llvm-project/llvm/lib/Transforms/Vectorize/LoopIdiomVectorize.cpp
Paul Walker f43aaf90df
[NFC][LLVM] Refactor IRBuilder::Create{VScale,ElementCount,TypeSize}. (#142803)
CreateVScale took a scaling parameter that had a single use outside of
IRBuilder with all other callers having to create a redundant
ConstantInt. To work round this some code perferred to use
CreateIntrinsic directly.

This patch simplifies CreateVScale to return a call to the llvm.vscale()
intrinsic and nothing more. As well as simplifying the existing call
sites I've also migrated the uses of CreateIntrinsic.

Whilst IRBuilder used CreateVScale's scaling parameter as part of the
implementations of CreateElementCount and CreateTypeSize, I have
follow-on work to switch them to the NUW varaiety and thus they would
stop using CreateVScale's scaling as well. To prepare for this I have
moved the multiplication and constant folding into the implementations
of CreateElementCount and CreateTypeSize.

As a final step I have replaced some callers of CreateVScale with
CreateElementCount where it's clear from the code they wanted the
latter.
2025-06-10 12:35:59 +01:00

1419 lines
59 KiB
C++

//===-------- LoopIdiomVectorize.cpp - Loop idiom vectorization -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements a pass that recognizes certain loop idioms and
// transforms them into more optimized versions of the same loop. In cases
// where this happens, it can be a significant performance win.
//
// We currently support two loops:
//
// 1. A loop that finds the first mismatched byte in an array and returns the
// index, i.e. something like:
//
// while (++i != n) {
// if (a[i] != b[i])
// break;
// }
//
// In this example we can actually vectorize the loop despite the early exit,
// although the loop vectorizer does not support it. It requires some extra
// checks to deal with the possibility of faulting loads when crossing page
// boundaries. However, even with these checks it is still profitable to do the
// transformation.
//
// TODO List:
//
// * Add support for the inverse case where we scan for a matching element.
// * Permit 64-bit induction variable types.
// * Recognize loops that increment the IV *after* comparing bytes.
// * Allow 32-bit sign-extends of the IV used by the GEP.
//
// 2. A loop that finds the first matching character in an array among a set of
// possible matches, e.g.:
//
// for (; first != last; ++first)
// for (s_it = s_first; s_it != s_last; ++s_it)
// if (*first == *s_it)
// return first;
// return last;
//
// This corresponds to std::find_first_of (for arrays of bytes) from the C++
// standard library. This function can be implemented efficiently for targets
// that support @llvm.experimental.vector.match. For example, on AArch64 targets
// that implement SVE2, this lower to a MATCH instruction, which enables us to
// perform up to 16x16=256 comparisons in one go. This can lead to very
// significant speedups.
//
// TODO:
//
// * Add support for `find_first_not_of' loops (i.e. with not-equal comparison).
// * Make VF a configurable parameter (right now we assume 128-bit vectors).
// * Potentially adjust the cost model to let the transformation kick-in even if
// @llvm.experimental.vector.match doesn't have direct support in hardware.
//
//===----------------------------------------------------------------------===//
//
// NOTE: This Pass matches really specific loop patterns because it's only
// supposed to be a temporary solution until our LoopVectorizer is powerful
// enough to vectorize them automatically.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Vectorize/LoopIdiomVectorize.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "loop-idiom-vectorize"
static cl::opt<bool> DisableAll("disable-loop-idiom-vectorize-all", cl::Hidden,
cl::init(false),
cl::desc("Disable Loop Idiom Vectorize Pass."));
static cl::opt<LoopIdiomVectorizeStyle>
LITVecStyle("loop-idiom-vectorize-style", cl::Hidden,
cl::desc("The vectorization style for loop idiom transform."),
cl::values(clEnumValN(LoopIdiomVectorizeStyle::Masked, "masked",
"Use masked vector intrinsics"),
clEnumValN(LoopIdiomVectorizeStyle::Predicated,
"predicated", "Use VP intrinsics")),
cl::init(LoopIdiomVectorizeStyle::Masked));
static cl::opt<bool>
DisableByteCmp("disable-loop-idiom-vectorize-bytecmp", cl::Hidden,
cl::init(false),
cl::desc("Proceed with Loop Idiom Vectorize Pass, but do "
"not convert byte-compare loop(s)."));
static cl::opt<unsigned>
ByteCmpVF("loop-idiom-vectorize-bytecmp-vf", cl::Hidden,
cl::desc("The vectorization factor for byte-compare patterns."),
cl::init(16));
static cl::opt<bool>
DisableFindFirstByte("disable-loop-idiom-vectorize-find-first-byte",
cl::Hidden, cl::init(false),
cl::desc("Do not convert find-first-byte loop(s)."));
static cl::opt<bool>
VerifyLoops("loop-idiom-vectorize-verify", cl::Hidden, cl::init(false),
cl::desc("Verify loops generated Loop Idiom Vectorize Pass."));
namespace {
class LoopIdiomVectorize {
LoopIdiomVectorizeStyle VectorizeStyle;
unsigned ByteCompareVF;
Loop *CurLoop = nullptr;
DominatorTree *DT;
LoopInfo *LI;
const TargetTransformInfo *TTI;
const DataLayout *DL;
// Blocks that will be used for inserting vectorized code.
BasicBlock *EndBlock = nullptr;
BasicBlock *VectorLoopPreheaderBlock = nullptr;
BasicBlock *VectorLoopStartBlock = nullptr;
BasicBlock *VectorLoopMismatchBlock = nullptr;
BasicBlock *VectorLoopIncBlock = nullptr;
public:
LoopIdiomVectorize(LoopIdiomVectorizeStyle S, unsigned VF, DominatorTree *DT,
LoopInfo *LI, const TargetTransformInfo *TTI,
const DataLayout *DL)
: VectorizeStyle(S), ByteCompareVF(VF), DT(DT), LI(LI), TTI(TTI), DL(DL) {
}
bool run(Loop *L);
private:
/// \name Countable Loop Idiom Handling
/// @{
bool runOnCountableLoop();
bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
SmallVectorImpl<BasicBlock *> &ExitBlocks);
bool recognizeByteCompare();
Value *expandFindMismatch(IRBuilder<> &Builder, DomTreeUpdater &DTU,
GetElementPtrInst *GEPA, GetElementPtrInst *GEPB,
Instruction *Index, Value *Start, Value *MaxLen);
Value *createMaskedFindMismatch(IRBuilder<> &Builder, DomTreeUpdater &DTU,
GetElementPtrInst *GEPA,
GetElementPtrInst *GEPB, Value *ExtStart,
Value *ExtEnd);
Value *createPredicatedFindMismatch(IRBuilder<> &Builder, DomTreeUpdater &DTU,
GetElementPtrInst *GEPA,
GetElementPtrInst *GEPB, Value *ExtStart,
Value *ExtEnd);
void transformByteCompare(GetElementPtrInst *GEPA, GetElementPtrInst *GEPB,
PHINode *IndPhi, Value *MaxLen, Instruction *Index,
Value *Start, bool IncIdx, BasicBlock *FoundBB,
BasicBlock *EndBB);
bool recognizeFindFirstByte();
Value *expandFindFirstByte(IRBuilder<> &Builder, DomTreeUpdater &DTU,
unsigned VF, Type *CharTy, BasicBlock *ExitSucc,
BasicBlock *ExitFail, Value *SearchStart,
Value *SearchEnd, Value *NeedleStart,
Value *NeedleEnd);
void transformFindFirstByte(PHINode *IndPhi, unsigned VF, Type *CharTy,
BasicBlock *ExitSucc, BasicBlock *ExitFail,
Value *SearchStart, Value *SearchEnd,
Value *NeedleStart, Value *NeedleEnd);
/// @}
};
} // anonymous namespace
PreservedAnalyses LoopIdiomVectorizePass::run(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &) {
if (DisableAll)
return PreservedAnalyses::all();
const auto *DL = &L.getHeader()->getDataLayout();
LoopIdiomVectorizeStyle VecStyle = VectorizeStyle;
if (LITVecStyle.getNumOccurrences())
VecStyle = LITVecStyle;
unsigned BCVF = ByteCompareVF;
if (ByteCmpVF.getNumOccurrences())
BCVF = ByteCmpVF;
LoopIdiomVectorize LIV(VecStyle, BCVF, &AR.DT, &AR.LI, &AR.TTI, DL);
if (!LIV.run(&L))
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}
//===----------------------------------------------------------------------===//
//
// Implementation of LoopIdiomVectorize
//
//===----------------------------------------------------------------------===//
bool LoopIdiomVectorize::run(Loop *L) {
CurLoop = L;
Function &F = *L->getHeader()->getParent();
if (DisableAll || F.hasOptSize())
return false;
if (F.hasFnAttribute(Attribute::NoImplicitFloat)) {
LLVM_DEBUG(dbgs() << DEBUG_TYPE << " is disabled on " << F.getName()
<< " due to its NoImplicitFloat attribute");
return false;
}
// If the loop could not be converted to canonical form, it must have an
// indirectbr in it, just give up.
if (!L->getLoopPreheader())
return false;
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" << F.getName() << "] Loop %"
<< CurLoop->getHeader()->getName() << "\n");
if (recognizeByteCompare())
return true;
if (recognizeFindFirstByte())
return true;
return false;
}
bool LoopIdiomVectorize::recognizeByteCompare() {
// Currently the transformation only works on scalable vector types, although
// there is no fundamental reason why it cannot be made to work for fixed
// width too.
