeBuilder Bldr(Tmp, Dst, *currBldrCtx);
|
|
if (location.isUndef())
|
|
return;
|
|
|
|
// Proceed with the load.
|
|
for (const auto I : Tmp) {
|
|
state = I->getState();
|
|
const LocationContext *LCtx = I->getLocationContext();
|
|
|
|
SVal V = UnknownVal();
|
|
if (location.isValid()) {
|
|
if (LoadTy.isNull())
|
|
LoadTy = BoundEx->getType();
|
|
V = state->getSVal(location.castAs<Loc>(), LoadTy);
|
|
}
|
|
|
|
Bldr.generateNode(NodeEx, I, state->BindExpr(BoundEx, LCtx, V), tag,
|
|
ProgramPoint::PostLoadKind);
|
|
}
|
|
}
|
|
|
|
void ExprEngine::evalLocation(ExplodedNodeSet &Dst,
|
|
const Stmt *NodeEx,
|
|
const Stmt *BoundEx,
|
|
ExplodedNode *Pred,
|
|
ProgramStateRef state,
|
|
SVal location,
|
|
bool isLoad) {
|
|
StmtNodeBuilder BldrTop(Pred, Dst, *currBldrCtx);
|
|
// Early checks for performance reason.
|
|
if (location.isUnknown()) {
|
|
return;
|
|
}
|
|
|
|
ExplodedNodeSet Src;
|
|
BldrTop.takeNodes(Pred);
|
|
StmtNodeBuilder Bldr(Pred, Src, *currBldrCtx);
|
|
if (Pred->getState() != state) {
|
|
// Associate this new state with an ExplodedNode.
|
|
// FIXME: If I pass null tag, the graph is incorrect, e.g for
|
|
// int *p;
|
|
// p = 0;
|
|
// *p = 0xDEADBEEF;
|
|
// "p = 0" is not noted as "Null pointer value stored to 'p'" but
|
|
// instead "int *p" is noted as
|
|
// "Variable 'p' initialized to a null pointer value"
|
|
|
|
static SimpleProgramPointTag tag(TagProviderName, "Location");
|
|
Bldr.generateNode(NodeEx, Pred, state, &tag);
|
|
}
|
|
ExplodedNodeSet Tmp;
|
|
getCheckerManager().runCheckersForLocation(Tmp, Src, location, isLoad,
|
|
NodeEx, BoundEx, *this);
|
|
BldrTop.addNodes(Tmp);
|
|
}
|
|
|
|
std::pair<const ProgramPointTag *, const ProgramPointTag *>
|
|
ExprEngine::getEagerlyAssumeBifurcationTags() {
|
|
static SimpleProgramPointTag TrueTag(TagProviderName, "Eagerly Assume True"),
|
|
FalseTag(TagProviderName, "Eagerly Assume False");
|
|
|
|
return std::make_pair(&TrueTag, &FalseTag);
|
|
}
|
|
|
|
/// If the last EagerlyAssume attempt was successful (i.e. the true and false
|
|
/// cases were both feasible), this state trait stores the expression where it
|
|
/// happened; otherwise this holds nullptr.
|
|
REGISTER_TRAIT_WITH_PROGRAMSTATE(LastEagerlyAssumeExprIfSuccessful,
|
|
const Expr *)
|
|
|
|
void ExprEngine::evalEagerlyAssumeBifurcation(ExplodedNodeSet &Dst,
|
|
ExplodedNodeSet &Src,
|
|
const Expr *Ex) {
|
|
StmtNodeBuilder Bldr(Src, Dst, *currBldrCtx);
|
|
|
|
for (ExplodedNode *Pred : Src) {
|
|
// Test if the previous node was as the same expression. This can happen
|
|
// when the expression fails to evaluate to anything meaningful and
|
|
// (as an optimization) we don't generate a node.
|
|
ProgramPoint P = Pred->getLocation();
|
|
if (!P.getAs<PostStmt>() || P.castAs<PostStmt>().getStmt() != Ex) {
|
|
continue;
|
|
}
|
|
|
|
ProgramStateRef State = Pred->getState();
|
|
State = State->set<LastEagerlyAssumeExprIfSuccessful>(nullptr);
|
|
SVal V = State->getSVal(Ex, Pred->getLocationContext());
|
|
std::optional<nonloc::SymbolVal> SEV = V.getAs<nonloc::SymbolVal>();
|
|
if (SEV && SEV->isExpression()) {
|
|
const auto &[TrueTag, FalseTag] = getEagerlyAssumeBifurcationTags();
|
|
|
|
auto [StateTrue, StateFalse] = State->assume(*SEV);
|
|
|
|
if (StateTrue && StateFalse) {
|
|
StateTrue = StateTrue->set<LastEagerlyAssumeExprIfSuccessful>(Ex);
|
|
StateFalse = StateFalse->set<LastEagerlyAssumeExprIfSuccessful>(Ex);
|
|
}
|
|
|
|
// First assume that the condition is true.
