llvm-project/flang/lib/Optimizer/Transforms/SetRuntimeCallAttributes.cpp
Slava Zakharin 36fdeb2ade
[flang] Set LLVM specific attributes to fir.call's of Fortran runtime. (#128093)
This change is inspired by a case in facerec benchmark, where
performance
of scalar code may improve by about 6%@aarch64 due to getting rid of
redundant
loads from Fortran descriptors. These descriptors are corresponding
to subroutine local ALLOCATABLE, SAVE variables. The scalar loop nest
in LocalMove subroutine contains call to Fortran runtime IO functions,
and LLVM globals-aa analysis cannot prove that these calls do not modify
the globalized descriptors with internal linkage.

This patch sets and propagates llvm.memory_effects attribute for
fir.call
operations calling Fortran runtime functions. In particular, it tries
to set the Other memory effect to NoModRef. The Other memory effect
includes accesses to globals and captured pointers, so we cannot set
it for functions taking Fortran descriptors with one exception
for calls where the Fortran descriptor arguments are all null.

As long as different calls to the same Fortran runtime function may have
different attributes, I decided to attach the attributes to the calls
rather than functions. Moreover, attaching the attributes to func.func
will require propagating these attributes to llvm.func, which is not
happening right now.

In addition to llvm.memory_effects, the new pass sets llvm.nosync
and llvm.nocallback attributes that may also help LLVM alias analysis
(e.g. see #127707). These attributes are ignored currently.
I will support them in LLVM IR dialect in a separate patch.

I also added another pass for developers to be able to print
declarations/calls of all Fortran runtime functions that are recognized
by the attributes setting pass. It should help with maintenance
of the LIT tests.
2025-02-24 09:27:48 -08:00