// We also need to know the minimum page size for the target in order to
// generate runtime memory checks to ensure the vector version won't fault.
if (!TTI->supportsScalableVectors() || !TTI->getMinPageSize().has_value() ||
DisableByteCmp)
return false;
BasicBlock *Header = CurLoop->getHeader();
// In LoopIdiomVectorize::run we have already checked that the loop
// has a preheader so we can assume it's in a canonical form.
if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 2)
return false;
PHINode *PN = dyn_cast<PHINode>(&Header->front());
if (!PN || PN->getNumIncomingValues() != 2)
return false;
auto LoopBlocks = CurLoop->getBlocks();
// The first block in the loop should contain only 4 instructions, e.g.
//
// while.cond:
// %res.phi = phi i32 [ %start, %ph ], [ %inc, %while.body ]
// %inc = add i32 %res.phi, 1
// %cmp.not = icmp eq i32 %inc, %n
// br i1 %cmp.not, label %while.end, label %while.body
//
if (LoopBlocks[0]->sizeWithoutDebug() > 4)
return false;
// The second block should contain 7 instructions, e.g.
//
// while.body:
// %idx = zext i32 %inc to i64
// %idx.a = getelementptr inbounds i8, ptr %a, i64 %idx
// %load.a = load i8, ptr %idx.a
// %idx.b = getelementptr inbounds i8, ptr %b, i64 %idx
// %load.b = load i8, ptr %idx.b
// %cmp.not.ld = icmp eq i8 %load.a, %load.b
// br i1 %cmp.not.ld, label %while.cond, label %while.end
//
if (LoopBlocks[1]->sizeWithoutDebug() > 7)
return false;
// The incoming value to the PHI node from the loop should be an add of 1.
Value *StartIdx = nullptr;
Instruction *Index = nullptr;
if (!CurLoop->contains(PN->getIncomingBlock(0))) {
StartIdx = PN->getIncomingValue(0);
Index = dyn_cast<Instruction>(PN->getIncomingValue(1));
} else {
StartIdx = PN->getIncomingValue(1);
Index = dyn_cast<Instruction>(PN->getIncomingValue(0));
}
// Limit to 32-bit types for now
if (!Index || !Index->getType()->isIntegerTy(32) ||
!match(Index, m_c_Add(m_Specific(PN), m_One())))
return false;
// If we match the pattern, PN and Index will be replaced with the result of
// the cttz.elts intrinsic. If any other instructions are used outside of
// the loop, we cannot replace it.
for (BasicBlock *BB : LoopBlocks)
for (Instruction &I : *BB)
if (&I != PN && &I != Index)
for (User *U : I.users())
if (!CurLoop->contains(cast<Instruction>(U)))
return false;
// Match the branch instruction for the header
Value *MaxLen;
BasicBlock *EndBB, *WhileBB;
if (!match(Header->getTerminator(),
m_Br(m_SpecificICmp(ICmpInst::ICMP_EQ, m_Specific(Index),
m_Value(MaxLen)),
m_BasicBlock(EndBB), m_BasicBlock(WhileBB))) ||
!CurLoop->contains(WhileBB))
return false;
// WhileBB should contain the pattern of load & compare instructions. Match
// the pattern and find the GEP instructions used by the loads.
BasicBlock *FoundBB;
BasicBlock *TrueBB;
Value *LoadA, *LoadB;
if (!match(WhileBB->getTerminator(),
m_Br(m_SpecificICmp(ICmpInst::ICMP_EQ, m_Value(LoadA),
m_Value(LoadB)),
m_BasicBlock(TrueBB), m_BasicBlock(FoundBB))) ||
!CurLoop->contains(TrueBB))
return false;
Value *A, *B;
if (!match(LoadA, m_Load(m_Value(A))) || !match(LoadB, m_Load(m_Value(B))))
return false;
LoadInst *LoadAI = cast<LoadInst>(LoadA);
LoadInst *LoadBI = cast<LoadInst>(LoadB);
if (!LoadAI->isSimple() || !LoadBI->isSimple())
return false;
GetElementPtrInst *GEPA = dyn_cast<GetElementPtrInst>(A);
GetElementPtrInst *GEPB = dyn_cast<GetElementPtrInst>(B);
if (!GEPA || !GEPB)
return false;
Value *PtrA = GEPA->getPointerOperand();
Value *PtrB = GEPB->getPointerOperand();
// Check we are loading i8 values from two loop invariant pointers
if (!CurLoop->isLoopInvariant(PtrA) || !CurLoop->isLoopInvariant(PtrB) ||
!GEPA->getResultElementType()->isIntegerTy(8) ||
!GEPB->getResultElementType()->isIntegerTy(8) ||
!LoadAI->getType()->isIntegerTy(8) ||
!LoadBI->getType()->isIntegerTy(8) || PtrA == PtrB)
return false;
// Check that the index to the GEPs is the index we found earlier
if (GEPA->getNumIndices() > 1 || GEPB->getNumIndices() > 1)
return false;
Value *IdxA = GEPA->getOperand(GEPA->getNumIndices());
Value *IdxB = GEPB->getOperand(GEPB->getNumIndices());
if (IdxA != IdxB || !match(IdxA, m_ZExt(m_Specific(Index))))
return false;
// We only ever expect the pre-incremented index value to be used inside the
// loop.
if (!PN->hasOneUse())
return false;
// Ensure that when the Found and End blocks are identical the PHIs have the
// supported format. We don't currently allow cases like this:
// while.cond:
// ...
// br i1 %cmp.not, label %while.end, label %while.body
//
// while.body:
// ...
// br i1 %cmp.not2, label %while.cond, label %while.end
//
// while.end:
// %final_ptr = phi ptr [ %c, %while.body ], [ %d, %while.cond ]
//
// Where the incoming values for %final_ptr are unique and from each of the
// loop blocks, but not actually defined in the loop. This requires extra
// work setting up the byte.compare block, i.e. by introducing a select to
// choose the correct value.
// TODO: We could add support for this in future.
if (FoundBB == EndBB) {
for (PHINode &EndPN : EndBB->phis()) {
Value *WhileCondVal = EndPN.getIncomingValueForBlock(Header);
Value *WhileBodyVal = EndPN.getIncomingValueForBlock(WhileBB);
// The value of the index when leaving the while.cond block is always the
// same as the end value (MaxLen) so we permit either. The value when
// leaving the while.body block should only be the index. Otherwise for
// any other values we only allow ones that are same for both blocks.
if (WhileCondVal != WhileBodyVal &&
((WhileCondVal != Index && WhileCondVal != MaxLen) ||
(WhileBodyVal != Index)))
return false;
}
}
LLVM_DEBUG(dbgs() << "FOUND IDIOM IN LOOP: \n"
<< *(EndBB->getParent()) << "\n\n");
// The index is incremented before the GEP/Load pair so we need to
// add 1 to the start value.
transformByteCompare(GEPA, GEPB, PN, MaxLen, Index, StartIdx, /*IncIdx=*/true,
FoundBB, EndBB);
return true;
}
Value *LoopIdiomVectorize::createMaskedFindMismatch(
IRBuilder<> &Builder, DomTreeUpdater &DTU, GetElementPtrInst *GEPA,
GetElementPtrInst *GEPB, Value *ExtStart, Value *ExtEnd) {
Type *I64Type = Builder.getInt64Ty();
Type *ResType = Builder.getInt32Ty();
Type *LoadType = Builder.getInt8Ty();
Value *PtrA = GEPA->getPointerOperand();
Value *PtrB = GEPB->getPointerOperand();
ScalableVectorType *PredVTy =
ScalableVectorType::get(Builder.getInt1Ty(), ByteCompareVF);
Value *InitialPred = Builder.CreateIntrinsic(
Intrinsic::get_active_lane_mask, {PredVTy, I64Type}, {ExtStart, ExtEnd});
Value *VecLen = Builder.CreateVScale(I64Type);
VecLen =
Builder.CreateMul(VecLen, ConstantInt::get(I64Type, ByteCompareVF), "",
/*HasNUW=*/true, /*HasNSW=*/true);
Value *PFalse = Builder.CreateVectorSplat(PredVTy->getElementCount(),
Builder.getInt1(false));
BranchInst *JumpToVectorLoop = BranchInst::Create(VectorLoopStartBlock);
Builder.Insert(JumpToVectorLoop);
DTU.applyUpdates({{DominatorTree::Insert, VectorLoopPreheaderBlock,
VectorLoopStartBlock}});
// Set up the first vector loop block by creating the PHIs, doing the vector
// loads and comparing the vectors.
