
…types usi… (#144676)" This reverts commit 68471d29eed2c49f9b439e505b3f24d387d54f97. IntegralAP contains a union: union { uint64_t *Memory = nullptr; uint64_t Val; }; On 64bit systems, both Memory and Val have the same size. However, on 32 bit system, Val is 64bit and Memory only 32bit. Which means the default initializer for Memory will only zero half of Val. We fixed this by zero-initializing Val explicitly in the IntegralAP(unsigned BitWidth) constructor. See also the discussion in https://github.com/llvm/llvm-project/pull/144246
345 lines
9.8 KiB
C++
345 lines
9.8 KiB
C++
//===--- Integral.h - Wrapper for numeric types for the VM ------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Defines the VM types and helpers operating on types.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CLANG_AST_INTERP_INTEGRAL_H
|
|
#define LLVM_CLANG_AST_INTERP_INTEGRAL_H
|
|
|
|
#include "clang/AST/APValue.h"
|
|
#include "clang/AST/ComparisonCategories.h"
|
|
#include "llvm/ADT/APSInt.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
|
|
#include "Primitives.h"
|
|
|
|
namespace clang {
|
|
namespace interp {
|
|
|
|
using APInt = llvm::APInt;
|
|
using APSInt = llvm::APSInt;
|
|
|
|
template <bool Signed> class IntegralAP;
|
|
|
|
// Helper structure to select the representation.
|
|
template <unsigned Bits, bool Signed> struct Repr;
|
|
template <> struct Repr<8, false> {
|
|
using Type = uint8_t;
|
|
};
|
|
template <> struct Repr<16, false> {
|
|
using Type = uint16_t;
|
|
};
|
|
template <> struct Repr<32, false> {
|
|
using Type = uint32_t;
|
|
};
|
|
template <> struct Repr<64, false> {
|
|
using Type = uint64_t;
|
|
};
|
|
template <> struct Repr<8, true> {
|
|
using Type = int8_t;
|
|
};
|
|
template <> struct Repr<16, true> {
|
|
using Type = int16_t;
|
|
};
|
|
template <> struct Repr<32, true> {
|
|
using Type = int32_t;
|
|
};
|
|
template <> struct Repr<64, true> {
|
|
using Type = int64_t;
|
|
};
|
|
|
|
/// Wrapper around numeric types.
|
|
///
|
|
/// These wrappers are required to shared an interface between APSint and
|
|
/// builtin primitive numeral types, while optimising for storage and
|
|
/// allowing methods operating on primitive type to compile to fast code.
|
|
template <unsigned Bits, bool Signed> class Integral final {
|
|
private:
|
|
template <unsigned OtherBits, bool OtherSigned> friend class Integral;
|
|
|
|
// The primitive representing the integral.
|
|
using ReprT = typename Repr<Bits, Signed>::Type;
|
|
ReprT V;
|
|
static_assert(std::is_trivially_copyable_v<ReprT>);
|
|
|
|
/// Primitive representing limits.
|
|
static const auto Min = std::numeric_limits<ReprT>::min();
|
|
static const auto Max = std::numeric_limits<ReprT>::max();
|
|
|
|
/// Construct an integral from anything that is convertible to storage.
|
|
template <typename T> explicit Integral(T V) : V(V) {}
|
|
|
|
public:
|
|
using AsUnsigned = Integral<Bits, false>;
|
|
|
|
/// Zero-initializes an integral.
|
|
Integral() : V(0) {}
|
|
|
|
/// Constructs an integral from another integral.
|
|
template <unsigned SrcBits, bool SrcSign>
|
|
explicit Integral(Integral<SrcBits, SrcSign> V) : V(V.V) {}
|
|
|
|
/// Construct an integral from a value based on signedness.