253 lines
9.7 KiB
C++

//===- SetRuntimeCallAttributes.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// \file
/// SetRuntimeCallAttributesPass looks for fir.call operations
/// that are calling into Fortran runtime, and tries to set different
/// attributes on them to enable more optimizations in LLVM backend
/// (granted that they are preserved all the way to LLVM IR).
/// This pass is currently only attaching fir.call wide atttributes,
/// such as ones corresponding to llvm.memory, nosync, nocallbac, etc.
/// It is not designed to attach attributes to the arguments and the results
/// of a call.
//===----------------------------------------------------------------------===//
#include "flang/Common/static-multimap-view.h"
#include "flang/Optimizer/Builder/Runtime/RTBuilder.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/Support/InternalNames.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "flang/Runtime/io-api-consts.h"
#include "mlir/Dialect/LLVMIR/LLVMAttrs.h"
namespace fir {
#define GEN_PASS_DEF_SETRUNTIMECALLATTRIBUTES
#include "flang/Optimizer/Transforms/Passes.h.inc"
} // namespace fir
#define DEBUG_TYPE "set-runtime-call-attrs"
using namespace Fortran::runtime;
using namespace Fortran::runtime::io;
#define mkIOKey(X) FirmkKey(IONAME(X))
#define mkRTKey(X) FirmkKey(RTNAME(X))
// Return LLVM dialect MemoryEffectsAttr for the given Fortran runtime call.
// This function is computing a generic value of this attribute
// by analyzing the arguments and their types.
// It tries to figure out if an "indirect" memory access is possible
// during this call. If it is not possible, then the memory effects
// are:
// * other = NoModRef
// * argMem = ModRef
// * inaccessibleMem = ModRef
//
// Otherwise, it returns an empty attribute meaning ModRef for all kinds
// of memory.
//
// The attribute deduction is conservative in a sense that it applies
// to most of the runtime calls, but it may still be incorrect for some
// runtime calls.
static mlir::LLVM::MemoryEffectsAttr getGenericMemoryAttr(fir::CallOp callOp) {
bool maybeIndirectAccess = false;
for (auto arg : callOp.getArgOperands()) {
mlir::Type argType = arg.getType();
if (mlir::isa<fir::BaseBoxType>(argType)) {
// If it is a null/absent box, then this particular call
// cannot access memory indirectly through the box's
// base_addr.
auto def = arg.getDefiningOp();
if (!mlir::isa_and_nonnull<fir::ZeroOp, fir::AbsentOp>(def)) {
maybeIndirectAccess = true;
break;
}
}
if (auto refType = mlir::dyn_cast<fir::ReferenceType>(argType)) {
if (!fir::isa_trivial(refType.getElementType())) {
maybeIndirectAccess = true;
break;
}
}
if (auto ptrType = mlir::dyn_cast<mlir::LLVM::LLVMPointerType>(argType)) {
maybeIndirectAccess = true;
break;
}
}
if (!maybeIndirectAccess) {
return mlir::LLVM::MemoryEffectsAttr::get(
callOp->getContext(),
{/*other=*/mlir::LLVM::ModRefInfo::NoModRef,
/*argMem=*/mlir::LLVM::ModRefInfo::ModRef,
/*inaccessibleMem=*/mlir::LLVM::ModRefInfo::ModRef});
}
return {};
}
namespace {
class SetRuntimeCallAttributesPass
: public fir::impl::SetRuntimeCallAttributesBase<
SetRuntimeCallAttributesPass> {
public:
void runOnOperation() override;
};
// A helper to match a type against a list of types.
template <typename T, typename... Ts>
constexpr bool IsAny = std::disjunction_v<std::is_same<T, Ts>...>;
} // end anonymous namespace
// MemoryAttrDesc type provides get() method for computing
// mlir::LLVM::MemoryEffectsAttr for the given Fortran runtime call.
// If needed, add specializations for particular runtime calls.
namespace {
// Default implementation just uses getGenericMemoryAttr().
// Note that it may be incorrect for some runtime calls.
template <typename KEY, typename Enable = void>
struct MemoryAttrDesc {
static mlir::LLVM::MemoryEffectsAttr get(fir::CallOp callOp) {
return getGenericMemoryAttr(callOp);
}
};
} // end anonymous namespace
// NosyncAttrDesc type provides get() method for computing
// LLVM nosync attribute for the given call.
namespace {
// Default implementation always returns LLVM nosync.
// This should be true for the majority of the Fortran runtime calls.
template <typename KEY, typename Enable = void>
struct NosyncAttrDesc {
static std::optional<mlir::NamedAttribute> get(fir::CallOp callOp) {
// TODO: replace llvm.nosync with an LLVM dialect callback.
return mlir::NamedAttribute("llvm.nosync",
mlir::UnitAttr::get(callOp->getContext()));
}
};