Builder.SetInsertPoint(VectorLoopStartBlock);
PHINode *LoopPred = Builder.CreatePHI(PredVTy, 2, "mismatch_vec_loop_pred");
LoopPred->addIncoming(InitialPred, VectorLoopPreheaderBlock);
PHINode *VectorIndexPhi = Builder.CreatePHI(I64Type, 2, "mismatch_vec_index");
VectorIndexPhi->addIncoming(ExtStart, VectorLoopPreheaderBlock);
Type *VectorLoadType =
ScalableVectorType::get(Builder.getInt8Ty(), ByteCompareVF);
Value *Passthru = ConstantInt::getNullValue(VectorLoadType);
Value *VectorLhsGep =
Builder.CreateGEP(LoadType, PtrA, VectorIndexPhi, "", GEPA->isInBounds());
Value *VectorLhsLoad = Builder.CreateMaskedLoad(VectorLoadType, VectorLhsGep,
Align(1), LoopPred, Passthru);
Value *VectorRhsGep =
Builder.CreateGEP(LoadType, PtrB, VectorIndexPhi, "", GEPB->isInBounds());
Value *VectorRhsLoad = Builder.CreateMaskedLoad(VectorLoadType, VectorRhsGep,
Align(1), LoopPred, Passthru);
Value *VectorMatchCmp = Builder.CreateICmpNE(VectorLhsLoad, VectorRhsLoad);
VectorMatchCmp = Builder.CreateSelect(LoopPred, VectorMatchCmp, PFalse);
Value *VectorMatchHasActiveLanes = Builder.CreateOrReduce(VectorMatchCmp);
BranchInst *VectorEarlyExit = BranchInst::Create(
VectorLoopMismatchBlock, VectorLoopIncBlock, VectorMatchHasActiveLanes);
Builder.Insert(VectorEarlyExit);
DTU.applyUpdates(
{{DominatorTree::Insert, VectorLoopStartBlock, VectorLoopMismatchBlock},
{DominatorTree::Insert, VectorLoopStartBlock, VectorLoopIncBlock}});
// Increment the index counter and calculate the predicate for the next
// iteration of the loop. We branch back to the start of the loop if there
// is at least one active lane.
Builder.SetInsertPoint(VectorLoopIncBlock);
Value *NewVectorIndexPhi =
Builder.CreateAdd(VectorIndexPhi, VecLen, "",
/*HasNUW=*/true, /*HasNSW=*/true);
VectorIndexPhi->addIncoming(NewVectorIndexPhi, VectorLoopIncBlock);
Value *NewPred =
Builder.CreateIntrinsic(Intrinsic::get_active_lane_mask,
{PredVTy, I64Type}, {NewVectorIndexPhi, ExtEnd});
LoopPred->addIncoming(NewPred, VectorLoopIncBlock);
Value *PredHasActiveLanes =
Builder.CreateExtractElement(NewPred, uint64_t(0));
BranchInst *VectorLoopBranchBack =
BranchInst::Create(VectorLoopStartBlock, EndBlock, PredHasActiveLanes);
Builder.Insert(VectorLoopBranchBack);
DTU.applyUpdates(
{{DominatorTree::Insert, VectorLoopIncBlock, VectorLoopStartBlock},
{DominatorTree::Insert, VectorLoopIncBlock, EndBlock}});
// If we found a mismatch then we need to calculate which lane in the vector
// had a mismatch and add that on to the current loop index.
Builder.SetInsertPoint(VectorLoopMismatchBlock);
PHINode *FoundPred = Builder.CreatePHI(PredVTy, 1, "mismatch_vec_found_pred");
FoundPred->addIncoming(VectorMatchCmp, VectorLoopStartBlock);
PHINode *LastLoopPred =
Builder.CreatePHI(PredVTy, 1, "mismatch_vec_last_loop_pred");
LastLoopPred->addIncoming(LoopPred, VectorLoopStartBlock);
PHINode *VectorFoundIndex =
Builder.CreatePHI(I64Type, 1, "mismatch_vec_found_index");
VectorFoundIndex->addIncoming(VectorIndexPhi, VectorLoopStartBlock);
Value *PredMatchCmp = Builder.CreateAnd(LastLoopPred, FoundPred);
Value *Ctz = Builder.CreateCountTrailingZeroElems(ResType, PredMatchCmp);
Ctz = Builder.CreateZExt(Ctz, I64Type);
Value *VectorLoopRes64 = Builder.CreateAdd(VectorFoundIndex, Ctz, "",
/*HasNUW=*/true, /*HasNSW=*/true);
return Builder.CreateTrunc(VectorLoopRes64, ResType);
}
Value *LoopIdiomVectorize::createPredicatedFindMismatch(
IRBuilder<> &Builder, DomTreeUpdater &DTU, GetElementPtrInst *GEPA,
GetElementPtrInst *GEPB, Value *ExtStart, Value *ExtEnd) {
Type *I64Type = Builder.getInt64Ty();
Type *I32Type = Builder.getInt32Ty();
Type *ResType = I32Type;
Type *LoadType = Builder.getInt8Ty();
Value *PtrA = GEPA->getPointerOperand();
Value *PtrB = GEPB->getPointerOperand();
auto *JumpToVectorLoop = BranchInst::Create(VectorLoopStartBlock);
Builder.Insert(JumpToVectorLoop);
DTU.applyUpdates({{DominatorTree::Insert, VectorLoopPreheaderBlock,
VectorLoopStartBlock}});
// Set up the first Vector loop block by creating the PHIs, doing the vector
// loads and comparing the vectors.
Builder.SetInsertPoint(VectorLoopStartBlock);
auto *VectorIndexPhi = Builder.CreatePHI(I64Type, 2, "mismatch_vector_index");
VectorIndexPhi->addIncoming(ExtStart, VectorLoopPreheaderBlock);
// Calculate AVL by subtracting the vector loop index from the trip count
Value *AVL = Builder.CreateSub(ExtEnd, VectorIndexPhi, "avl", /*HasNUW=*/true,
/*HasNSW=*/true);
auto *VectorLoadType = ScalableVectorType::get(LoadType, ByteCompareVF);
auto *VF = ConstantInt::get(I32Type, ByteCompareVF);
Value *VL = Builder.CreateIntrinsic(Intrinsic::experimental_get_vector_length,
{I64Type}, {AVL, VF, Builder.getTrue()});
Value *GepOffset = VectorIndexPhi;
Value *VectorLhsGep =
Builder.CreateGEP(LoadType, PtrA, GepOffset, "", GEPA->isInBounds());
VectorType *TrueMaskTy =
VectorType::get(Builder.getInt1Ty(), VectorLoadType->getElementCount());
Value *AllTrueMask = Constant::getAllOnesValue(TrueMaskTy);
Value *VectorLhsLoad = Builder.CreateIntrinsic(
Intrinsic::vp_load, {VectorLoadType, VectorLhsGep->getType()},
{VectorLhsGep, AllTrueMask, VL}, nullptr, "lhs.load");
Value *VectorRhsGep =
Builder.CreateGEP(LoadType, PtrB, GepOffset, "", GEPB->isInBounds());
Value *VectorRhsLoad = Builder.CreateIntrinsic(
Intrinsic::vp_load, {VectorLoadType, VectorLhsGep->getType()},
{VectorRhsGep, AllTrueMask, VL}, nullptr, "rhs.load");
StringRef PredicateStr = CmpInst::getPredicateName(CmpInst::ICMP_NE);
auto *PredicateMDS = MDString::get(VectorLhsLoad->getContext(), PredicateStr);
Value *Pred = MetadataAsValue::get(VectorLhsLoad->getContext(), PredicateMDS);
Value *VectorMatchCmp = Builder.CreateIntrinsic(
Intrinsic::vp_icmp, {VectorLhsLoad->getType()},
{VectorLhsLoad, VectorRhsLoad, Pred, AllTrueMask, VL}, nullptr,
"mismatch.cmp");
Value *CTZ = Builder.CreateIntrinsic(
Intrinsic::vp_cttz_elts, {ResType, VectorMatchCmp->getType()},
{VectorMatchCmp, /*ZeroIsPoison=*/Builder.getInt1(false), AllTrueMask,
VL});
Value *MismatchFound = Builder.CreateICmpNE(CTZ, VL);
auto *VectorEarlyExit = BranchInst::Create(VectorLoopMismatchBlock,
VectorLoopIncBlock, MismatchFound);
Builder.Insert(VectorEarlyExit);
DTU.applyUpdates(
{{DominatorTree::Insert, VectorLoopStartBlock, VectorLoopMismatchBlock},
{DominatorTree::Insert, VectorLoopStartBlock, VectorLoopIncBlock}});
// Increment the index counter and calculate the predicate for the next
// iteration of the loop. We branch back to the start of the loop if there
// is at least one active lane.
