llvm-project/llvm/test/Transforms/LoopVectorize/consecutive-ptr-uniforms.ll
Matthew Simpson c62266d680 [LV] Sink scalar operands of predicated instructions
When we predicate an instruction (div, rem, store) we place the instruction in
its own basic block within the vectorized loop. If a predicated instruction has
scalar operands, it's possible to recursively sink these scalar expressions
into the predicated block so that they might avoid execution. This patch sinks
as much scalar computation as possible into predicated blocks. We previously
were able to sink such operands only if they were extractelement instructions.

Differential Revision: https://reviews.llvm.org/D25632

llvm-svn: 285097
2016-10-25 18:59:45 +00:00

441 lines
18 KiB
LLVM

; REQUIRES: asserts
; RUN: opt < %s -loop-vectorize -force-vector-width=4 -force-vector-interleave=1 -instcombine -debug-only=loop-vectorize -disable-output -print-after=instcombine 2>&1 | FileCheck %s
; RUN: opt < %s -loop-vectorize -force-vector-width=4 -force-vector-interleave=1 -enable-interleaved-mem-accesses -enable-cond-stores-vec -instcombine -debug-only=loop-vectorize -disable-output -print-after=instcombine 2>&1 | FileCheck %s --check-prefix=INTER
target datalayout = "e-m:e-i64:64-i128:128-n32:64-S128"
%pair = type { i32, i32 }
; CHECK-LABEL: consecutive_ptr_forward
;
; Check that a forward consecutive pointer is recognized as uniform and remains
; uniform after vectorization.
;
; CHECK: LV: Found uniform instruction: %tmp1 = getelementptr inbounds i32, i32* %a, i64 %i
; CHECK: vector.body
; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; CHECK-NOT: getelementptr
; CHECK: getelementptr inbounds i32, i32* %a, i64 %index
; CHECK-NOT: getelementptr
; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body
;
define i32 @consecutive_ptr_forward(i32* %a, i64 %n) {
entry:
br label %for.body
for.body:
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
%tmp0 = phi i32 [ %tmp3, %for.body ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %a, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
%tmp3 = add i32 %tmp0, %tmp2
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end:
%tmp4 = phi i32 [ %tmp3, %for.body ]
ret i32 %tmp4
}
; CHECK-LABEL: consecutive_ptr_reverse
;
; Check that a reverse consecutive pointer is recognized as uniform and remains
; uniform after vectorization.
;
; CHECK: LV: Found uniform instruction: %tmp1 = getelementptr inbounds i32, i32* %a, i64 %i
; CHECK: vector.body
; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; CHECK: %offset.idx = sub i64 %n, %index
; CHECK-NOT: getelementptr
; CHECK: %[[G0:.+]] = getelementptr inbounds i32, i32* %a, i64 %offset.idx
; CHECK: getelementptr i32, i32* %[[G0]], i64 -3
; CHECK-NOT: getelementptr
; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body
;
define i32 @consecutive_ptr_reverse(i32* %a, i64 %n) {
entry:
br label %for.body
for.body:
%i = phi i64 [ %i.next, %for.body ], [ %n, %entry ]
%tmp0 = phi i32 [ %tmp3, %for.body ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %a, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
%tmp3 = add i32 %tmp0, %tmp2
%i.next = add nuw nsw i64 %i, -1
%cond = icmp sgt i64 %i.next, 0
br i1 %cond, label %for.body, label %for.end
for.end:
%tmp4 = phi i32 [ %tmp3, %for.body ]
ret i32 %tmp4
}
; CHECK-LABEL: interleaved_access_forward
; INTER-LABEL: interleaved_access_forward
;
; Check that a consecutive-like pointer used by a forward interleaved group is
; recognized as uniform and remains uniform after vectorization. When
; interleaved memory accesses aren't enabled, the pointer should not be
; recognized as uniform, and it should not be uniform after vectorization.
