lntue ade502a8c4
[libc][math] Implement double precision asin correctly rounded for all rounding modes. (#134401)
Main algorithm:

The Taylor series expansion of `asin(x)` is:
```math
\begin{align*}
  asin(x) &= x + x^3 / 6 + 3x^5 / 40 + ... \\
       &= x \cdot P(x^2) \\
       &= x \cdot P(u) &\text{, where } u = x^2.
\end{align*}
```
For the fast path, we perform range reduction mod 1/64 and use degree-7
(minimax + Taylor) polynomials to approximate `P(x^2)`.

When `|x| >= 0.5`, we use the transformation:
```math
  u = \frac{1 + x}{2}
```
and apply half-angle formula to reduce `asin(x)` to:
```math
\begin{align*}
  asin(x) &= sign(x) \cdot \left( \frac{\pi}{2} - 2 \cdot asin(\sqrt{u}) \right) \\
       &= sign(x) \cdot \left( \frac{\pi}{2} - 2 \cdot \sqrt{u} \cdot P(u) \right).
\end{align*}
```
Since `0.5 <= |x| <= 1`, `|u| <= 0.5`. So we can reuse the polynomial
evaluation of `P(u)` when `|x| < 0.5`.

For the accurate path, we redo the computations in 128-bit precision
with degree-15 (minimax + Taylor) polynomials to approximate `P(u)`.
2025-04-25 09:55:21 -04:00
..

LLVM libc
=========

This directory and its subdirectories contain source code for llvm-libc,
a retargetable implementation of the C standard library.

LLVM is open source software. You may freely distribute it under the terms of
the license agreement found in LICENSE.txt.