801 lines
30 KiB
C++

//===- LoopEmitter.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "LoopEmitter.h"
#include "CodegenUtils.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
//===----------------------------------------------------------------------===//
// File local shorthand macros
//===----------------------------------------------------------------------===//
#define CMPI(p, l, r) \
(builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::p, (l), (r)) \
.getResult())
#define C_IDX(v) (constantIndex(builder, loc, (v)))
#define YIELD(vs) (builder.create<scf::YieldOp>(loc, (vs)))
#define ADDI(lhs, rhs) (builder.create<arith::AddIOp>(loc, (lhs), (rhs)))
#define ANDI(lhs, rhs) (builder.create<arith::AndIOp>(loc, (lhs), (rhs)))
#define SUBI(lhs, rhs) (builder.create<arith::SubIOp>(loc, (lhs), (rhs)))
#define MULI(lhs, rhs) (builder.create<arith::MulIOp>(loc, (lhs), (rhs)))
#define REMUI(lhs, rhs) (builder.create<arith::RemUIOp>(loc, (lhs), (rhs)))
#define DIVUI(lhs, rhs) (builder.create<arith::DivUIOp>(loc, (lhs), (rhs)))
#define SELECT(c, l, r) (builder.create<arith::SelectOp>(loc, (c), (l), (r)))
//===----------------------------------------------------------------------===//
// Debugging utils
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
LLVM_ATTRIBUTE_UNUSED static void dumpIndexMemRef(OpBuilder &builder,
Location loc, Value memref) {
memref = builder.create<memref::CastOp>(
loc, UnrankedMemRefType::get(builder.getIndexType(), 0), memref);
createFuncCall(builder, loc, "printMemrefInd", TypeRange{},
ValueRange{memref}, EmitCInterface::On);
}
#endif
//===----------------------------------------------------------------------===//
// File local helper functions.
//===----------------------------------------------------------------------===//
// For index reduction loops, since the tensor are sliced into non-continuous
// fragments, we need a triple [pLo, pHi, pPtr], in which the pair (pLo, pHi)
// specifies the range of the fragment, and pPtr specifies the index of the
// corresponding fragment in the child level (i.e., a pointer to the sliced
// position array).
static Value genSliceOffset(OpBuilder &builder, Location loc, Value tensor,
Level lvl) {
auto enc = getSparseTensorEncoding(tensor.getType());
return createOrFoldSliceOffsetOp(builder, loc, tensor, toDim(enc, lvl));
}
static Value genSliceStride(OpBuilder &builder, Location loc, Value tensor,
Level lvl) {
auto enc = getSparseTensorEncoding(tensor.getType());
return createOrFoldSliceStrideOp(builder, loc, tensor, toDim(enc, lvl));
}
//===----------------------------------------------------------------------===//
// Sparse tensor loop emitter class implementations
//===----------------------------------------------------------------------===//
LoopEmitter::LoopEmitter(ValueRange tensors, StringAttr loopTag, bool hasOutput,
bool isSparseOut, unsigned numLoops,
DependentLvlGetter dimGetter,
SparseEmitStrategy emitStrategy) {
initialize(tensors, loopTag, hasOutput, isSparseOut, numLoops, dimGetter);
}
void LoopEmitter::initialize(ValueRange ts, StringAttr loopTag, bool hasOutput,
bool isSparseOut, unsigned numLoops,
DependentLvlGetter dimGetter,
SparseEmitStrategy emitStrategy) {
// First initialize the top-level type of the fields.
this->loopTag = loopTag;
this->hasOutput = hasOutput;
this->isSparseOut = isSparseOut;
this->emitStrategy = emitStrategy;
const unsigned numManifestTensors = ts.size();
const unsigned synTensorId = numManifestTensors;
const unsigned numTensors = numManifestTensors + 1;
// tensors array (len == numManifestTensor).
this->tensors.assign(ts.begin(), ts.end());
// Arrays with len == numTensor.