;
; CHECK-NOT: LV: Found uniform instruction: %tmp1 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0
; CHECK-NOT: LV: Found uniform instruction: %tmp2 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 1
; CHECK: vector.body
; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; CHECK: %[[I1:.+]] = or i64 %index, 1
; CHECK: %[[I2:.+]] = or i64 %index, 2
; CHECK: %[[I3:.+]] = or i64 %index, 3
; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %index, i32 0
; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I1]], i32 0
; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I2]], i32 0
; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I3]], i32 0
; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %index, i32 1
; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I1]], i32 1
; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I2]], i32 1
; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I3]], i32 1
; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body
;
; INTER: LV: Found uniform instruction: %tmp1 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0
; INTER: LV: Found uniform instruction: %tmp2 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 1
; INTER: vector.body
; INTER: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; INTER-NOT: getelementptr
; INTER: getelementptr inbounds %pair, %pair* %p, i64 %index, i32 0
; INTER-NOT: getelementptr
; INTER: br i1 {{.*}}, label %middle.block, label %vector.body
;
define i32 @interleaved_access_forward(%pair* %p, i64 %n) {
entry:
br label %for.body
for.body:
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
%tmp0 = phi i32 [ %tmp6, %for.body ], [ 0, %entry ]
%tmp1 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0
%tmp2 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 1
%tmp3 = load i32, i32* %tmp1, align 8
%tmp4 = load i32, i32* %tmp2, align 8
%tmp5 = add i32 %tmp3, %tmp4
%tmp6 = add i32 %tmp0, %tmp5
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end:
%tmp14 = phi i32 [ %tmp6, %for.body ]
ret i32 %tmp14
}
; CHECK-LABEL: interleaved_access_reverse
; INTER-LABEL: interleaved_access_reverse
;
; Check that a consecutive-like pointer used by a reverse interleaved group is
; recognized as uniform and remains uniform after vectorization. When
; interleaved memory accesses aren't enabled, the pointer should not be
; recognized as uniform, and it should not be uniform after vectorization.
;
; recognized as uniform, and it should not be uniform after vectorization.
; CHECK-NOT: LV: Found uniform instruction: %tmp1 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0
; CHECK-NOT: LV: Found uniform instruction: %tmp2 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 1
; CHECK: vector.body
; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; CHECK: %offset.idx = sub i64 %n, %index
; CHECK: %[[I1:.+]] = add i64 %offset.idx, -1
; CHECK: %[[I2:.+]] = add i64 %offset.idx, -2
; CHECK: %[[I3:.+]] = add i64 %offset.idx, -3
; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %offset.idx, i32 0
; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I1]], i32 0
; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I2]], i32 0
; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I3]], i32 0
; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %offset.idx, i32 1
; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I1]], i32 1
; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I2]], i32 1
; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I3]], i32 1
; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body
;
; INTER: LV: Found uniform instruction: %tmp1 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0
; INTER: LV: Found uniform instruction: %tmp2 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 1
; INTER: vector.body
; INTER: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; INTER: %offset.idx = sub i64 %n, %index
; INTER-NOT: getelementptr
; INTER: %[[G0:.+]] = getelementptr inbounds %pair, %pair* %p, i64 %offset.idx, i32 0
; INTER: getelementptr i32, i32* %[[G0]], i64 -6
; INTER-NOT: getelementptr
; INTER: br i1 {{.*}}, label %middle.block, label %vector.body
;
define i32 @interleaved_access_reverse(%pair* %p, i64 %n) {
entry:
br label %for.body
for.body:
%i = phi i64 [ %i.next, %for.body ], [ %n, %entry ]
%tmp0 = phi i32 [ %tmp6, %for.body ], [ 0, %entry ]
%tmp1 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0
%tmp2 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 1
%tmp3 = load i32, i32* %tmp1, align 8
%tmp4 = load i32, i32* %tmp2, align 8
%tmp5 = add i32 %tmp3, %tmp4
%tmp6 = add i32 %tmp0, %tmp5
%i.next = add nuw nsw i64 %i, -1
%cond = icmp sgt i64 %i.next, 0
br i1 %cond, label %for.body, label %for.end
for.end:
%tmp14 = phi i32 [ %tmp6, %for.body ]
ret i32 %tmp14
}
; INTER-LABEL: predicated_store
;
; Check that a consecutive-like pointer used by a forward interleaved group and
; scalarized store is not recognized as uniform and is not uniform after
; vectorization. The store is scalarized because it's in a predicated block.