|
|
explicit Integral(const APSInt &V)
|
|
: V(V.isSigned() ? V.getSExtValue() : V.getZExtValue()) {}
|
|
|
|
bool operator<(Integral RHS) const { return V < RHS.V; }
|
|
bool operator>(Integral RHS) const { return V > RHS.V; }
|
|
bool operator<=(Integral RHS) const { return V <= RHS.V; }
|
|
bool operator>=(Integral RHS) const { return V >= RHS.V; }
|
|
bool operator==(Integral RHS) const { return V == RHS.V; }
|
|
bool operator!=(Integral RHS) const { return V != RHS.V; }
|
|
bool operator>=(unsigned RHS) const {
|
|
return static_cast<unsigned>(V) >= RHS;
|
|
}
|
|
|
|
bool operator>(unsigned RHS) const {
|
|
return V >= 0 && static_cast<unsigned>(V) > RHS;
|
|
}
|
|
|
|
Integral operator-() const { return Integral(-V); }
|
|
Integral operator-(const Integral &Other) const {
|
|
return Integral(V - Other.V);
|
|
}
|
|
Integral operator~() const { return Integral(~V); }
|
|
|
|
template <unsigned DstBits, bool DstSign>
|
|
explicit operator Integral<DstBits, DstSign>() const {
|
|
return Integral<DstBits, DstSign>(V);
|
|
}
|
|
|
|
template <typename Ty, typename = std::enable_if_t<std::is_integral_v<Ty>>>
|
|
explicit operator Ty() const {
|
|
return V;
|
|
}
|
|
|
|
APSInt toAPSInt() const {
|
|
return APSInt(APInt(Bits, static_cast<uint64_t>(V), Signed), !Signed);
|
|
}
|
|
APSInt toAPSInt(unsigned BitWidth) const {
|
|
return APSInt(toAPInt(BitWidth), !Signed);
|
|
}
|
|
APInt toAPInt(unsigned BitWidth) const {
|
|
if constexpr (Signed)
|
|
return APInt(Bits, static_cast<uint64_t>(V), Signed)
|
|
.sextOrTrunc(BitWidth);
|
|
else
|
|
return APInt(Bits, static_cast<uint64_t>(V), Signed)
|
|
.zextOrTrunc(BitWidth);
|
|
}
|
|
APValue toAPValue(const ASTContext &) const { return APValue(toAPSInt()); }
|
|
|
|
Integral<Bits, false> toUnsigned() const {
|
|
return Integral<Bits, false>(*this);
|
|
}
|
|
|
|
constexpr static unsigned bitWidth() { return Bits; }
|
|
|
|
bool isZero() const { return !V; }
|
|
|
|
bool isMin() const { return *this == min(bitWidth()); }
|
|
|
|
bool isMinusOne() const { return Signed && V == ReprT(-1); }
|
|
|
|
constexpr static bool isSigned() { return Signed; }
|
|
|
|
bool isNegative() const { return V < ReprT(0); }
|
|
bool isPositive() const { return !isNegative(); }
|
|
|
|
ComparisonCategoryResult compare(const Integral &RHS) const {
|
|
return Compare(V, RHS.V);
|
|
}
|
|
|
|
void bitcastToMemory(std::byte *Dest) const {
|
|
std::memcpy(Dest, &V, sizeof(V));
|
|
}
|
|
|
|
static Integral bitcastFromMemory(const std::byte *Src, unsigned BitWidth) {
|
|
assert(BitWidth == sizeof(ReprT) * 8);
|
|
ReprT V;
|
|
|
|
std::memcpy(&V, Src, sizeof(ReprT));
|
|
return Integral(V);
|
|
}
|
|
|
|
std::string toDiagnosticString(const ASTContext &Ctx) const {
|
|
std::string NameStr;
|
|
llvm::raw_string_ostream OS(NameStr);
|
|
OS << V;
|
|
return NameStr;
|
|
}
|
|
|
|
unsigned countLeadingZeros() const {
|
|
if constexpr (!Signed)
|
|
return llvm::countl_zero<ReprT>(V);
|
|
if (isPositive())
|
|
return llvm::countl_zero<typename AsUnsigned::ReprT>(
|
|
static_cast<typename AsUnsigned::ReprT>(V));
|
|
llvm_unreachable("Don't call countLeadingZeros() on negative values.");
|
|
}
|
|
|
|
Integral truncate(unsigned TruncBits) const {
|
|
assert(TruncBits >= 1);
|
|
if (TruncBits >= Bits)
|
|
return *this;
|
|
const ReprT BitMask = (ReprT(1) << ReprT(TruncBits)) - 1;
|
|
const ReprT SignBit = ReprT(1) << (TruncBits - 1);
|
|
const ReprT ExtMask = ~BitMask;
|
|
return Integral((V & BitMask) | (Signed && (V & SignBit) ? ExtMask : 0));
|
|
}
|
|
|
|
void print(llvm::raw_ostream &OS) const { OS << V; }
|
|
|
|
static Integral min(unsigned NumBits) { return Integral(Min); }
|
|
static Integral max(unsigned NumBits) { return Integral(Max); }
|
|
|
|
template <typename ValT> static Integral from(ValT Value) {