this->valBuffer.assign(numTensors, nullptr);
this->lvls.resize(numTensors);
this->iters.resize(numTensors);
// These zeros will be overwritten below, but we need to initialize
// them to something since we'll need random-access assignment.
this->loopStack.reserve(numLoops);
this->loopSeqStack.reserve(numLoops);
// Index-reduction related fields.
this->dependentLvlMap.assign(
numTensors, std::vector<std::vector<std::pair<TensorLevel, unsigned>>>());
this->sliceMeta.assign(
numTensors, std::vector<std::vector<std::pair<Value, unsigned>>>());
this->levelReducedDep.assign(numTensors, std::vector<unsigned>());
// Initialize nested types of `TensorId`-indexed fields.
for (TensorId tid = 0; tid < numTensors; tid++) {
Level lvlRank;
if (tid == synTensorId) {
// Synthetic tensor (conceptually) is an all-dense tensor with rank equal
// to the total number of loops (each level can potentially be mapped to
// one of the loop being generated).
lvlRank = numLoops;
} else {
const Value t = tensors[tid];
// a scalar or 0-dimension tensors
if (isZeroRankedTensorOrScalar(t.getType()))
continue;
auto rtp = getRankedTensorType(t);
const SparseTensorType stt(rtp);
lvlRank = stt.getLvlRank();
}
lvls[tid].resize(lvlRank);
iters[tid].resize(lvlRank);
loopHighs.assign(numLoops, nullptr);
// Slice-driven loops related initialization.
levelReducedDep[tid].assign(lvlRank, 0);
dependentLvlMap[tid].assign(
lvlRank, std::vector<std::pair<TensorLevel, unsigned>>());
sliceMeta[tid].assign(lvlRank, std::vector<std::pair<Value, unsigned>>());
if (dimGetter && !isSynTensor(tid)) {
for (Level l = 0; l < lvlRank; l++) {
std::vector<std::pair<LoopId, unsigned>> deps = dimGetter(tid, l);
// Sort the loop by order.
std::sort(deps.begin(), deps.end(),
[](auto &lhs, auto &rhs) { return lhs.first < rhs.first; });
dependentLvlMap[tid][l] = std::move(deps);
unsigned depends = dependentLvlMap[tid][l].size();
if (depends == 0)
continue;
sliceMeta[tid][l].reserve(depends);
}
}
}
}
std::unique_ptr<SparseIterator>
LoopEmitter::makeLevelIterator(OpBuilder &builder, Location loc, TensorId t,
Level l) {
auto it = makeSimpleIterator(*lvls[t][l], emitStrategy);
auto stt = getSparseTensorType(tensors[t]);
if (stt.hasEncoding() && stt.getEncoding().isSlice()) {
Value offset = genSliceOffset(builder, loc, tensors[t], l);
Value stride = genSliceStride(builder, loc, tensors[t], l);
auto slicedIt = makeSlicedLevelIterator(
std::move(it), offset, stride, lvls[t][l]->getSize(), emitStrategy);
return slicedIt;
}
return it;
}
void LoopEmitter::initializeLoopEmit(
OpBuilder &builder, Location loc, LoopEmitter::OutputUpdater updater,
LoopEmitter::SynTensorBoundSetter synSetter) {
// For every synthetic tensor, set the high bound by calling the callback.
if (synSetter) {
TensorId synId = getSynTensorId();
for (unsigned i = 0, e = loopHighs.size(); i < e; i++) {
Value sz = loopHighs[i] = synSetter(builder, loc, i);
auto [stl, it] = makeSynLevelAndIterator(sz, synId, i, emitStrategy);
lvls[synId][i] = std::move(stl);
iters[synId][i].emplace_back(std::move(it));
}
}
// For every manifest tensor:
// * get the values buffer.