; Even though the load in this example is vectorized and only uses the pointer
; as if it were uniform, the store is scalarized, making the pointer
; non-uniform.
;
; INTER-NOT: LV: Found uniform instruction: %tmp0 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0
; INTER: vector.body
; INTER: %index = phi i64 [ 0, %vector.ph ], [ %index.next, {{.*}} ]
; INTER: %[[G0:.+]] = getelementptr inbounds %pair, %pair* %p, i64 %index, i32 0
; INTER: %[[B0:.+]] = bitcast i32* %[[G0]] to <8 x i32>*
; INTER: %wide.vec = load <8 x i32>, <8 x i32>* %[[B0]], align 8
; INTER: %[[I1:.+]] = or i64 %index, 1
; INTER: getelementptr inbounds %pair, %pair* %p, i64 %[[I1]], i32 0
; INTER: %[[I2:.+]] = or i64 %index, 2
; INTER: getelementptr inbounds %pair, %pair* %p, i64 %[[I2]], i32 0
; INTER: %[[I3:.+]] = or i64 %index, 3
; INTER: getelementptr inbounds %pair, %pair* %p, i64 %[[I3]], i32 0
; INTER: br i1 {{.*}}, label %middle.block, label %vector.body
;
define void @predicated_store(%pair *%p, i32 %x, i64 %n) {
entry:
br label %for.body
for.body:
%i = phi i64 [ %i.next, %if.merge ], [ 0, %entry ]
%tmp0 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0
%tmp1 = load i32, i32* %tmp0, align 8
%tmp2 = icmp eq i32 %tmp1, %x
br i1 %tmp2, label %if.then, label %if.merge
if.then:
store i32 %tmp1, i32* %tmp0, align 8
br label %if.merge
if.merge:
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end:
ret void
}
; CHECK-LABEL: irregular_type
;
; Check that a consecutive pointer used by a scalarized store is not recognized
; as uniform and is not uniform after vectorization. The store is scalarized
; because the stored type may required padding.
;
; CHECK-NOT: LV: Found uniform instruction: %tmp1 = getelementptr inbounds x86_fp80, x86_fp80* %a, i64 %i
; CHECK: vector.body
; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; CHECK: %[[I1:.+]] = or i64 %index, 1
; CHECK: %[[I2:.+]] = or i64 %index, 2
; CHECK: %[[I3:.+]] = or i64 %index, 3
; CHECK: getelementptr inbounds x86_fp80, x86_fp80* %a, i64 %index
; CHECK: getelementptr inbounds x86_fp80, x86_fp80* %a, i64 %[[I1]]
; CHECK: getelementptr inbounds x86_fp80, x86_fp80* %a, i64 %[[I2]]
; CHECK: getelementptr inbounds x86_fp80, x86_fp80* %a, i64 %[[I3]]
; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body
;
define void @irregular_type(x86_fp80* %a, i64 %n) {
entry:
br label %for.body
for.body:
%i = phi i64 [ 0, %entry ], [ %i.next, %for.body ]
%tmp0 = sitofp i32 1 to x86_fp80
%tmp1 = getelementptr inbounds x86_fp80, x86_fp80* %a, i64 %i
store x86_fp80 %tmp0, x86_fp80* %tmp1, align 16
%i.next = add i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end:
ret void
}
; CHECK-LABEL: pointer_iv_uniform
;
; Check that a pointer induction variable is recognized as uniform and remains
; uniform after vectorization.