|
|
if constexpr (std::is_integral<ValT>::value)
|
|
return Integral(Value);
|
|
else
|
|
return Integral::from(static_cast<Integral::ReprT>(Value));
|
|
}
|
|
|
|
template <unsigned SrcBits, bool SrcSign>
|
|
static std::enable_if_t<SrcBits != 0, Integral>
|
|
from(Integral<SrcBits, SrcSign> Value) {
|
|
return Integral(Value.V);
|
|
}
|
|
|
|
static Integral zero(unsigned BitWidth = 0) { return from(0); }
|
|
|
|
template <typename T> static Integral from(T Value, unsigned NumBits) {
|
|
return Integral(Value);
|
|
}
|
|
|
|
static bool inRange(int64_t Value, unsigned NumBits) {
|
|
return CheckRange<ReprT, Min, Max>(Value);
|
|
}
|
|
|
|
static bool increment(Integral A, Integral *R) {
|
|
return add(A, Integral(ReprT(1)), A.bitWidth(), R);
|
|
}
|
|
|
|
static bool decrement(Integral A, Integral *R) {
|
|
return sub(A, Integral(ReprT(1)), A.bitWidth(), R);
|
|
}
|
|
|
|
static bool add(Integral A, Integral B, unsigned OpBits, Integral *R) {
|
|
return CheckAddUB(A.V, B.V, R->V);
|
|
}
|
|
|
|
static bool sub(Integral A, Integral B, unsigned OpBits, Integral *R) {
|
|
return CheckSubUB(A.V, B.V, R->V);
|
|
}
|
|
|
|
static bool mul(Integral A, Integral B, unsigned OpBits, Integral *R) {
|
|
return CheckMulUB(A.V, B.V, R->V);
|
|
}
|
|
|
|
static bool rem(Integral A, Integral B, unsigned OpBits, Integral *R) {
|
|
*R = Integral(A.V % B.V);
|
|
return false;
|
|
}
|
|
|
|
static bool div(Integral A, Integral B, unsigned OpBits, Integral *R) {
|
|
*R = Integral(A.V / B.V);
|
|
return false;
|
|
}
|
|
|
|
static bool bitAnd(Integral A, Integral B, unsigned OpBits, Integral *R) {
|
|
*R = Integral(A.V & B.V);
|
|
return false;
|
|
}
|
|
|
|
static bool bitOr(Integral A, Integral B, unsigned OpBits, Integral *R) {
|
|
*R = Integral(A.V | B.V);
|
|
return false;
|
|
}
|
|
|
|
static bool bitXor(Integral A, Integral B, unsigned OpBits, Integral *R) {
|
|
*R = Integral(A.V ^ B.V);
|
|
return false;
|
|
}
|
|
|
|
static bool neg(Integral A, Integral *R) {
|
|
if (Signed && A.isMin())
|
|
return true;
|
|
|
|
*R = -A;
|
|
return false;
|
|
}
|
|
|
|
static bool comp(Integral A, Integral *R) {
|
|
*R = Integral(~A.V);
|
|
return false;
|
|
}
|
|
|
|
template <unsigned RHSBits, bool RHSSign>
|
|
static void shiftLeft(const Integral A, const Integral<RHSBits, RHSSign> B,
|
|
unsigned OpBits, Integral *R) {
|
|
*R = Integral::from(A.V << B.V, OpBits);
|
|
}
|
|
|
|
template <unsigned RHSBits, bool RHSSign>
|
|
static void shiftRight(const Integral A, const Integral<RHSBits, RHSSign> B,
|
|
unsigned OpBits, Integral *R) {
|
|
*R = Integral::from(A.V >> B.V, OpBits);
|
|
}
|
|
|
|
private:
|
|
template <typename T> static bool CheckAddUB(T A, T B, T &R) {
|
|
if constexpr (std::is_signed_v<T>) {
|
|
return llvm::AddOverflow<T>(A, B, R);
|
|
} else {
|
|
R = A + B;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
template <typename T> static bool CheckSubUB(T A, T B, T &R) {
|
|
if constexpr (std::is_signed_v<T>) {
|
|
return llvm::SubOverflow<T>(A, B, R);
|
|
} else {
|
|
R = A - B;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
template <typename T> static bool CheckMulUB(T A, T B, T &R) {
|
|
if constexpr (std::is_signed_v<T>) {
|
|
return llvm::MulOverflow<T>(A, B, R);
|
|
} else {
|
|
R = A * B;
|
|
return false;
|
|
}
|
|
}
|
|
template <typename T, T Min, T Max> static bool CheckRange(int64_t V) {
|
|
if constexpr (std::is_signed_v<T>) {
|
|
return Min <= V && V <= Max;
|
|
} else {
|
|
return V >= 0 && static_cast<uint64_t>(V) <= Max;
|
|
}
|
|
}
|
|
};
|
|
|
|
template <unsigned Bits, bool Signed>
|
|
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, Integral<Bits, Signed> I) {
|
|
I.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
} // namespace interp
|
|
} // namespace clang
|
|
|
|
#endif
|