// * For every level:
// * get the positions and coordinates buffers
// * get/compute the level-size, which is also used as the upper-bound
// on positions.
for (TensorId t = 0, numTensors = getNumManifestTensors(); t < numTensors;
t++) {
const Value tensor = tensors[t];
const auto rtp = dyn_cast<RankedTensorType>(tensor.getType());
if (!rtp)
// Skips only scalar, zero ranked tensor still need to be bufferized and
// (probably) filled with zeros by users.
continue;
// FIXME: the definition of `lvlRank` looks more like a dim-rank;
// but the variable is used as a level everywhere below, which
// suggests there may be some dim/lvl confusion going on here.
auto stt = getSparseTensorType(tensor);
const Level lvlRank = stt.getLvlRank();
const auto shape = rtp.getShape();
SmallVector<Value> lvlSzs;
for (Level l = 0; l < stt.getLvlRank(); l++) {
if (stt.hasEncoding())
lvlSzs.push_back(builder.create<LvlOp>(loc, tensor, l));
else
lvlSzs.push_back(builder.create<tensor::DimOp>(loc, tensor, l));
}
// Scan all levels of current tensor.
for (Level l = 0; l < lvlRank; l++) {
// Find upper bound in current dimension.
lvls[t][l] = makeSparseTensorLevel(builder, loc, tensor, t, l);
if (!dependentLvlMap[t][l].empty())
continue;
auto it = makeLevelIterator(builder, loc, t, l);
iters[t][l].emplace_back(std::move(it));
}
// Perform the required bufferization. Dense inputs materialize
// from the input tensors. Sparse inputs use sparse primitives to obtain the
// values.
// Delegates extra output initialization to clients.
bool isOutput = isOutputTensor(t);
Type elementType = stt.getElementType();
if (!stt.hasEncoding()) {
// Non-annotated dense tensors.
BaseMemRefType denseTp = MemRefType::get(shape, elementType);
// TODO: if we unconditionally use fully dynamic layout here, it breaks
// some vectorization passes which requires static stride = 1.
// Is it possible to call vectorization pass after bufferization?
if (llvm::isa_and_nonnull<tensor::ExtractSliceOp>(tensor.getDefiningOp()))
denseTp = bufferization::getMemRefTypeWithFullyDynamicLayout(rtp);
Value denseVal =
builder.create<bufferization::ToMemrefOp>(loc, denseTp, tensor);
// Dense outputs need special handling.
if (isOutput && updater)
denseVal = updater(builder, loc, denseVal, tensor);
valBuffer[t] = denseVal;
} else {
// Annotated sparse tensors.
// We also need the value buffer for all-dense annotated "sparse"
// tensors.
valBuffer[t] = genToValues(builder, loc, tensor);
}
// NOTE: we can also prepare for 0 lvl here in advance, this will hoist
// some loop preparation from tensor iteration, but will also (undesirably)
// hoist the code ouside if-conditions.
}
// TODO: avoid treating subsection iterator as a special case.
initSubSectIterator(builder, loc);
}
void LoopEmitter::initSubSectIterator(OpBuilder &builder, Location loc) {
Value c0 = C_IDX(0);
for (TensorId t = 0, e = tensors.size(); t < e; t++) {
auto rtp = dyn_cast<RankedTensorType>(tensors[t].getType());
if (!rtp)
continue;
Level lvlRank = SparseTensorType(rtp).getLvlRank();
// Compute the dependency reduction order.
auto remDepStack = dependentLvlMap;
std::vector<std::tuple<LoopId, TensorId, Level>> depRedOrder;
for (Level lvl = 0; lvl < lvlRank; lvl++) {
// Reverse queue into a stack.