;
; CHECK: LV: Found uniform instruction: %p = phi i32* [ %tmp03, %for.body ], [ %a, %entry ]
; CHECK: vector.body
; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; CHECK-NOT: getelementptr
; CHECK: %next.gep = getelementptr i32, i32* %a, i64 %index
; CHECK-NOT: getelementptr
; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body
;
define void @pointer_iv_uniform(i32* %a, i32 %x, i64 %n) {
entry:
br label %for.body
for.body:
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
%p = phi i32* [ %tmp03, %for.body ], [ %a, %entry ]
store i32 %x, i32* %p, align 8
%tmp03 = getelementptr inbounds i32, i32* %p, i32 1
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end:
ret void
}
; INTER-LABEL: pointer_iv_non_uniform_0
;
; Check that a pointer induction variable with a non-uniform user is not
; recognized as uniform and is not uniform after vectorization. The pointer
; induction variable is used by getelementptr instructions that are non-uniform
; due to scalarization of the stores.
;
; INTER-NOT: LV: Found uniform instruction: %p = phi i32* [ %tmp03, %for.body ], [ %a, %entry ]
; INTER: vector.body
; INTER: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; INTER: %[[I0:.+]] = shl i64 %index, 2
; INTER: %next.gep = getelementptr i32, i32* %a, i64 %[[I0]]
; INTER: %[[S1:.+]] = shl i64 %index, 2
; INTER: %[[I1:.+]] = or i64 %[[S1]], 4
; INTER: %next.gep2 = getelementptr i32, i32* %a, i64 %[[I1]]
; INTER: %[[S2:.+]] = shl i64 %index, 2
; INTER: %[[I2:.+]] = or i64 %[[S2]], 8
; INTER: %next.gep3 = getelementptr i32, i32* %a, i64 %[[I2]]
; INTER: %[[S3:.+]] = shl i64 %index, 2
; INTER: %[[I3:.+]] = or i64 %[[S3]], 12
; INTER: %next.gep4 = getelementptr i32, i32* %a, i64 %[[I3]]
; INTER: br i1 {{.*}}, label %middle.block, label %vector.body
;
define void @pointer_iv_non_uniform_0(i32* %a, i64 %n) {
entry:
br label %for.body
for.body:
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
%p = phi i32* [ %tmp03, %for.body ], [ %a, %entry ]
%tmp00 = load i32, i32* %p, align 8
%tmp01 = getelementptr inbounds i32, i32* %p, i32 1
%tmp02 = load i32, i32* %tmp01, align 8
%tmp03 = getelementptr inbounds i32, i32* %p, i32 4
%tmp04 = load i32, i32* %tmp03, align 8
%tmp05 = getelementptr inbounds i32, i32* %p, i32 5
%tmp06 = load i32, i32* %tmp05, align 8
%tmp07 = sub i32 %tmp04, %tmp00
%tmp08 = sub i32 %tmp02, %tmp02
%tmp09 = getelementptr inbounds i32, i32* %p, i32 2
store i32 %tmp07, i32* %tmp09, align 8
%tmp10 = getelementptr inbounds i32, i32* %p, i32 3
store i32 %tmp08, i32* %tmp10, align 8
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end:
ret void
}
; CHECK-LABEL: pointer_iv_non_uniform_1
;
; Check that a pointer induction variable with a non-uniform user is not
; recognized as uniform and is not uniform after vectorization. The pointer
; induction variable is used by a store that will be scalarized.