Builder.SetInsertPoint(VectorLoopIncBlock);
Value *VL64 = Builder.CreateZExt(VL, I64Type);
Value *NewVectorIndexPhi =
Builder.CreateAdd(VectorIndexPhi, VL64, "",
/*HasNUW=*/true, /*HasNSW=*/true);
VectorIndexPhi->addIncoming(NewVectorIndexPhi, VectorLoopIncBlock);
Value *ExitCond = Builder.CreateICmpNE(NewVectorIndexPhi, ExtEnd);
auto *VectorLoopBranchBack =
BranchInst::Create(VectorLoopStartBlock, EndBlock, ExitCond);
Builder.Insert(VectorLoopBranchBack);
DTU.applyUpdates(
{{DominatorTree::Insert, VectorLoopIncBlock, VectorLoopStartBlock},
{DominatorTree::Insert, VectorLoopIncBlock, EndBlock}});
// If we found a mismatch then we need to calculate which lane in the vector
// had a mismatch and add that on to the current loop index.
Builder.SetInsertPoint(VectorLoopMismatchBlock);
// Add LCSSA phis for CTZ and VectorIndexPhi.
auto *CTZLCSSAPhi = Builder.CreatePHI(CTZ->getType(), 1, "ctz");
CTZLCSSAPhi->addIncoming(CTZ, VectorLoopStartBlock);
auto *VectorIndexLCSSAPhi =
Builder.CreatePHI(VectorIndexPhi->getType(), 1, "mismatch_vector_index");
VectorIndexLCSSAPhi->addIncoming(VectorIndexPhi, VectorLoopStartBlock);
Value *CTZI64 = Builder.CreateZExt(CTZLCSSAPhi, I64Type);
Value *VectorLoopRes64 = Builder.CreateAdd(VectorIndexLCSSAPhi, CTZI64, "",
/*HasNUW=*/true, /*HasNSW=*/true);
return Builder.CreateTrunc(VectorLoopRes64, ResType);
}
Value *LoopIdiomVectorize::expandFindMismatch(
IRBuilder<> &Builder, DomTreeUpdater &DTU, GetElementPtrInst *GEPA,
GetElementPtrInst *GEPB, Instruction *Index, Value *Start, Value *MaxLen) {
Value *PtrA = GEPA->getPointerOperand();
Value *PtrB = GEPB->getPointerOperand();
// Get the arguments and types for the intrinsic.
BasicBlock *Preheader = CurLoop->getLoopPreheader();
BranchInst *PHBranch = cast<BranchInst>(Preheader->getTerminator());
LLVMContext &Ctx = PHBranch->getContext();
Type *LoadType = Type::getInt8Ty(Ctx);
Type *ResType = Builder.getInt32Ty();
// Split block in the original loop preheader.
EndBlock = SplitBlock(Preheader, PHBranch, DT, LI, nullptr, "mismatch_end");
// Create the blocks that we're going to need:
// 1. A block for checking the zero-extended length exceeds 0
// 2. A block to check that the start and end addresses of a given array
// lie on the same page.
// 3. The vector loop preheader.
// 4. The first vector loop block.
// 5. The vector loop increment block.
// 6. A block we can jump to from the vector loop when a mismatch is found.
// 7. The first block of the scalar loop itself, containing PHIs , loads
// and cmp.
// 8. A scalar loop increment block to increment the PHIs and go back
// around the loop.
BasicBlock *MinItCheckBlock = BasicBlock::Create(
Ctx, "mismatch_min_it_check", EndBlock->getParent(), EndBlock);
// Update the terminator added by SplitBlock to branch to the first block
Preheader->getTerminator()->setSuccessor(0, MinItCheckBlock);
BasicBlock *MemCheckBlock = BasicBlock::Create(
Ctx, "mismatch_mem_check", EndBlock->getParent(), EndBlock);
VectorLoopPreheaderBlock = BasicBlock::Create(
Ctx, "mismatch_vec_loop_preheader", EndBlock->getParent(), EndBlock);
VectorLoopStartBlock = BasicBlock::Create(Ctx, "mismatch_vec_loop",
EndBlock->getParent(), EndBlock);
VectorLoopIncBlock = BasicBlock::Create(Ctx, "mismatch_vec_loop_inc",
EndBlock->getParent(), EndBlock);
VectorLoopMismatchBlock = BasicBlock::Create(Ctx, "mismatch_vec_loop_found",
EndBlock->getParent(), EndBlock);
BasicBlock *LoopPreHeaderBlock = BasicBlock::Create(
Ctx, "mismatch_loop_pre", EndBlock->getParent(), EndBlock);
BasicBlock *LoopStartBlock =
BasicBlock::Create(Ctx, "mismatch_loop", EndBlock->getParent(), EndBlock);
BasicBlock *LoopIncBlock = BasicBlock::Create(
Ctx, "mismatch_loop_inc", EndBlock->getParent(), EndBlock);
DTU.applyUpdates({{DominatorTree::Insert, Preheader, MinItCheckBlock},
{DominatorTree::Delete, Preheader, EndBlock}});
// Update LoopInfo with the new vector & scalar loops.
auto VectorLoop = LI->AllocateLoop();
auto ScalarLoop = LI->AllocateLoop();
if (CurLoop->getParentLoop()) {
CurLoop->getParentLoop()->addBasicBlockToLoop(MinItCheckBlock, *LI);
CurLoop->getParentLoop()->addBasicBlockToLoop(MemCheckBlock, *LI);
CurLoop->getParentLoop()->addBasicBlockToLoop(VectorLoopPreheaderBlock,
*LI);
CurLoop->getParentLoop()->addChildLoop(VectorLoop);
CurLoop->getParentLoop()->addBasicBlockToLoop(VectorLoopMismatchBlock, *LI);
CurLoop->getParentLoop()->addBasicBlockToLoop(LoopPreHeaderBlock, *LI);
CurLoop->getParentLoop()->addChildLoop(ScalarLoop);
} else {
LI->addTopLevelLoop(VectorLoop);
LI->addTopLevelLoop(ScalarLoop);
}
// Add the new basic blocks to their associated loops.
VectorLoop->addBasicBlockToLoop(VectorLoopStartBlock, *LI);
VectorLoop->addBasicBlockToLoop(VectorLoopIncBlock, *LI);
ScalarLoop->addBasicBlockToLoop(LoopStartBlock, *LI);
ScalarLoop->addBasicBlockToLoop(LoopIncBlock, *LI);
// Set up some types and constants that we intend to reuse.
Type *I64Type = Builder.getInt64Ty();
// Check the zero-extended iteration count > 0
Builder.SetInsertPoint(MinItCheckBlock);
Value *ExtStart = Builder.CreateZExt(Start, I64Type);
Value *ExtEnd = Builder.CreateZExt(MaxLen, I64Type);
// This check doesn't really cost us very much.
