llvm-project/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
Aart Bik 35517a251d [mlir][sparse] add init sparse tensor operation
This is the first step towards supporting general sparse tensors as output
of operations. The init sparse tensor is used to materialize an empty sparse
tensor of given shape and sparsity into a subsequent computation (similar to
the dense tensor init operation counterpart).

Example:
  %c = sparse_tensor.init %d1, %d2 : tensor<?x?xf32, #SparseMatrix>
  %0 = linalg.matmul
    ins(%a, %b: tensor<?x?xf32>, tensor<?x?xf32>)
    outs(%c: tensor<?x?xf32, #SparseMatrix>) -> tensor<?x?xf32, #SparseMatrix>

Reviewed By: bixia

Differential Revision: https://reviews.llvm.org/D111684
2021-10-13 09:47:56 -07:00

340 lines
12 KiB
C++

//===- SparseTensorDialect.cpp - Sparse tensor dialect implementation -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/OpImplementation.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOpsDialect.cpp.inc"
//===----------------------------------------------------------------------===//
// TensorDialect Attribute Methods.
//===----------------------------------------------------------------------===//
#define GET_ATTRDEF_CLASSES
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
static bool acceptBitWidth(unsigned bitWidth) {
switch (bitWidth) {
case 0:
case 8:
case 16:
case 32:
case 64:
return true;
default:
return false;
}
}
Attribute SparseTensorEncodingAttr::parse(DialectAsmParser &parser, Type type) {
if (failed(parser.parseLess()))
return {};
// Parse the data as a dictionary.
DictionaryAttr dict;
if (failed(parser.parseAttribute(dict)))
return {};
if (failed(parser.parseGreater()))
return {};
// Process the data from the parsed dictionary value into struct-like data.
SmallVector<SparseTensorEncodingAttr::DimLevelType, 4> dlt;
AffineMap map = {};
unsigned ptr = 0;
unsigned ind = 0;
for (const NamedAttribute &attr : dict) {
if (attr.first == "dimLevelType") {
auto arrayAttr = attr.second.dyn_cast<ArrayAttr>();
if (!arrayAttr) {
parser.emitError(parser.getNameLoc(),
"expected an array for dimension level types");
return {};
}
for (unsigned i = 0, e = arrayAttr.size(); i < e; i++) {
auto strAttr = arrayAttr[i].dyn_cast<StringAttr>();
if (!strAttr) {
parser.emitError(parser.getNameLoc(),
"expected a string value in dimension level types");
return {};
}
auto strVal = strAttr.getValue();
if (strVal == "dense") {
dlt.push_back(SparseTensorEncodingAttr::DimLevelType::Dense);
} else if (strVal == "compressed") {
dlt.push_back(SparseTensorEncodingAttr::DimLevelType::Compressed);
} else if (strVal == "singleton") {
dlt.push_back(SparseTensorEncodingAttr::DimLevelType::Singleton);
} else {
parser.emitError(parser.getNameLoc(),
"unexpected dimension level type: ")
<< strVal;
return {};
}
}
} else if (attr.first == "dimOrdering") {
auto affineAttr = attr.second.dyn_cast<AffineMapAttr>();
if (!affineAttr) {
parser.emitError(parser.getNameLoc(),
"expected an affine map for dimension ordering");
return {};
}
map = affineAttr.getValue();
} else if (attr.first == "pointerBitWidth") {
auto intAttr = attr.second.dyn_cast<IntegerAttr>();
if (!intAttr) {
parser.emitError(parser.getNameLoc(),
"expected an integral pointer bitwidth");
return {};
}
ptr = intAttr.getInt();
} else if (attr.first == "indexBitWidth") {
auto intAttr = attr.second.dyn_cast<IntegerAttr>();
if (!intAttr) {
parser.emitError(parser.getNameLoc(),
"expected an integral index bitwidth");
return {};
}
ind = intAttr.getInt();
} else {
parser.emitError(parser.getNameLoc(), "unexpected key: ")
<< attr.first.str();
return {};
}
}
// Construct struct-like storage for attribute.
return parser.getChecked<SparseTensorEncodingAttr>(parser.getContext(), dlt,