std::reverse(remDepStack[t][lvl].begin(), remDepStack[t][lvl].end());
for (auto [loop, coeff] : dependentLvlMap[t][lvl])
depRedOrder.emplace_back(std::make_tuple(loop, t, lvl));
}
if (depRedOrder.empty())
continue;
std::sort(depRedOrder.begin(), depRedOrder.end(),
[](auto &l, auto &r) { return std::get<0>(l) < std::get<0>(r); });
SmallVector<SparseIterator *> lastIter(tensors.size(), nullptr);
for (auto [loop, t, lvl] : depRedOrder) {
std::pair<LoopId, unsigned> curDep = remDepStack[t][lvl].back();
assert(curDep.first == loop);
remDepStack[t][lvl].pop_back();
auto lvlIt = makeLevelIterator(builder, loc, t, lvl);
const SparseIterator *parent = lastIter[t];
if (!parent && lvl > 0) {
if (dependentLvlMap[t][lvl - 1].empty()) {
parent = iters[t][lvl - 1].back().get();
}
}
std::unique_ptr<SparseIterator> it;
if (!remDepStack[t][lvl].empty()) {
// Compute the subsection size.
Value size = c0;
for (auto [loop, stride] : remDepStack[t][lvl]) {
Value idxMax = SUBI(loopHighs[loop], C_IDX(1));
size = ADDI(size, ADDI(MULI(idxMax, C_IDX(stride)), C_IDX(1)));
}
it = makeNonEmptySubSectIterator(builder, loc, parent, loopHighs[loop],
std::move(lvlIt), size, curDep.second,
emitStrategy);
} else {
const SparseIterator &subSectIter = *iters[t][lvl].back();
it = makeTraverseSubSectIterator(builder, loc, subSectIter, *parent,
std::move(lvlIt), loopHighs[loop],
curDep.second, emitStrategy);
}
lastIter[t] = it.get();
iters[t][lvl].emplace_back(std::move(it));
}
}
}
void LoopEmitter::categorizeIterators(
ArrayRef<TensorLevel> tidLvls, SmallVectorImpl<SparseIterator *> &raIters,
SmallVectorImpl<SparseIterator *> &spIters) {
// Finds out the tensor level that we should use to generate loops. Amongs all
// the tensor levels, there is at most one sparse tensor level.
for (auto [t, l] : unpackTensorLevelRange(tidLvls)) {
SparseIterator *it = &getCurIterator(t, l);
if (it->randomAccessible())
raIters.push_back(it);
else
spIters.push_back(it);
}
std::stable_sort(spIters.begin(), spIters.end(), [](auto lhs, auto rhs) {
// AffineUnRed > Affine > Slice > Trivial
return static_cast<uint8_t>(lhs->kind) > static_cast<uint8_t>(rhs->kind);
});
}
void LoopEmitter::enterNewLoopSeq(OpBuilder &builder, Location loc,
ArrayRef<TensorLevel> tidLvls) {
// TODO: sort
assert(loopSeqStack.size() == loopStack.size());
// Prepares for all the tensors used in the current loop sequence.
for (auto [tid, lvl] : unpackTensorLevelRange(tidLvls)) {
levelReducedDep[tid][lvl]++;
prepareLoopOverTensorAtLvl(builder, loc, tid, lvl);
}
// Universal Index starts from 0.
loopSeqStack.emplace_back(C_IDX(0), tidLvls.vec());
}
void LoopEmitter::exitCurrentLoopSeq(OpBuilder &builder, Location loc) {
assert(loopSeqStack.size() == loopStack.size() + 1);
// Depending on whether the slice is resolved or not at current loop sequence,
// end them in different ways.
for (auto [tid, lvl] : unpackTensorLevelRange(loopSeqStack.back().second))
levelReducedDep[tid][lvl]--;
loopSeqStack.pop_back();
}
Value LoopEmitter::genAffine(OpBuilder &builder, Location loc, AffineExpr a) {
switch (a.getKind()) {
case AffineExprKind::DimId: {
// FIXME: since the one callsite in Sparsification passes in a
// level-expression, the `getPosition` must in fact be a `Dimension`.