Value *LimitCheck = Builder.CreateICmpULE(Start, MaxLen);
BranchInst *MinItCheckBr =
BranchInst::Create(MemCheckBlock, LoopPreHeaderBlock, LimitCheck);
MinItCheckBr->setMetadata(
LLVMContext::MD_prof,
MDBuilder(MinItCheckBr->getContext()).createBranchWeights(99, 1));
Builder.Insert(MinItCheckBr);
DTU.applyUpdates(
{{DominatorTree::Insert, MinItCheckBlock, MemCheckBlock},
{DominatorTree::Insert, MinItCheckBlock, LoopPreHeaderBlock}});
// For each of the arrays, check the start/end addresses are on the same
// page.
Builder.SetInsertPoint(MemCheckBlock);
// The early exit in the original loop means that when performing vector
// loads we are potentially reading ahead of the early exit. So we could
// fault if crossing a page boundary. Therefore, we create runtime memory
// checks based on the minimum page size as follows:
// 1. Calculate the addresses of the first memory accesses in the loop,
// i.e. LhsStart and RhsStart.
// 2. Get the last accessed addresses in the loop, i.e. LhsEnd and RhsEnd.
// 3. Determine which pages correspond to all the memory accesses, i.e
// LhsStartPage, LhsEndPage, RhsStartPage, RhsEndPage.
// 4. If LhsStartPage == LhsEndPage and RhsStartPage == RhsEndPage, then
// we know we won't cross any page boundaries in the loop so we can
// enter the vector loop! Otherwise we fall back on the scalar loop.
Value *LhsStartGEP = Builder.CreateGEP(LoadType, PtrA, ExtStart);
Value *RhsStartGEP = Builder.CreateGEP(LoadType, PtrB, ExtStart);
Value *RhsStart = Builder.CreatePtrToInt(RhsStartGEP, I64Type);
Value *LhsStart = Builder.CreatePtrToInt(LhsStartGEP, I64Type);
Value *LhsEndGEP = Builder.CreateGEP(LoadType, PtrA, ExtEnd);
Value *RhsEndGEP = Builder.CreateGEP(LoadType, PtrB, ExtEnd);
Value *LhsEnd = Builder.CreatePtrToInt(LhsEndGEP, I64Type);
Value *RhsEnd = Builder.CreatePtrToInt(RhsEndGEP, I64Type);
const uint64_t MinPageSize = TTI->getMinPageSize().value();
const uint64_t AddrShiftAmt = llvm::Log2_64(MinPageSize);
Value *LhsStartPage = Builder.CreateLShr(LhsStart, AddrShiftAmt);
Value *LhsEndPage = Builder.CreateLShr(LhsEnd, AddrShiftAmt);
Value *RhsStartPage = Builder.CreateLShr(RhsStart, AddrShiftAmt);
Value *RhsEndPage = Builder.CreateLShr(RhsEnd, AddrShiftAmt);
Value *LhsPageCmp = Builder.CreateICmpNE(LhsStartPage, LhsEndPage);
Value *RhsPageCmp = Builder.CreateICmpNE(RhsStartPage, RhsEndPage);
Value *CombinedPageCmp = Builder.CreateOr(LhsPageCmp, RhsPageCmp);
BranchInst *CombinedPageCmpCmpBr = BranchInst::Create(
LoopPreHeaderBlock, VectorLoopPreheaderBlock, CombinedPageCmp);
CombinedPageCmpCmpBr->setMetadata(
LLVMContext::MD_prof, MDBuilder(CombinedPageCmpCmpBr->getContext())
.createBranchWeights(10, 90));
Builder.Insert(CombinedPageCmpCmpBr);
DTU.applyUpdates(
{{DominatorTree::Insert, MemCheckBlock, LoopPreHeaderBlock},
{DominatorTree::Insert, MemCheckBlock, VectorLoopPreheaderBlock}});
// Set up the vector loop preheader, i.e. calculate initial loop predicate,
// zero-extend MaxLen to 64-bits, determine the number of vector elements
// processed in each iteration, etc.
Builder.SetInsertPoint(VectorLoopPreheaderBlock);
// At this point we know two things must be true:
// 1. Start <= End
// 2. ExtMaxLen <= MinPageSize due to the page checks.
// Therefore, we know that we can use a 64-bit induction variable that
// starts from 0 -> ExtMaxLen and it will not overflow.
Value *VectorLoopRes = nullptr;
switch (VectorizeStyle) {
case LoopIdiomVectorizeStyle::Masked:
VectorLoopRes =
createMaskedFindMismatch(Builder, DTU, GEPA, GEPB, ExtStart, ExtEnd);
break;
case LoopIdiomVectorizeStyle::Predicated:
VectorLoopRes = createPredicatedFindMismatch(Builder, DTU, GEPA, GEPB,
ExtStart, ExtEnd);
break;
}
Builder.Insert(BranchInst::Create(EndBlock));
DTU.applyUpdates(
{{DominatorTree::Insert, VectorLoopMismatchBlock, EndBlock}});
// Generate code for scalar loop.
Builder.SetInsertPoint(LoopPreHeaderBlock);
Builder.Insert(BranchInst::Create(LoopStartBlock));
DTU.applyUpdates(
{{DominatorTree::Insert, LoopPreHeaderBlock, LoopStartBlock}});
Builder.SetInsertPoint(LoopStartBlock);
PHINode *IndexPhi = Builder.CreatePHI(ResType, 2, "mismatch_index");
IndexPhi->addIncoming(Start, LoopPreHeaderBlock);
// Otherwise compare the values
// Load bytes from each array and compare them.
Value *GepOffset = Builder.CreateZExt(IndexPhi, I64Type);
Value *LhsGep =
Builder.CreateGEP(LoadType, PtrA, GepOffset, "", GEPA->isInBounds());
Value *LhsLoad = Builder.CreateLoad(LoadType, LhsGep);
Value *RhsGep =
Builder.CreateGEP(LoadType, PtrB, GepOffset, "", GEPB->isInBounds());
Value *RhsLoad = Builder.CreateLoad(LoadType, RhsGep);
Value *MatchCmp = Builder.CreateICmpEQ(LhsLoad, RhsLoad);
// If we have a mismatch then exit the loop ...
BranchInst *MatchCmpBr = BranchInst::Create(LoopIncBlock, EndBlock, MatchCmp);
Builder.Insert(MatchCmpBr);
DTU.applyUpdates({{DominatorTree::Insert, LoopStartBlock, LoopIncBlock},
{DominatorTree::Insert, LoopStartBlock, EndBlock}});
// Have we reached the maximum permitted length for the loop?
Builder.SetInsertPoint(LoopIncBlock);
Value *PhiInc = Builder.CreateAdd(IndexPhi, ConstantInt::get(ResType, 1), "",
/*HasNUW=*/Index->hasNoUnsignedWrap(),
/*HasNSW=*/Index->hasNoSignedWrap());
IndexPhi->addIncoming(PhiInc, LoopIncBlock);
Value *IVCmp = Builder.CreateICmpEQ(PhiInc, MaxLen);
BranchInst *IVCmpBr = BranchInst::Create(EndBlock, LoopStartBlock, IVCmp);
Builder.Insert(IVCmpBr);
DTU.applyUpdates({{DominatorTree::Insert, LoopIncBlock, EndBlock},
{DominatorTree::Insert, LoopIncBlock, LoopStartBlock}});
// In the end block we need to insert a PHI node to deal with three cases:
// 1. We didn't find a mismatch in the scalar loop, so we return MaxLen.
// 2. We exitted the scalar loop early due to a mismatch and need to return
// the index that we found.
// 3. We didn't find a mismatch in the vector loop, so we return MaxLen.
// 4. We exitted the vector loop early due to a mismatch and need to return
// the index that we found.