map, ptr, ind);
}
void SparseTensorEncodingAttr::print(DialectAsmPrinter &printer) const {
// Print the struct-like storage in dictionary fashion.
printer << "encoding<{ dimLevelType = [ ";
for (unsigned i = 0, e = getDimLevelType().size(); i < e; i++) {
switch (getDimLevelType()[i]) {
case DimLevelType::Dense:
printer << "\"dense\"";
break;
case DimLevelType::Compressed:
printer << "\"compressed\"";
break;
case DimLevelType::Singleton:
printer << "\"singleton\"";
break;
}
if (i != e - 1)
printer << ", ";
}
printer << " ]";
if (getDimOrdering())
printer << ", dimOrdering = affine_map<" << getDimOrdering() << ">";
printer << ", pointerBitWidth = " << getPointerBitWidth()
<< ", indexBitWidth = " << getIndexBitWidth() << " }>";
}
LogicalResult SparseTensorEncodingAttr::verify(
function_ref<InFlightDiagnostic()> emitError,
ArrayRef<DimLevelType> dimLevelType, AffineMap dimOrdering,
unsigned pointerBitWidth, unsigned indexBitWidth) {
if (!acceptBitWidth(pointerBitWidth))
return emitError() << "unexpected pointer bitwidth: " << pointerBitWidth;
if (!acceptBitWidth(indexBitWidth))
return emitError() << "unexpected index bitwidth: " << indexBitWidth;
if (dimOrdering) {
if (!dimOrdering.isPermutation())
return emitError()
<< "expected a permutation affine map for dimension ordering";
if (dimOrdering.getNumResults() != dimLevelType.size())
return emitError() << "unexpected mismatch in ordering and dimension "
"level types size";
}
return success();
}
LogicalResult SparseTensorEncodingAttr::verifyEncoding(
ArrayRef<int64_t> shape, Type elementType,
function_ref<InFlightDiagnostic()> emitError) const {
// Check structural integrity.
if (failed(verify(emitError, getDimLevelType(), getDimOrdering(),
getPointerBitWidth(), getIndexBitWidth())))
return failure();
// Check integrity with tensor type specifics. Dimension ordering is optional,
// but we always should have dimension level types for the full rank.
unsigned size = shape.size();
if (getDimOrdering() && getDimOrdering().getNumResults() != size)
return emitError() << "expected an affine map of size " << size
<< " for dimension ordering";
if (getDimLevelType().size() != size)
return emitError() << "expected an array of size " << size
<< " for dimension level types";
return success();
}
SparseTensorEncodingAttr
mlir::sparse_tensor::getSparseTensorEncoding(Type type) {
if (auto ttp = type.dyn_cast<RankedTensorType>())
return ttp.getEncoding().dyn_cast_or_null<SparseTensorEncodingAttr>();
return nullptr;
}
//===----------------------------------------------------------------------===//
// TensorDialect Operations.
//===----------------------------------------------------------------------===//
static LogicalResult isInBounds(Value dim, Value tensor) {
if (auto constantOp = dim.getDefiningOp<arith::ConstantOp>()) {
unsigned d = constantOp.value().cast<IntegerAttr>().getInt();
if (d >= tensor.getType().cast<RankedTensorType>().getRank())
return failure();
}
return success(); // in bounds, or symbolic
}
static LogicalResult isMatchingWidth(Value result, unsigned width) {
Type etp = result.getType().cast<MemRefType>().getElementType();
if ((width == 0 && etp.isIndex()) || (width > 0 && etp.isInteger(width)))
return success();
return failure();
}
static LogicalResult verify(NewOp op) {
if (!getSparseTensorEncoding(op.result().getType()))
return op.emitError("expected a sparse tensor result");
return success();
}
static LogicalResult verify(InitOp op) {
if (!getSparseTensorEncoding(op.result().getType()))
return op.emitError("expected a sparse tensor result");
RankedTensorType ttp = op.getType().cast<RankedTensorType>();
unsigned rank = ttp.getRank();
if (rank != op.sizes().size())
return op.emitError("unexpected mismatch between tensor rank and sizes: ")