// However, elsewhere we have been lead to expect that `loopIdToOrd`
// should be indexed by `LoopId`...
const auto loopId = cast<AffineDimExpr>(a).getPosition();
return loopStack[loopId].iv;
}
case AffineExprKind::Add: {
auto binOp = cast<AffineBinaryOpExpr>(a);
return ADDI(genAffine(builder, loc, binOp.getLHS()),
genAffine(builder, loc, binOp.getRHS()));
}
case AffineExprKind::Mul: {
auto binOp = cast<AffineBinaryOpExpr>(a);
return MULI(genAffine(builder, loc, binOp.getLHS()),
genAffine(builder, loc, binOp.getRHS()));
}
case AffineExprKind::Constant: {
int64_t c = cast<AffineConstantExpr>(a).getValue();
return C_IDX(c);
}
default:
llvm_unreachable("unexpected affine subscript");
}
}
std::pair<Operation *, Value> LoopEmitter::emitForLoopOverTensorAtLvl(
OpBuilder &builder, Location loc, SparseIterator &iter,
MutableArrayRef<Value> reduc, bool isParallel) {
// TODO: support dynamic slices.
// Uses the first dimension here to build the loop bound (which is also the
// biggest range).
Value step = C_IDX(1);
auto [lo, hi] = iter.genForCond(builder, loc);
Operation *loop = nullptr;
Value iv;
if (isParallel) {
scf::ParallelOp parOp =
builder.create<scf::ParallelOp>(loc, lo, hi, step, reduc);
builder.setInsertionPointToStart(parOp.getBody());
assert(parOp.getNumReductions() == reduc.size());
iv = parOp.getInductionVars()[0];
// In-place update on the reduction variable vector.
// Note that the init vals is not the actual reduction variables but instead
// used as a "special handle" to (temporarily) represent them. The
// expression on init vals will be moved into scf.reduce and replaced with
// the block arguments when exiting the loop (see exitForLoop). This is
// needed as we can not build the actual reduction block and get the actual
// reduction variable before users fill parallel loop body.
for (int i = 0, e = reduc.size(); i < e; i++)
reduc[i] = parOp.getInitVals()[i];
loop = parOp;
} else {
scf::ForOp forOp = builder.create<scf::ForOp>(loc, lo, hi, step, reduc);
builder.setInsertionPointToStart(forOp.getBody());
iv = forOp.getInductionVar();
// In-place update on the reduction variable vector.
assert(forOp.getNumRegionIterArgs() == reduc.size());
for (int i = 0, e = reduc.size(); i < e; i++)
reduc[i] = forOp.getRegionIterArg(i);
loop = forOp;
}
assert(loop && iv);
Value crd = iv;
if (!iter.randomAccessible()) {
iter.linkNewScope(iv);
crd = iter.deref(builder, loc);
} else {
iter.locate(builder, loc, iv);
}
return {loop, crd};
}
std::pair<Operation *, Value> LoopEmitter::emitWhileLoopOverTensorsAtLvls(
OpBuilder &builder, Location loc, ArrayRef<SparseIterator *> spIters,
MutableArrayRef<Value> reduc, bool needsUniv) {
// NOTE: the slice driven tensor-related reduction variable must
// appear before normal tensors.
// The set of induction variables for the while loop.
SmallVector<Value> ivs;
// Construct the while-loop with a parameter for each coordinate.
for (SparseIterator *it : spIters) {
ValueRange itVals = it->getCursor();
ivs.append(itVals.begin(), itVals.end());
}
// The position where user-supplied reduction variable starts.
ivs.append(reduc.begin(), reduc.end());
// Update universal index.
if (needsUniv)
ivs.push_back(loopSeqStack.back().first);
// Ensures all operands are valid.
assert(llvm::all_of(ivs, [](Value v) { return v != nullptr; }));
TypeRange types = ValueRange(ivs).getTypes();
auto whileOp = builder.create<scf::WhileOp>(loc, types, ivs);
SmallVector<Location> locs(types.size(), loc);
Block *before = builder.createBlock(&whileOp.getBefore(), {}, types, locs);
Block *after = builder.createBlock(&whileOp.getAfter(), {}, types, locs);
// Generates loop conditions.