|
|
if (StateTrue) {
|
|
SVal Val = svalBuilder.makeIntVal(1U, Ex->getType());
|
|
StateTrue = StateTrue->BindExpr(Ex, Pred->getLocationContext(), Val);
|
|
Bldr.generateNode(Ex, Pred, StateTrue, TrueTag);
|
|
}
|
|
|
|
// Next, assume that the condition is false.
|
|
if (StateFalse) {
|
|
SVal Val = svalBuilder.makeIntVal(0U, Ex->getType());
|
|
StateFalse = StateFalse->BindExpr(Ex, Pred->getLocationContext(), Val);
|
|
Bldr.generateNode(Ex, Pred, StateFalse, FalseTag);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ExprEngine::didEagerlyAssumeBifurcateAt(ProgramStateRef State,
|
|
const Expr *Ex) const {
|
|
return Ex && State->get<LastEagerlyAssumeExprIfSuccessful>() == Ex;
|
|
}
|
|
|
|
void ExprEngine::VisitGCCAsmStmt(const GCCAsmStmt *A, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
// We have processed both the inputs and the outputs. All of the outputs
|
|
// should evaluate to Locs. Nuke all of their values.
|
|
|
|
// FIXME: Some day in the future it would be nice to allow a "plug-in"
|
|
// which interprets the inline asm and stores proper results in the
|
|
// outputs.
|
|
|
|
ProgramStateRef state = Pred->getState();
|
|
|
|
for (const Expr *O : A->outputs()) {
|
|
SVal X = state->getSVal(O, Pred->getLocationContext());
|
|
assert(!isa<NonLoc>(X)); // Should be an Lval, or unknown, undef.
|
|
|
|
if (std::optional<Loc> LV = X.getAs<Loc>())
|
|
state = state->invalidateRegions(*LV, getCFGElementRef(),
|
|
currBldrCtx->blockCount(),
|
|
Pred->getLocationContext(),
|
|
/*CausedByPointerEscape=*/true);
|
|
}
|
|
|
|
// Do not reason about locations passed inside inline assembly.
|
|
for (const Expr *I : A->inputs()) {
|
|
SVal X = state->getSVal(I, Pred->getLocationContext());
|
|
|
|
if (std::optional<Loc> LV = X.getAs<Loc>())
|
|
state = state->invalidateRegions(*LV, getCFGElementRef(),
|
|
currBldrCtx->blockCount(),
|
|
Pred->getLocationContext(),
|
|
/*CausedByPointerEscape=*/true);
|
|
}
|
|
|
|
Bldr.generateNode(A, Pred, state);
|
|
}
|
|
|
|
void ExprEngine::VisitMSAsmStmt(const MSAsmStmt *A, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
Bldr.generateNode(A, Pred, Pred->getState());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Visualization.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace llvm {
|
|
|
|
template<>
|
|
struct DOTGraphTraits<ExplodedGraph*> : public DefaultDOTGraphTraits {
|
|
DOTGraphTraits (bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
|
|
|
|
static bool nodeHasBugReport(const ExplodedNode *N) {
|
|
BugReporter &BR = static_cast<ExprEngine &>(
|
|
N->getState()->getStateManager().getOwningEngine()).getBugReporter();
|
|
|
|
for (const auto &Class : BR.equivalenceClasses()) {
|
|
for (const auto &Report : Class.getReports()) {
|
|
const auto *PR = dyn_cast<PathSensitiveBugReport>(Report.get());
|
|
if (!PR)
|
|
continue;
|
|
const ExplodedNode *EN = PR->getErrorNode();
|
|
if (EN->getState() == N->getState() &&
|
|
EN->getLocation() == N->getLocation())
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// \p PreCallback: callback before break.
|
|
/// \p PostCallback: callback after break.
|
|
/// \p Stop: stop iteration if returns @c true
|
|
/// \return Whether @c Stop ever returned @c true.