} // end anonymous namespace
// NocallbackAttrDesc type provides get() method for computing
// LLVM nocallback attribute for the given call.
namespace {
// Default implementation always returns LLVM nocallback.
// It must be specialized for Fortran runtime functions that may call
// user functions during their execution (e.g. defined IO, assignment).
template <typename KEY, typename Enable = void>
struct NocallbackAttrDesc {
static std::optional<mlir::NamedAttribute> get(fir::CallOp callOp) {
// TODO: replace llvm.nocallback with an LLVM dialect callback.
return mlir::NamedAttribute("llvm.nocallback",
mlir::UnitAttr::get(callOp->getContext()));
}
};
// Derived types IO may call back into a Fortran module.
// This specialization is conservative for Input/OutputDerivedType,
// and it might be improved by checking if the NonTbpDefinedIoTable
// pointer argument is null.
template <typename KEY>
struct NocallbackAttrDesc<
KEY, std::enable_if_t<
IsAny<KEY, mkIOKey(OutputDerivedType), mkIOKey(InputDerivedType),
mkIOKey(OutputNamelist), mkIOKey(InputNamelist)>>> {
static std::optional<mlir::NamedAttribute> get(fir::CallOp) {
return std::nullopt;
}
};
} // end anonymous namespace
namespace {
// RuntimeFunction provides different callbacks that compute values
// of fir.call attributes for a Fortran runtime function.
struct RuntimeFunction {
using MemoryAttrGeneratorTy = mlir::LLVM::MemoryEffectsAttr (*)(fir::CallOp);
using NamedAttrGeneratorTy =
std::optional<mlir::NamedAttribute> (*)(fir::CallOp);
using Key = std::string_view;
constexpr operator Key() const { return key; }
Key key;
MemoryAttrGeneratorTy memoryAttrGenerator;
NamedAttrGeneratorTy nosyncAttrGenerator;
NamedAttrGeneratorTy nocallbackAttrGenerator;
};
// Helper type to create a RuntimeFunction descriptor given
// the KEY and a function name.
template <typename KEY>
struct RuntimeFactory {
static constexpr RuntimeFunction create(const std::string_view &name) {
return RuntimeFunction{name, MemoryAttrDesc<KEY>::get,
NosyncAttrDesc<KEY>::get,
NocallbackAttrDesc<KEY>::get};
}
};
} // end anonymous namespace
#define KNOWN_IO_FUNC(X) RuntimeFactory<mkIOKey(X)>::create(mkIOKey(X)::name)
#define KNOWN_RUNTIME_FUNC(X) \
RuntimeFactory<mkRTKey(X)>::create(mkRTKey(X)::name)
// A table of RuntimeFunction descriptors for all recognized
// Fortran runtime functions.
static constexpr RuntimeFunction runtimeFuncsTable[] = {
#include "flang/Optimizer/Transforms/RuntimeFunctions.inc"
};
static constexpr Fortran::common::StaticMultimapView<RuntimeFunction>
runtimeFuncs(runtimeFuncsTable);
static_assert(runtimeFuncs.Verify() && "map must be sorted");
// Set attributes for the given Fortran runtime call.
// The symbolTable is used to cache the name lookups in the module.
static void setRuntimeCallAttributes(fir::CallOp callOp,
mlir::SymbolTableCollection &symbolTable) {
auto iface = mlir::cast<mlir::CallOpInterface>(callOp.getOperation());
auto funcOp = mlir::dyn_cast_or_null<mlir::func::FuncOp>(
iface.resolveCallableInTable(&symbolTable));
if (!funcOp || !funcOp->hasAttrOfType<mlir::UnitAttr>(
fir::FIROpsDialect::getFirRuntimeAttrName()))
return;
llvm::StringRef name = funcOp.getName();
if (auto range = runtimeFuncs.equal_range(name);
range.first != range.second) {
// There should not be duplicate entries.
assert(range.first + 1 == range.second);
const RuntimeFunction &desc = *range.first;
LLVM_DEBUG(llvm::dbgs()
<< "Identified runtime function call: " << desc.key << '\n');
if (mlir::LLVM::MemoryEffectsAttr memoryAttr =
desc.memoryAttrGenerator(callOp))
callOp->setAttr(fir::FIROpsDialect::getFirCallMemoryAttrName(),
memoryAttr);
if (auto attr = desc.nosyncAttrGenerator(callOp))
callOp->setAttr(attr->getName(), attr->getValue());
if (auto attr = desc.nocallbackAttrGenerator(callOp))
callOp->setAttr(attr->getName(), attr->getValue());
LLVM_DEBUG(llvm::dbgs() << "Operation with attrs: " << callOp << '\n');
}
}
void SetRuntimeCallAttributesPass::runOnOperation() {
mlir::func::FuncOp funcOp = getOperation();
// Exit early for declarations to skip the debug output for them.
if (funcOp.isDeclaration())
return;
LLVM_DEBUG(llvm::dbgs() << "=== Begin " DEBUG_TYPE " ===\n");
LLVM_DEBUG(llvm::dbgs() << "Func-name:" << funcOp.getSymName() << "\n");
mlir::SymbolTableCollection symbolTable;
funcOp.walk([&](fir::CallOp callOp) {
setRuntimeCallAttributes(callOp, symbolTable);
});
LLVM_DEBUG(llvm::dbgs() << "=== End " DEBUG_TYPE " ===\n");
}