builder.setInsertionPointToStart(before);
ValueRange bArgs = before->getArguments();
Value whileCond = nullptr; // bool values for loop condition.
for (SparseIterator *it : spIters) {
auto [cond, remArgs] = it->genWhileCond(builder, loc, bArgs);
whileCond = !whileCond ? cond : ANDI(whileCond, cond);
bArgs = remArgs;
}
// The remaining block arguments are user-provided reduction values and an
// optional universal index. Make sure their sizes match.
assert(bArgs.size() == reduc.size() + needsUniv ? 1 : 0);
builder.create<scf::ConditionOp>(loc, whileCond, before->getArguments());
// Generates loop body.
builder.setInsertionPointToStart(after);
ValueRange aArgs = after->getArguments();
// Since some LoopCondKind might need extra checks to filter out invalid
// iterations, we maintains another array to hold the iteration arguments to
// yield if the checks fails.
SmallVector<Value> nextArgs(aArgs.begin(), aArgs.end());
for (SparseIterator *it : spIters) {
aArgs = it->linkNewScope(aArgs);
// Dereference the iterator to cache the coordinate.
it->deref(builder, loc);
}
// In-place update on reduction variable.
assert(aArgs.size() == reduc.size() + needsUniv ? 1 : 0);
for (unsigned i = 0, e = reduc.size(); i < e; i++)
reduc[i] = aArgs[i];
Value min;
// Finds the minimum coordinate
if (!needsUniv) {
for (SparseIterator *it : spIters) {
if (min) {
Value cmp = CMPI(ult, it->getCrd(), min);
min = SELECT(cmp, it->getCrd(), min);
} else {
min = it->getCrd();
}
}
} else {
// Otherwise, universal index is the minimal pos.
min = whileOp.getAfterArguments().back();
}
return {whileOp, min};
}
bool LoopEmitter::shouldIteratedByForLoop(ArrayRef<SparseIterator *> spIters) {
// If we need to co-iterate over two sparse tensors, we need a while loop
if (spIters.size() > 1)
return false;
if (spIters.size() == 1)
return spIters.front()->iteratableByFor();
return true;
}
Operation *LoopEmitter::enterCoIterationOverTensorsAtLvls(
OpBuilder &builder, Location loc, ArrayRef<TensorLevel> tidLvls,
MutableArrayRef<Value> reduc, bool tryParallel, bool needsUniv) {
// TODO: support multiple return on parallel for?
tryParallel = tryParallel && reduc.size() <= 1;
SmallVector<SparseIterator *> raIters;
SmallVector<SparseIterator *> spIters;
categorizeIterators(tidLvls, raIters, spIters);
// Only when there is at least one sparse conditions, do we really need the
// universal index.
// TODO: Maybe we should instead requires merger to pass in a valid value at
// the first place instead of adjusting it in LoopEmitter?
needsUniv = !spIters.empty() && needsUniv;
// The TensorLevel used for loop conditions.
// If there is any sparse level, we need to use the sparse condition.
// If all levels are dense, we can pick arbitrary one (dense slice-driven loop
// can be generated using a simple ForOp as well).
Operation *l = nullptr;
Value iv = nullptr;
SmallVector<TensorLevel> tls;
// Generates loops differently depending on whether we need a slice-driven
// loop or a simple level traversal loop.
if (shouldIteratedByForLoop(spIters) && !needsUniv) {
assert(spIters.size() <= 1);
SparseIterator &it = spIters.empty() ? *raIters.front() : *spIters.front();
std::tie(l, iv) =
emitForLoopOverTensorAtLvl(builder, loc, it, reduc, tryParallel);
tls.push_back(makeTensorLevel(it.tid, it.lvl));
} else {
for (auto *it : spIters) {
tls.push_back(makeTensorLevel(it->tid, it->lvl));
}
if (needsUniv)
for (auto *it : raIters)
tls.push_back(makeTensorLevel(it->tid, it->lvl));
std::tie(l, iv) =
emitWhileLoopOverTensorsAtLvls(builder, loc, spIters, reduc, needsUniv);
}
// Enter dense tensor levels.