Builder.SetInsertPoint(EndBlock, EndBlock->getFirstInsertionPt());
PHINode *ResPhi = Builder.CreatePHI(ResType, 4, "mismatch_result");
ResPhi->addIncoming(MaxLen, LoopIncBlock);
ResPhi->addIncoming(IndexPhi, LoopStartBlock);
ResPhi->addIncoming(MaxLen, VectorLoopIncBlock);
ResPhi->addIncoming(VectorLoopRes, VectorLoopMismatchBlock);
Value *FinalRes = Builder.CreateTrunc(ResPhi, ResType);
if (VerifyLoops) {
ScalarLoop->verifyLoop();
VectorLoop->verifyLoop();
if (!VectorLoop->isRecursivelyLCSSAForm(*DT, *LI))
report_fatal_error("Loops must remain in LCSSA form!");
if (!ScalarLoop->isRecursivelyLCSSAForm(*DT, *LI))
report_fatal_error("Loops must remain in LCSSA form!");
}
return FinalRes;
}
void LoopIdiomVectorize::transformByteCompare(GetElementPtrInst *GEPA,
GetElementPtrInst *GEPB,
PHINode *IndPhi, Value *MaxLen,
Instruction *Index, Value *Start,
bool IncIdx, BasicBlock *FoundBB,
BasicBlock *EndBB) {
// Insert the byte compare code at the end of the preheader block
BasicBlock *Preheader = CurLoop->getLoopPreheader();
BasicBlock *Header = CurLoop->getHeader();
BranchInst *PHBranch = cast<BranchInst>(Preheader->getTerminator());
IRBuilder<> Builder(PHBranch);
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
Builder.SetCurrentDebugLocation(PHBranch->getDebugLoc());
// Increment the pointer if this was done before the loads in the loop.
if (IncIdx)
Start = Builder.CreateAdd(Start, ConstantInt::get(Start->getType(), 1));
Value *ByteCmpRes =
expandFindMismatch(Builder, DTU, GEPA, GEPB, Index, Start, MaxLen);
// Replaces uses of index & induction Phi with intrinsic (we already
// checked that the the first instruction of Header is the Phi above).
assert(IndPhi->hasOneUse() && "Index phi node has more than one use!");
Index->replaceAllUsesWith(ByteCmpRes);
assert(PHBranch->isUnconditional() &&
"Expected preheader to terminate with an unconditional branch.");
// If no mismatch was found, we can jump to the end block. Create a
// new basic block for the compare instruction.
auto *CmpBB = BasicBlock::Create(Preheader->getContext(), "byte.compare",
Preheader->getParent());
CmpBB->moveBefore(EndBB);
// Replace the branch in the preheader with an always-true conditional branch.
// This ensures there is still a reference to the original loop.
Builder.CreateCondBr(Builder.getTrue(), CmpBB, Header);
PHBranch->eraseFromParent();
BasicBlock *MismatchEnd = cast<Instruction>(ByteCmpRes)->getParent();
DTU.applyUpdates({{DominatorTree::Insert, MismatchEnd, CmpBB}});
// Create the branch to either the end or found block depending on the value
// returned by the intrinsic.
Builder.SetInsertPoint(CmpBB);
if (FoundBB != EndBB) {
Value *FoundCmp = Builder.CreateICmpEQ(ByteCmpRes, MaxLen);
Builder.CreateCondBr(FoundCmp, EndBB, FoundBB);
DTU.applyUpdates({{DominatorTree::Insert, CmpBB, FoundBB},
{DominatorTree::Insert, CmpBB, EndBB}});
} else {
Builder.CreateBr(FoundBB);
DTU.applyUpdates({{DominatorTree::Insert, CmpBB, FoundBB}});
}
auto fixSuccessorPhis = [&](BasicBlock *SuccBB) {
for (PHINode &PN : SuccBB->phis()) {
// At this point we've already replaced all uses of the result from the
// loop with ByteCmp. Look through the incoming values to find ByteCmp,
// meaning this is a Phi collecting the results of the byte compare.
bool ResPhi = false;
for (Value *Op : PN.incoming_values())
if (Op == ByteCmpRes) {
ResPhi = true;
break;
}
// Any PHI that depended upon the result of the byte compare needs a new
// incoming value from CmpBB. This is because the original loop will get
// deleted.
if (ResPhi)
PN.addIncoming(ByteCmpRes, CmpBB);
else {
// There should be no other outside uses of other values in the
// original loop. Any incoming values should either:
// 1. Be for blocks outside the loop, which aren't interesting. Or ..
// 2. These are from blocks in the loop with values defined outside
// the loop. We should a similar incoming value from CmpBB.
for (BasicBlock *BB : PN.blocks())
if (CurLoop->contains(BB)) {
PN.addIncoming(PN.getIncomingValueForBlock(BB), CmpBB);
break;
}
}
}
};
// Ensure all Phis in the successors of CmpBB have an incoming value from it.
fixSuccessorPhis(EndBB);
if (EndBB != FoundBB)
fixSuccessorPhis(FoundBB);
// The new CmpBB block isn't part of the loop, but will need to be added to
// the outer loop if there is one.
if (!CurLoop->isOutermost())
CurLoop->getParentLoop()->addBasicBlockToLoop(CmpBB, *LI);
if (VerifyLoops && CurLoop->getParentLoop()) {
CurLoop->getParentLoop()->verifyLoop();
if (!CurLoop->getParentLoop()->isRecursivelyLCSSAForm(*DT, *LI))
report_fatal_error("Loops must remain in LCSSA form!");
}
}
bool LoopIdiomVectorize::recognizeFindFirstByte() {
// Currently the transformation only works on scalable vector types, although
// there is no fundamental reason why it cannot be made to work for fixed
// vectors. We also need to know the target's minimum page size in order to
// generate runtime memory checks to ensure the vector version won't fault.
if (!TTI->supportsScalableVectors() || !TTI->getMinPageSize().has_value() ||
DisableFindFirstByte)
return false;
// Define some constants we need throughout.
BasicBlock *Header = CurLoop->getHeader();
LLVMContext &Ctx = Header->getContext();
// We are expecting the four blocks defined below: Header, MatchBB, InnerBB,
// and OuterBB. For now, we will bail our for almost anything else. The Four
// blocks contain one nested loop.
if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 4 ||
CurLoop->getSubLoops().size() != 1)
return false;
auto *InnerLoop = CurLoop->getSubLoops().front();
PHINode *IndPhi = dyn_cast<PHINode>(&Header->front());
if (!IndPhi || IndPhi->getNumIncomingValues() != 2)
return false;
// Check instruction counts.
auto LoopBlocks = CurLoop->getBlocks();
if (LoopBlocks[0]->sizeWithoutDebug() > 3 ||
LoopBlocks[1]->sizeWithoutDebug() > 4 ||
LoopBlocks[2]->sizeWithoutDebug() > 3 ||
LoopBlocks[3]->sizeWithoutDebug() > 3)
return false;
// Check that no instruction other than IndPhi has outside uses.
for (BasicBlock *BB : LoopBlocks)
for (Instruction &I : *BB)
if (&I != IndPhi)
for (User *U : I.users())
if (!CurLoop->contains(cast<Instruction>(U)))
return false;
// Match the branch instruction in the header. We are expecting an
// unconditional branch to the inner loop.
//
// Header:
// %14 = phi ptr [ %24, %OuterBB ], [ %3, %Header.preheader ]
// %15 = load i8, ptr %14, align 1
// br label %MatchBB
BasicBlock *MatchBB;
if (!match(Header->getTerminator(), m_UnconditionalBr(MatchBB)) ||
!InnerLoop->contains(MatchBB))
return false;
// MatchBB should be the entrypoint into the inner loop containing the
// comparison between a search element and a needle.
//
// MatchBB:
// %20 = phi ptr [ %7, %Header ], [ %17, %InnerBB ]
// %21 = load i8, ptr %20, align 1
// %22 = icmp eq i8 %15, %21
// br i1 %22, label %ExitSucc, label %InnerBB
BasicBlock *ExitSucc, *InnerBB;
Value *LoadSearch, *LoadNeedle;
CmpPredicate MatchPred;
if (!match(MatchBB->getTerminator(),
m_Br(m_ICmp(MatchPred, m_Value(LoadSearch), m_Value(LoadNeedle)),
m_BasicBlock(ExitSucc), m_BasicBlock(InnerBB))) ||
MatchPred != ICmpInst::ICMP_EQ || !InnerLoop->contains(InnerBB))
return false;
// We expect outside uses of `IndPhi' in ExitSucc (and only there).
for (User *U : IndPhi->users())
if (!CurLoop->contains(cast<Instruction>(U))) {
auto *PN = dyn_cast<PHINode>(U);
if (!PN || PN->getParent() != ExitSucc)
return false;
}
// Match the loads and check they are simple.
Value *Search, *Needle;
if (!match(LoadSearch, m_Load(m_Value(Search))) ||
!match(LoadNeedle, m_Load(m_Value(Needle))) ||
!cast<LoadInst>(LoadSearch)->isSimple() ||
!cast<LoadInst>(LoadNeedle)->isSimple())
return false;
// Check we are loading valid characters.
Type *CharTy = LoadSearch->getType();
if (!CharTy->isIntegerTy() || LoadNeedle->getType() != CharTy)
return false;
// Pick the vectorisation factor based on CharTy, work out the cost of the
// match intrinsic and decide if we should use it.