|
|
static bool traverseHiddenNodes(
|
|
const ExplodedNode *N,
|
|
llvm::function_ref<void(const ExplodedNode *)> PreCallback,
|
|
llvm::function_ref<void(const ExplodedNode *)> PostCallback,
|
|
llvm::function_ref<bool(const ExplodedNode *)> Stop) {
|
|
while (true) {
|
|
PreCallback(N);
|
|
if (Stop(N))
|
|
return true;
|
|
|
|
if (N->succ_size() != 1 || !isNodeHidden(N->getFirstSucc(), nullptr))
|
|
break;
|
|
PostCallback(N);
|
|
|
|
N = N->getFirstSucc();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isNodeHidden(const ExplodedNode *N, const ExplodedGraph *G) {
|
|
return N->isTrivial();
|
|
}
|
|
|
|
static std::string getNodeLabel(const ExplodedNode *N, ExplodedGraph *G){
|
|
std::string Buf;
|
|
llvm::raw_string_ostream Out(Buf);
|
|
|
|
const bool IsDot = true;
|
|
const unsigned int Space = 1;
|
|
ProgramStateRef State = N->getState();
|
|
|
|
Out << "{ \"state_id\": " << State->getID()
|
|
<< ",\\l";
|
|
|
|
Indent(Out, Space, IsDot) << "\"program_points\": [\\l";
|
|
|
|
// Dump program point for all the previously skipped nodes.
|
|
traverseHiddenNodes(
|
|
N,
|
|
[&](const ExplodedNode *OtherNode) {
|
|
Indent(Out, Space + 1, IsDot) << "{ ";
|
|
OtherNode->getLocation().printJson(Out, /*NL=*/"\\l");
|
|
Out << ", \"tag\": ";
|
|
if (const ProgramPointTag *Tag = OtherNode->getLocation().getTag())
|
|
Out << '\"' << Tag->getTagDescription() << '\"';
|
|
else
|
|
Out << "null";
|
|
Out << ", \"node_id\": " << OtherNode->getID() <<
|
|
", \"is_sink\": " << OtherNode->isSink() <<
|
|
", \"has_report\": " << nodeHasBugReport(OtherNode) << " }";
|
|
},
|
|
// Adds a comma and a new-line between each program point.
|
|
[&](const ExplodedNode *) { Out << ",\\l"; },
|
|
[&](const ExplodedNode *) { return false; });
|
|
|
|
Out << "\\l"; // Adds a new-line to the last program point.
|
|
Indent(Out, Space, IsDot) << "],\\l";
|
|
|
|
State->printDOT(Out, N->getLocationContext(), Space);
|
|
|
|
Out << "\\l}\\l";
|
|
return Buf;
|
|
}
|
|
};
|
|
|
|
} // namespace llvm
|
|
|
|
void ExprEngine::ViewGraph(bool trim) {
|
|
std::string Filename = DumpGraph(trim);
|
|
llvm::DisplayGraph(Filename, false, llvm::GraphProgram::DOT);
|
|
}
|
|
|
|
void ExprEngine::ViewGraph(ArrayRef<const ExplodedNode *> Nodes) {
|
|
std::string Filename = DumpGraph(Nodes);
|
|
llvm::DisplayGraph(Filename, false, llvm::GraphProgram::DOT);
|
|
}
|
|
|
|
std::string ExprEngine::DumpGraph(bool trim, StringRef Filename) {
|
|
if (trim) {
|
|
std::vector<const ExplodedNode *> Src;
|
|
|
|
// Iterate through the reports and get their nodes.
|
|
for (const auto &Class : BR.equivalenceClasses()) {
|
|
const auto *R =
|
|
dyn_cast<PathSensitiveBugReport>(Class.getReports()[0].get());
|
|
if (!R)
|
|
continue;
|
|
const auto *N = const_cast<ExplodedNode *>(R->getErrorNode());
|
|
Src.push_back(N);
|
|
}
|
|
return DumpGraph(Src, Filename);
|
|
}
|
|
|
|
return llvm::WriteGraph(&G, "ExprEngine", /*ShortNames=*/false,
|
|
/*Title=*/"Exploded Graph",
|
|
/*Filename=*/std::string(Filename));
|
|
}
|
|
|
|
std::string ExprEngine::DumpGraph(ArrayRef<const ExplodedNode *> Nodes,
|
|
StringRef Filename) {
|
|
std::unique_ptr<ExplodedGraph> TrimmedG(G.trim(Nodes));
|
|
|
|
if (!TrimmedG) {
|
|
llvm::errs() << "warning: Trimmed ExplodedGraph is empty.\n";
|
|
return "";
|
|
}
|
|
|
|
return llvm::WriteGraph(TrimmedG.get(), "TrimmedExprEngine",
|
|
/*ShortNames=*/false,
|
|
/*Title=*/"Trimmed Exploded Graph",
|
|
/*Filename=*/std::string(Filename));
|
|
}
|
|
|
|
void *ProgramStateTrait<ReplayWithoutInlining>::GDMIndex() {
|
|
static int index = 0;
|
|
return &index;
|
|
}
|
|
|
|
void ExprEngine::anchor() { }
|