for (SparseIterator *it : raIters)
it->locate(builder, loc, iv);
// NOTE: we can also prepare for next dim here in advance
// Pushes the loop into stack.
loopStack.emplace_back(tls, l, builder.getInsertionBlock(), iv, loopTag);
return l;
}
void LoopEmitter::locateLvlAtAffineAddress(OpBuilder &builder, Location loc,
TensorLevel tidLvl,
AffineExpr lvlExpr) {
auto [tid, lvl] = unpackTensorLevel(tidLvl);
const SparseIterator *parent =
lvl == 0 ? nullptr : iters[tid][lvl - 1].back().get();
auto &it = getCurIterator(tid, lvl);
it.genInit(builder, loc, parent);
assert(it.kind == IterKind::kTrivial && it.randomAccessible());
Value lvlCrd = genAffine(builder, loc, lvlExpr);
it.locate(builder, loc, lvlCrd);
}
void LoopEmitter::prepareLoopOverTensorAtLvl(OpBuilder &builder, Location loc,
TensorId tid, Level lvl) {
// if this is the first level, there is no parent iterator for the current
// iterator.
// If the current iterator is a subsection-based iterator, the parent iterator
// is memorized by the iterator.
bool hasParent = lvl == 0 || !dependentLvlMap[tid][lvl].empty();
const SparseIterator *parent =
hasParent ? nullptr : iters[tid][lvl - 1].back().get();
auto &it = getCurIterator(tid, lvl);
it.genInit(builder, loc, parent);
// Locates the randon accessible iterator to 0.
if (it.randomAccessible())
it.locate(builder, loc, C_IDX(0));
}
void LoopEmitter::exitForLoop(RewriterBase &rewriter, Location loc,
MutableArrayRef<Value> reduc) {
const LoopInfo &loopInfo = loopStack.back();
if (auto forOp = llvm::dyn_cast<scf::ForOp>(loopInfo.loop)) {
if (!reduc.empty()) {
assert(reduc.size() == forOp.getNumResults());
rewriter.create<scf::YieldOp>(loc, reduc);
}
// Exit the loop.
rewriter.setInsertionPointAfter(forOp);
// In-place update reduction variables.
for (unsigned i = 0, e = forOp.getResults().size(); i < e; i++)
reduc[i] = forOp.getResult(i);
} else {
auto parOp = llvm::cast<scf::ParallelOp>(loopInfo.loop);
if (!reduc.empty()) {
assert(reduc.size() == parOp.getInitVals().size() && reduc.size() == 1);
Operation *redExp = reduc.front().getDefiningOp();
// Reduction expression should have no use.
assert(redExp->getUses().empty());
// This must be a binary operation.
// NOTE: This is users' responsibility to ensure the operation are
// commutative.
assert(redExp->getNumOperands() == 2 && redExp->getNumResults() == 1);
Value redVal = parOp.getInitVals().front();
Value curVal;
if (redExp->getOperand(0) == redVal)
curVal = redExp->getOperand(1);
else if (redExp->getOperand(1) == redVal)
curVal = redExp->getOperand(0);
// One of the operands must be the init value (which is also the
// previous reduction value).
assert(curVal);
#ifndef NDEBUG
// The reduction expression should be the only user of the reduction val
// inside the parallel for.
unsigned numUsers = 0;
for (Operation *op : redVal.getUsers()) {
if (op->getParentOp() == parOp)
numUsers++;
}
assert(numUsers == 1);
#endif // NDEBUG
rewriter.setInsertionPointAfter(redExp);
auto redOp = rewriter.create<scf::ReduceOp>(loc, curVal);
// Attach to the reduction op.
