llvm-project/llvm/lib/Transforms/Vectorize/VPlanTransforms.cpp
Florian Hahn 38641ddf3e
[VPlan] Do not sink uniform recipes in sinkScalarOperands.
For uniform ReplicateRecipes, only the first lane should be used, so
sinking them would mean we have to compute the value of the first lane
multiple times. Also, at the moment, sinking them causes a crash because
the value of the first lane is re-used by all users.

Reported post-commit for D100258.
2021-05-27 14:07:48 +01:00

151 lines
6.0 KiB
C++

//===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements a set of utility VPlan to VPlan transformations.
///
//===----------------------------------------------------------------------===//
#include "VPlanTransforms.h"
#include "llvm/ADT/PostOrderIterator.h"
using namespace llvm;
void VPlanTransforms::VPInstructionsToVPRecipes(
Loop *OrigLoop, VPlanPtr &Plan,
LoopVectorizationLegality::InductionList &Inductions,
SmallPtrSetImpl<Instruction *> &DeadInstructions, ScalarEvolution &SE) {
auto *TopRegion = cast<VPRegionBlock>(Plan->getEntry());
ReversePostOrderTraversal<VPBlockBase *> RPOT(TopRegion->getEntry());
for (VPBlockBase *Base : RPOT) {
// Do not widen instructions in pre-header and exit blocks.
if (Base->getNumPredecessors() == 0 || Base->getNumSuccessors() == 0)
continue;
VPBasicBlock *VPBB = Base->getEntryBasicBlock();
// Introduce each ingredient into VPlan.
for (auto I = VPBB->begin(), E = VPBB->end(); I != E;) {
VPRecipeBase *Ingredient = &*I++;
VPValue *VPV = Ingredient->getVPSingleValue();
Instruction *Inst = cast<Instruction>(VPV->getUnderlyingValue());
if (DeadInstructions.count(Inst)) {
VPValue DummyValue;
VPV->replaceAllUsesWith(&DummyValue);
Ingredient->eraseFromParent();
continue;
}
VPRecipeBase *NewRecipe = nullptr;
if (auto *VPPhi = dyn_cast<VPWidenPHIRecipe>(Ingredient)) {
auto *Phi = cast<PHINode>(VPPhi->getUnderlyingValue());
InductionDescriptor II = Inductions.lookup(Phi);
if (II.getKind() == InductionDescriptor::IK_IntInduction ||
II.getKind() == InductionDescriptor::IK_FpInduction) {
VPValue *Start = Plan->getOrAddVPValue(II.getStartValue());
NewRecipe = new VPWidenIntOrFpInductionRecipe(Phi, Start, nullptr);
} else {
Plan->addVPValue(Phi, VPPhi);
continue;
}
} else {
assert(isa<VPInstruction>(Ingredient) &&
"only VPInstructions expected here");
assert(!isa<PHINode>(Inst) && "phis should be handled above");
// Create VPWidenMemoryInstructionRecipe for loads and stores.
if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
NewRecipe = new VPWidenMemoryInstructionRecipe(
*Load, Plan->getOrAddVPValue(getLoadStorePointerOperand(Inst)),
nullptr /*Mask*/);
} else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
NewRecipe = new VPWidenMemoryInstructionRecipe(
*Store, Plan->getOrAddVPValue(getLoadStorePointerOperand(Inst)),
Plan->getOrAddVPValue(Store->getValueOperand()),
nullptr /*Mask*/);
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
NewRecipe = new VPWidenGEPRecipe(
GEP, Plan->mapToVPValues(GEP->operands()), OrigLoop);
} else if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
NewRecipe = new VPWidenCallRecipe(
*CI, Plan->mapToVPValues(CI->arg_operands()));
} else if (SelectInst *SI = dyn_cast<SelectInst>(Inst)) {
bool InvariantCond =
SE.isLoopInvariant(SE.getSCEV(SI->getOperand(0)), OrigLoop);
NewRecipe = new VPWidenSelectRecipe(
*SI, Plan->mapToVPValues(SI->operands()), InvariantCond);
} else {
NewRecipe =
new VPWidenRecipe(*Inst, Plan->mapToVPValues(Inst->operands()));
}
}
NewRecipe->insertBefore(Ingredient);
if (NewRecipe->getNumDefinedValues() == 1)
VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue());
else
assert(NewRecipe->getNumDefinedValues() == 0 &&
"Only recpies with zero or one defined values expected");
Ingredient->eraseFromParent();
Plan->removeVPValueFor(Inst);
for (auto *Def : NewRecipe->definedValues()) {
Plan->addVPValue(Inst, Def);
}
}
}
}
bool VPlanTransforms::sinkScalarOperands(VPlan &Plan) {
auto Iter = depth_first(
VPBlockRecursiveTraversalWrapper<VPBlockBase *>(Plan.getEntry()));
bool Changed = false;
// First, collect the operands of all predicated replicate recipes as seeds
// for sinking.
SetVector<VPValue *> WorkList;
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
for (auto &Recipe : *VPBB) {
auto *RepR = dyn_cast<VPReplicateRecipe>(&Recipe);
if (!RepR || !RepR->isPredicated())
continue;
WorkList.insert(RepR->op_begin(), RepR->op_end());
}
}
// Try to sink each replicate recipe in the worklist.
while (!WorkList.empty()) {
auto *C = WorkList.pop_back_val();
auto *SinkCandidate = dyn_cast_or_null<VPReplicateRecipe>(C->Def);
if (!SinkCandidate || SinkCandidate->isUniform())
continue;
// All users of SinkCandidate must be in the same block in order to perform
// sinking. Therefore the destination block for sinking must match the block
// containing the first user.
auto *FirstUser = dyn_cast<VPRecipeBase>(*SinkCandidate->user_begin());
if (!FirstUser)
continue;
VPBasicBlock *SinkTo = FirstUser->getParent();
if (SinkCandidate->getParent() == SinkTo ||
SinkCandidate->mayHaveSideEffects() ||
SinkCandidate->mayReadOrWriteMemory())
continue;
// All recipe users of the sink candidate must be in the same block SinkTo.
if (any_of(SinkCandidate->users(), [SinkTo](VPUser *U) {
auto *UI = dyn_cast<VPRecipeBase>(U);
return !UI || UI->getParent() != SinkTo;
}))
continue;
SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi());
WorkList.insert(SinkCandidate->op_begin(), SinkCandidate->op_end());
Changed = true;
}
return Changed;
}