;
; CHECK-NOT: LV: Found uniform instruction: %p = phi x86_fp80* [%tmp1, %for.body], [%a, %entry]
; CHECK: vector.body
; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; CHECK: %next.gep = getelementptr x86_fp80, x86_fp80* %a, i64 %index
; CHECK: %[[I1:.+]] = or i64 %index, 1
; CHECK: %next.gep2 = getelementptr x86_fp80, x86_fp80* %a, i64 %[[I1]]
; CHECK: %[[I2:.+]] = or i64 %index, 2
; CHECK: %next.gep3 = getelementptr x86_fp80, x86_fp80* %a, i64 %[[I2]]
; CHECK: %[[I3:.+]] = or i64 %index, 3
; CHECK: %next.gep4 = getelementptr x86_fp80, x86_fp80* %a, i64 %[[I3]]
; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body
;
define void @pointer_iv_non_uniform_1(x86_fp80* %a, i64 %n) {
entry:
br label %for.body
for.body:
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
%p = phi x86_fp80* [%tmp1, %for.body], [%a, %entry]
%tmp0 = sitofp i32 1 to x86_fp80
store x86_fp80 %tmp0, x86_fp80* %p, align 16
%tmp1 = getelementptr inbounds x86_fp80, x86_fp80* %p, i32 1
%i.next = add i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end:
ret void
}
; CHECK-LABEL: pointer_iv_mixed
;
; Check multiple pointer induction variables where only one is recognized as
; uniform and remains uniform after vectorization. The other pointer induction
; variable is not recognized as uniform and is not uniform after vectorization
; because it is stored to memory.
;
; CHECK-NOT: LV: Found uniform instruction: %p = phi i32* [ %tmp3, %for.body ], [ %a, %entry ]
; CHECK: LV: Found uniform instruction: %q = phi i32** [ %tmp4, %for.body ], [ %b, %entry ]
; CHECK: vector.body
; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; CHECK: %next.gep = getelementptr i32, i32* %a, i64 %index
; CHECK: %[[I1:.+]] = or i64 %index, 1
; CHECK: %next.gep10 = getelementptr i32, i32* %a, i64 %[[I1]]
; CHECK: %[[I2:.+]] = or i64 %index, 2
; CHECK: %next.gep11 = getelementptr i32, i32* %a, i64 %[[I2]]
; CHECK: %[[I3:.+]] = or i64 %index, 3
; CHECK: %next.gep12 = getelementptr i32, i32* %a, i64 %[[I3]]
; CHECK: %[[V0:.+]] = insertelement <4 x i32*> undef, i32* %next.gep, i32 0
; CHECK: %[[V1:.+]] = insertelement <4 x i32*> %[[V0]], i32* %next.gep10, i32 1
; CHECK: %[[V2:.+]] = insertelement <4 x i32*> %[[V1]], i32* %next.gep11, i32 2
; CHECK: %[[V3:.+]] = insertelement <4 x i32*> %[[V2]], i32* %next.gep12, i32 3
; CHECK-NOT: getelementptr
; CHECK: %next.gep13 = getelementptr i32*, i32** %b, i64 %index
; CHECK-NOT: getelementptr
; CHECK: %[[B0:.+]] = bitcast i32** %next.gep13 to <4 x i32*>*
; CHECK: store <4 x i32*> %[[V3]], <4 x i32*>* %[[B0]], align 8
; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body
;
define i32 @pointer_iv_mixed(i32* %a, i32** %b, i64 %n) {
entry:
br label %for.body
for.body:
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
%p = phi i32* [ %tmp3, %for.body ], [ %a, %entry ]
%q = phi i32** [ %tmp4, %for.body ], [ %b, %entry ]
%tmp0 = phi i32 [ %tmp2, %for.body ], [ 0, %entry ]
%tmp1 = load i32, i32* %p, align 8
%tmp2 = add i32 %tmp1, %tmp0
store i32* %p, i32** %q, align 8
%tmp3 = getelementptr inbounds i32, i32* %p, i32 1
%tmp4 = getelementptr inbounds i32*, i32** %q, i32 1
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end:
%tmp5 = phi i32 [ %tmp2, %for.body ]
ret i32 %tmp5
}