Block *redBlock = &redOp.getReductions().front().front();
rewriter.setInsertionPointToEnd(redBlock);
Operation *newRed = rewriter.clone(*redExp);
// Replaces arguments of the reduction expression by using the block
// arguments from scf.reduce.
rewriter.modifyOpInPlace(
newRed, [&]() { newRed->setOperands(redBlock->getArguments()); });
// Erases the out-dated reduction expression.
rewriter.eraseOp(redExp);
rewriter.setInsertionPointToEnd(redBlock);
rewriter.create<scf::ReduceReturnOp>(loc, newRed->getResult(0));
}
rewriter.setInsertionPointAfter(parOp);
// In-place update reduction variables.
for (unsigned i = 0, e = parOp.getResults().size(); i < e; i++)
reduc[i] = parOp.getResult(i);
}
}
void LoopEmitter::exitWhileLoop(OpBuilder &builder, Location loc,
MutableArrayRef<Value> reduc) {
const LoopInfo &loopInfo = loopStack.back();
auto whileOp = llvm::cast<scf::WhileOp>(loopInfo.loop);
Value iv = loopInfo.iv;
Value one = C_IDX(1);
// Finalize the induction. Note that the induction could be performed
// in the individual if-branches to avoid re-evaluating the conditions.
// However, that would result in a rather elaborate forest of yield
// instructions during code generation. Moreover, performing the induction
// after the if-statements more closely resembles code generated by TACO.
SmallVector<Value> operands;
ValueRange whileRes = whileOp.getResults();
for (auto [tid, lvl] : unpackTensorLevelRange(loopInfo.tidLvls)) {
SparseIterator &it = getCurIterator(tid, lvl);
if (!it.randomAccessible()) {
// Forward the sparse iterator.
Value cmp = CMPI(eq, it.getCrd(), iv);
it.forwardIf(builder, loc, cmp);
operands.append(it.getCursor().begin(), it.getCursor().end());
// const Value newPos = whileOp->getResult(o++);
// Following loops continue iteration from the break point of the
// current while loop.
whileRes = it.linkNewScope(whileRes);
} else {
// Make sure randomly accessible (dense) iterator is set to the right
// position according to the universal index.
Value uniIdx = whileOp.getResults().back();
it.locate(builder, loc, uniIdx);
}
}
// Reduction value from users.
for (auto &i : reduc) {
operands.push_back(i);
// Update user reduction variables.
i = whileRes.front();
whileRes = whileRes.drop_front();
}
// An (optional) universal index.
if (operands.size() < whileOp.getNumResults()) {
assert(operands.size() + 1 == whileOp.getNumResults());
// The last one is the universial index.
operands.push_back(ADDI(iv, one));
// update the loop starting point of current loop sequence
loopSeqStack.back().first = whileOp->getResults().back();
}
if (!operands.empty())
YIELD(operands);
builder.setInsertionPointAfter(whileOp);
}
void LoopEmitter::exitCurrentLoop(RewriterBase &rewriter, Location loc,
MutableArrayRef<Value> reduc) {
// Clean up the values, it would help use to discover potential bug at a
// earlier stage (instead of silently using a wrong value).
const LoopInfo &loopInfo = loopStack.back();
// Sets the insertion point to the right position.
rewriter.setInsertionPointToEnd(loopInfo.userCodeBlock);
if (!loopInfo.userCodeBlock->empty() &&
llvm::isa<scf::YieldOp>(&loopInfo.userCodeBlock->back())) {
// scf::While/For inserts an implicit yield op when there is no loop
// iter args. In this case, we need to insert the code before the yield.
assert(loopInfo.userCodeBlock->back().getNumResults() == 0);
rewriter.setInsertionPoint(&loopInfo.userCodeBlock->back());
}
if (llvm::isa<scf::WhileOp>(loopInfo.loop)) {
exitWhileLoop(rewriter, loc, reduc);
} else {
exitForLoop(rewriter, loc, reduc);
}
assert(loopStack.size() == loopSeqStack.size());
loopStack.pop_back();
}
#undef CMPI
#undef C_IDX
#undef YIELD
#undef ADDI
#undef ANDI
#undef SUBI
#undef MULI
#undef SELECT