// Note: For the time being we assume 128-bit vectors.
unsigned VF = 128 / CharTy->getIntegerBitWidth();
SmallVector<Type *> Args = {
ScalableVectorType::get(CharTy, VF), FixedVectorType::get(CharTy, VF),
ScalableVectorType::get(Type::getInt1Ty(Ctx), VF)};
IntrinsicCostAttributes Attrs(Intrinsic::experimental_vector_match, Args[2],
Args);
if (TTI->getIntrinsicInstrCost(Attrs, TTI::TCK_SizeAndLatency) > 4)
return false;
// The loads come from two PHIs, each with two incoming values.
PHINode *PSearch = dyn_cast<PHINode>(Search);
PHINode *PNeedle = dyn_cast<PHINode>(Needle);
if (!PSearch || PSearch->getNumIncomingValues() != 2 || !PNeedle ||
PNeedle->getNumIncomingValues() != 2)
return false;
// One PHI comes from the outer loop (PSearch), the other one from the inner
// loop (PNeedle). PSearch effectively corresponds to IndPhi.
if (InnerLoop->contains(PSearch))
std::swap(PSearch, PNeedle);
if (PSearch != &Header->front() || PNeedle != &MatchBB->front())
return false;
// The incoming values of both PHI nodes should be a gep of 1.
Value *SearchStart = PSearch->getIncomingValue(0);
Value *SearchIndex = PSearch->getIncomingValue(1);
if (CurLoop->contains(PSearch->getIncomingBlock(0)))
std::swap(SearchStart, SearchIndex);
Value *NeedleStart = PNeedle->getIncomingValue(0);
Value *NeedleIndex = PNeedle->getIncomingValue(1);
if (InnerLoop->contains(PNeedle->getIncomingBlock(0)))
std::swap(NeedleStart, NeedleIndex);
// Match the GEPs.
if (!match(SearchIndex, m_GEP(m_Specific(PSearch), m_One())) ||
!match(NeedleIndex, m_GEP(m_Specific(PNeedle), m_One())))
return false;
// Check the GEPs result type matches `CharTy'.
GetElementPtrInst *GEPSearch = cast<GetElementPtrInst>(SearchIndex);
GetElementPtrInst *GEPNeedle = cast<GetElementPtrInst>(NeedleIndex);
if (GEPSearch->getResultElementType() != CharTy ||
GEPNeedle->getResultElementType() != CharTy)
return false;
// InnerBB should increment the address of the needle pointer.
//
// InnerBB:
// %17 = getelementptr inbounds i8, ptr %20, i64 1
// %18 = icmp eq ptr %17, %10
// br i1 %18, label %OuterBB, label %MatchBB
BasicBlock *OuterBB;
Value *NeedleEnd;
if (!match(InnerBB->getTerminator(),
m_Br(m_SpecificICmp(ICmpInst::ICMP_EQ, m_Specific(GEPNeedle),
m_Value(NeedleEnd)),
m_BasicBlock(OuterBB), m_Specific(MatchBB))) ||
!CurLoop->contains(OuterBB))
return false;
// OuterBB should increment the address of the search element pointer.
//
// OuterBB:
// %24 = getelementptr inbounds i8, ptr %14, i64 1
// %25 = icmp eq ptr %24, %6
// br i1 %25, label %ExitFail, label %Header
BasicBlock *ExitFail;
Value *SearchEnd;
if (!match(OuterBB->getTerminator(),
m_Br(m_SpecificICmp(ICmpInst::ICMP_EQ, m_Specific(GEPSearch),
m_Value(SearchEnd)),
m_BasicBlock(ExitFail), m_Specific(Header))))
return false;
if (!CurLoop->isLoopInvariant(SearchStart) ||
!CurLoop->isLoopInvariant(SearchEnd) ||
!CurLoop->isLoopInvariant(NeedleStart) ||
!CurLoop->isLoopInvariant(NeedleEnd))
return false;
LLVM_DEBUG(dbgs() << "Found idiom in loop: \n" << *CurLoop << "\n\n");
transformFindFirstByte(IndPhi, VF, CharTy, ExitSucc, ExitFail, SearchStart,
SearchEnd, NeedleStart, NeedleEnd);
return true;
}
Value *LoopIdiomVectorize::expandFindFirstByte(
IRBuilder<> &Builder, DomTreeUpdater &DTU, unsigned VF, Type *CharTy,
BasicBlock *ExitSucc, BasicBlock *ExitFail, Value *SearchStart,
Value *SearchEnd, Value *NeedleStart, Value *NeedleEnd) {
// Set up some types and constants that we intend to reuse.
auto *PtrTy = Builder.getPtrTy();
auto *I64Ty = Builder.getInt64Ty();
auto *PredVTy = ScalableVectorType::get(Builder.getInt1Ty(), VF);
auto *CharVTy = ScalableVectorType::get(CharTy, VF);
auto *ConstVF = ConstantInt::get(I64Ty, VF);
// Other common arguments.
BasicBlock *Preheader = CurLoop->getLoopPreheader();
LLVMContext &Ctx = Preheader->getContext();
Value *Passthru = ConstantInt::getNullValue(CharVTy);
// Split block in the original loop preheader.
// SPH is the new preheader to the old scalar loop.
BasicBlock *SPH = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
nullptr, "scalar_preheader");
// Create the blocks that we're going to use.
//
// We will have the following loops:
// (O) Outer loop where we iterate over the elements of the search array.
// (I) Inner loop where we iterate over the elements of the needle array.
//
// Overall, the blocks do the following:
// (0) Check if the arrays can't cross page boundaries. If so go to (1),
// otherwise fall back to the original scalar loop.
// (1) Load the search array. Go to (2).
// (2) (a) Load the needle array.
// (b) Splat the first element to the inactive lanes.
// (c) Check if any elements match. If so go to (3), otherwise go to (4).
// (3) Compute the index of the first match and exit.
// (4) Check if we've reached the end of the needle array. If not loop back to
// (2), otherwise go to (5).
// (5) Check if we've reached the end of the search array. If not loop back to
// (1), otherwise exit.
// Blocks (0,3) are not part of any loop. Blocks (1,5) and (2,4) belong to
// the outer and inner loops, respectively.
BasicBlock *BB0 = BasicBlock::Create(Ctx, "mem_check", SPH->getParent(), SPH);
BasicBlock *BB1 =
BasicBlock::Create(Ctx, "find_first_vec_header", SPH->getParent(), SPH);
BasicBlock *BB2 =
BasicBlock::Create(Ctx, "match_check_vec", SPH->getParent(), SPH);
BasicBlock *BB3 =
BasicBlock::Create(Ctx, "calculate_match", SPH->getParent(), SPH);
BasicBlock *BB4 =
BasicBlock::Create(Ctx, "needle_check_vec", SPH->getParent(), SPH);
BasicBlock *BB5 =
BasicBlock::Create(Ctx, "search_check_vec", SPH->getParent(), SPH);
// Update LoopInfo with the new loops.
auto OuterLoop = LI->AllocateLoop();
auto InnerLoop = LI->AllocateLoop();
if (auto ParentLoop = CurLoop->getParentLoop()) {
ParentLoop->addBasicBlockToLoop(BB0, *LI);
ParentLoop->addChildLoop(OuterLoop);
ParentLoop->addBasicBlockToLoop(BB3, *LI);
} else {
LI->addTopLevelLoop(OuterLoop);
}
// Add the inner loop to the outer.
OuterLoop->addChildLoop(InnerLoop);
// Add the new basic blocks to the corresponding loops.
OuterLoop->addBasicBlockToLoop(BB1, *LI);
OuterLoop->addBasicBlockToLoop(BB5, *LI);
InnerLoop->addBasicBlockToLoop(BB2, *LI);
InnerLoop->addBasicBlockToLoop(BB4, *LI);
// Update the terminator added by SplitBlock to branch to the first block.
Preheader->getTerminator()->setSuccessor(0, BB0);
DTU.applyUpdates({{DominatorTree::Delete, Preheader, SPH},
{DominatorTree::Insert, Preheader, BB0}});
// (0) Check if we could be crossing a page boundary; if so, fallback to the
// old scalar loops. Also create a predicate of VF elements to be used in the
// vector loops.