<< rank << " vs. " << op.sizes().size();
auto shape = ttp.getShape();
for (unsigned i = 0; i < rank; i++) {
if (shape[i] == ShapedType::kDynamicSize)
continue;
auto constantOp = op.sizes()[i].getDefiningOp<ConstantOp>();
if (!constantOp ||
constantOp.getValue().cast<IntegerAttr>().getInt() != shape[i])
return op.emitError("unexpected mismatch with static dimension size ")
<< shape[i];
}
return success();
}
static LogicalResult verify(ConvertOp op) {
if (auto tp1 = op.source().getType().dyn_cast<RankedTensorType>()) {
if (auto tp2 = op.dest().getType().dyn_cast<RankedTensorType>()) {
assert(tp1.getRank() == tp2.getRank());
auto shape1 = tp1.getShape();
auto shape2 = tp2.getShape();
for (unsigned d = 0, rank = tp1.getRank(); d < rank; d++) {
if (shape1[d] != shape2[d])
return op.emitError("unexpected conversion mismatch in dimension ")
<< d;
}
return success();
}
}
return op.emitError("unexpected type in convert");
}
OpFoldResult ConvertOp::fold(ArrayRef<Attribute> operands) {
if (getType() == source().getType())
return source();
return {};
}
static LogicalResult verify(ReleaseOp op) {
if (!getSparseTensorEncoding(op.tensor().getType()))
return op.emitError("expected a sparse tensor to release");
return success();
}
static LogicalResult verify(ToPointersOp op) {
if (auto e = getSparseTensorEncoding(op.tensor().getType())) {
if (failed(isInBounds(op.dim(), op.tensor())))
return op.emitError("requested pointers dimension out of bounds");
if (failed(isMatchingWidth(op.result(), e.getPointerBitWidth())))
return op.emitError("unexpected type for pointers");
return success();
}
return op.emitError("expected a sparse tensor to get pointers");
}
static LogicalResult verify(ToIndicesOp op) {
if (auto e = getSparseTensorEncoding(op.tensor().getType())) {
if (failed(isInBounds(op.dim(), op.tensor())))
return op.emitError("requested indices dimension out of bounds");
if (failed(isMatchingWidth(op.result(), e.getIndexBitWidth())))
return op.emitError("unexpected type for indices");
return success();
}
return op.emitError("expected a sparse tensor to get indices");
}
static LogicalResult verify(ToValuesOp op) {
if (!getSparseTensorEncoding(op.tensor().getType()))
return op.emitError("expected a sparse tensor to get values");
RankedTensorType ttp = op.tensor().getType().cast<RankedTensorType>();
MemRefType mtp = op.result().getType().cast<MemRefType>();
if (ttp.getElementType() != mtp.getElementType())
return op.emitError("unexpected mismatch in element types");
return success();
}
static LogicalResult verify(ToTensorOp op) {
if (!getSparseTensorEncoding(op.result().getType()))
return op.emitError("expected a sparse tensor result");
return success();
}
//===----------------------------------------------------------------------===//
// TensorDialect Methods.
//===----------------------------------------------------------------------===//
void SparseTensorDialect::initialize() {
addAttributes<
#define GET_ATTRDEF_LIST
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
>();
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
>();
}
#define GET_OP_CLASSES
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
Attribute SparseTensorDialect::parseAttribute(DialectAsmParser &parser,
Type type) const {
StringRef attrTag;
if (failed(parser.parseKeyword(&attrTag)))
return Attribute();
Attribute attr;
auto parseResult = generatedAttributeParser(parser, attrTag, type, attr);
if (parseResult.hasValue())
return attr;
parser.emitError(parser.getNameLoc(), "unknown sparse tensor attribute");
return Attribute();
}
void SparseTensorDialect::printAttribute(Attribute attr,
DialectAsmPrinter &printer) const {
if (succeeded(generatedAttributePrinter(attr, printer)))
return;
}