Builder.SetInsertPoint(BB0);
Value *ISearchStart =
Builder.CreatePtrToInt(SearchStart, I64Ty, "search_start_int");
Value *ISearchEnd =
Builder.CreatePtrToInt(SearchEnd, I64Ty, "search_end_int");
Value *INeedleStart =
Builder.CreatePtrToInt(NeedleStart, I64Ty, "needle_start_int");
Value *INeedleEnd =
Builder.CreatePtrToInt(NeedleEnd, I64Ty, "needle_end_int");
Value *PredVF =
Builder.CreateIntrinsic(Intrinsic::get_active_lane_mask, {PredVTy, I64Ty},
{ConstantInt::get(I64Ty, 0), ConstVF});
const uint64_t MinPageSize = TTI->getMinPageSize().value();
const uint64_t AddrShiftAmt = llvm::Log2_64(MinPageSize);
Value *SearchStartPage =
Builder.CreateLShr(ISearchStart, AddrShiftAmt, "search_start_page");
Value *SearchEndPage =
Builder.CreateLShr(ISearchEnd, AddrShiftAmt, "search_end_page");
Value *NeedleStartPage =
Builder.CreateLShr(INeedleStart, AddrShiftAmt, "needle_start_page");
Value *NeedleEndPage =
Builder.CreateLShr(INeedleEnd, AddrShiftAmt, "needle_end_page");
Value *SearchPageCmp =
Builder.CreateICmpNE(SearchStartPage, SearchEndPage, "search_page_cmp");
Value *NeedlePageCmp =
Builder.CreateICmpNE(NeedleStartPage, NeedleEndPage, "needle_page_cmp");
Value *CombinedPageCmp =
Builder.CreateOr(SearchPageCmp, NeedlePageCmp, "combined_page_cmp");
BranchInst *CombinedPageBr = Builder.CreateCondBr(CombinedPageCmp, SPH, BB1);
CombinedPageBr->setMetadata(LLVMContext::MD_prof,
MDBuilder(Ctx).createBranchWeights(10, 90));
DTU.applyUpdates(
{{DominatorTree::Insert, BB0, SPH}, {DominatorTree::Insert, BB0, BB1}});
// (1) Load the search array and branch to the inner loop.
Builder.SetInsertPoint(BB1);
PHINode *Search = Builder.CreatePHI(PtrTy, 2, "psearch");
Value *PredSearch = Builder.CreateIntrinsic(
Intrinsic::get_active_lane_mask, {PredVTy, I64Ty},
{Builder.CreatePtrToInt(Search, I64Ty), ISearchEnd}, nullptr,
"search_pred");
PredSearch = Builder.CreateAnd(PredVF, PredSearch, "search_masked");
Value *LoadSearch = Builder.CreateMaskedLoad(
CharVTy, Search, Align(1), PredSearch, Passthru, "search_load_vec");
Builder.CreateBr(BB2);
DTU.applyUpdates({{DominatorTree::Insert, BB1, BB2}});
// (2) Inner loop.
Builder.SetInsertPoint(BB2);
PHINode *Needle = Builder.CreatePHI(PtrTy, 2, "pneedle");
// (2.a) Load the needle array.
Value *PredNeedle = Builder.CreateIntrinsic(
Intrinsic::get_active_lane_mask, {PredVTy, I64Ty},
{Builder.CreatePtrToInt(Needle, I64Ty), INeedleEnd}, nullptr,
"needle_pred");
PredNeedle = Builder.CreateAnd(PredVF, PredNeedle, "needle_masked");
Value *LoadNeedle = Builder.CreateMaskedLoad(
CharVTy, Needle, Align(1), PredNeedle, Passthru, "needle_load_vec");
// (2.b) Splat the first element to the inactive lanes.
Value *Needle0 =
Builder.CreateExtractElement(LoadNeedle, uint64_t(0), "needle0");
Value *Needle0Splat = Builder.CreateVectorSplat(ElementCount::getScalable(VF),
Needle0, "needle0");
LoadNeedle = Builder.CreateSelect(PredNeedle, LoadNeedle, Needle0Splat,
"needle_splat");
LoadNeedle = Builder.CreateExtractVector(
FixedVectorType::get(CharTy, VF), LoadNeedle, uint64_t(0), "needle_vec");
// (2.c) Test if there's a match.
Value *MatchPred = Builder.CreateIntrinsic(
Intrinsic::experimental_vector_match, {CharVTy, LoadNeedle->getType()},
{LoadSearch, LoadNeedle, PredSearch}, nullptr, "match_pred");
Value *IfAnyMatch = Builder.CreateOrReduce(MatchPred);
Builder.CreateCondBr(IfAnyMatch, BB3, BB4);
DTU.applyUpdates(
{{DominatorTree::Insert, BB2, BB3}, {DominatorTree::Insert, BB2, BB4}});
// (3) We found a match. Compute the index of its location and exit.
Builder.SetInsertPoint(BB3);
PHINode *MatchLCSSA = Builder.CreatePHI(PtrTy, 1, "match_start");
PHINode *MatchPredLCSSA =
Builder.CreatePHI(MatchPred->getType(), 1, "match_vec");
Value *MatchCnt = Builder.CreateIntrinsic(
Intrinsic::experimental_cttz_elts, {I64Ty, MatchPred->getType()},
{MatchPredLCSSA, /*ZeroIsPoison=*/Builder.getInt1(true)}, nullptr,
"match_idx");
Value *MatchVal =
Builder.CreateGEP(CharTy, MatchLCSSA, MatchCnt, "match_res");
Builder.CreateBr(ExitSucc);
DTU.applyUpdates({{DominatorTree::Insert, BB3, ExitSucc}});
// (4) Check if we've reached the end of the needle array.
Builder.SetInsertPoint(BB4);
Value *NextNeedle =
Builder.CreateGEP(CharTy, Needle, ConstVF, "needle_next_vec");
Builder.CreateCondBr(Builder.CreateICmpULT(NextNeedle, NeedleEnd), BB2, BB5);
DTU.applyUpdates(
{{DominatorTree::Insert, BB4, BB2}, {DominatorTree::Insert, BB4, BB5}});
// (5) Check if we've reached the end of the search array.
Builder.SetInsertPoint(BB5);
Value *NextSearch =
Builder.CreateGEP(CharTy, Search, ConstVF, "search_next_vec");
Builder.CreateCondBr(Builder.CreateICmpULT(NextSearch, SearchEnd), BB1,
ExitFail);
DTU.applyUpdates({{DominatorTree::Insert, BB5, BB1},
{DominatorTree::Insert, BB5, ExitFail}});
// Set up the PHI nodes.
Search->addIncoming(SearchStart, BB0);
Search->addIncoming(NextSearch, BB5);
Needle->addIncoming(NeedleStart, BB1);
Needle->addIncoming(NextNeedle, BB4);
// These are needed to retain LCSSA form.
MatchLCSSA->addIncoming(Search, BB2);
MatchPredLCSSA->addIncoming(MatchPred, BB2);
if (VerifyLoops) {
OuterLoop->verifyLoop();
InnerLoop->verifyLoop();
if (!OuterLoop->isRecursivelyLCSSAForm(*DT, *LI))
report_fatal_error("Loops must remain in LCSSA form!");
}
return MatchVal;
}
void LoopIdiomVectorize::transformFindFirstByte(
PHINode *IndPhi, unsigned VF, Type *CharTy, BasicBlock *ExitSucc,
BasicBlock *ExitFail, Value *SearchStart, Value *SearchEnd,
Value *NeedleStart, Value *NeedleEnd) {
// Insert the find first byte code at the end of the preheader block.
BasicBlock *Preheader = CurLoop->getLoopPreheader();
BranchInst *PHBranch = cast<BranchInst>(Preheader->getTerminator());
IRBuilder<> Builder(PHBranch);
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
Builder.SetCurrentDebugLocation(PHBranch->getDebugLoc());
Value *MatchVal =
expandFindFirstByte(Builder, DTU, VF, CharTy, ExitSucc, ExitFail,
SearchStart, SearchEnd, NeedleStart, NeedleEnd);
assert(PHBranch->isUnconditional() &&
"Expected preheader to terminate with an unconditional branch.");
// Add new incoming values with the result of the transformation to PHINodes
// of ExitSucc that use IndPhi.
for (auto *U : llvm::make_early_inc_range(IndPhi->users())) {
auto *PN = dyn_cast<PHINode>(U);
if (PN && PN->getParent() == ExitSucc)
PN->addIncoming(MatchVal, cast<Instruction>(MatchVal)->getParent());
}
if (VerifyLoops && CurLoop->getParentLoop()) {
CurLoop->getParentLoop()->verifyLoop();
if (!CurLoop->getParentLoop()->isRecursivelyLCSSAForm(*DT, *LI))
report_fatal_error("Loops must remain in LCSSA form!");
}
}