llvm-project/lldb/source/Core/Disassembler.cpp
Pavel Labath 39b2979a43
[lldb] Fix source display for artificial locations (#115876)
When retrieving the location of the function declaration, we were
dropping the file component on the floor, which resulted in an amusingly
confusing situation were we displayed the file containing the
implementation of the function, but used the line number of the
declaration. This patch fixes that.

It required a small refactor Function::GetStartLineSourceLineInfo to
return a SupportFile (instead of just the file spec), which in turn
necessitated changes in a couple of other places as well.
2024-11-13 09:56:00 +01:00

1349 lines
47 KiB
C++

//===-- Disassembler.cpp --------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/Disassembler.h"
#include "lldb/Core/AddressRange.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/EmulateInstruction.h"
#include "lldb/Core/Mangled.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/ModuleList.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/SourceManager.h"
#include "lldb/Host/FileSystem.h"
#include "lldb/Interpreter/OptionValue.h"
#include "lldb/Interpreter/OptionValueArray.h"
#include "lldb/Interpreter/OptionValueDictionary.h"
#include "lldb/Interpreter/OptionValueRegex.h"
#include "lldb/Interpreter/OptionValueString.h"
#include "lldb/Interpreter/OptionValueUInt64.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/Symbol.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/SectionLoadList.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/RegularExpression.h"
#include "lldb/Utility/Status.h"
#include "lldb/Utility/Stream.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/Utility/Timer.h"
#include "lldb/lldb-private-enumerations.h"
#include "lldb/lldb-private-interfaces.h"
#include "lldb/lldb-private-types.h"
#include "llvm/Support/Compiler.h"
#include "llvm/TargetParser/Triple.h"
#include <cstdint>
#include <cstring>
#include <utility>
#include <cassert>
#define DEFAULT_DISASM_BYTE_SIZE 32
using namespace lldb;
using namespace lldb_private;
DisassemblerSP Disassembler::FindPlugin(const ArchSpec &arch,
const char *flavor, const char *cpu,
const char *features,
const char *plugin_name) {
LLDB_SCOPED_TIMERF("Disassembler::FindPlugin (arch = %s, plugin_name = %s)",
arch.GetArchitectureName(), plugin_name);
DisassemblerCreateInstance create_callback = nullptr;
if (plugin_name) {
create_callback =
PluginManager::GetDisassemblerCreateCallbackForPluginName(plugin_name);
if (create_callback) {
if (auto disasm_sp = create_callback(arch, flavor, cpu, features))
return disasm_sp;
}
} else {
for (uint32_t idx = 0;
(create_callback = PluginManager::GetDisassemblerCreateCallbackAtIndex(
idx)) != nullptr;
++idx) {
if (auto disasm_sp = create_callback(arch, flavor, cpu, features))
return disasm_sp;
}
}
return DisassemblerSP();
}
DisassemblerSP Disassembler::FindPluginForTarget(
const Target &target, const ArchSpec &arch, const char *flavor,
const char *cpu, const char *features, const char *plugin_name) {
if (!flavor) {
// FIXME - we don't have the mechanism in place to do per-architecture
// settings. But since we know that for now we only support flavors on x86
// & x86_64,
if (arch.GetTriple().getArch() == llvm::Triple::x86 ||
arch.GetTriple().getArch() == llvm::Triple::x86_64)
flavor = target.GetDisassemblyFlavor();
}
if (!cpu)
cpu = target.GetDisassemblyCPU();
if (!features)
features = target.GetDisassemblyFeatures();
return FindPlugin(arch, flavor, cpu, features, plugin_name);
}
static Address ResolveAddress(Target &target, const Address &addr) {
if (!addr.IsSectionOffset()) {
Address resolved_addr;
// If we weren't passed in a section offset address range, try and resolve
// it to something
bool is_resolved = target.GetSectionLoadList().IsEmpty()
? target.GetImages().ResolveFileAddress(
addr.GetOffset(), resolved_addr)
: target.GetSectionLoadList().ResolveLoadAddress(
addr.GetOffset(), resolved_addr);
// We weren't able to resolve the address, just treat it as a raw address
if (is_resolved && resolved_addr.IsValid())
return resolved_addr;
}
return addr;
}
lldb::DisassemblerSP Disassembler::DisassembleRange(
const ArchSpec &arch, const char *plugin_name, const char *flavor,
const char *cpu, const char *features, Target &target,
const AddressRange &range, bool force_live_memory) {
if (range.GetByteSize() <= 0)
return {};
if (!range.GetBaseAddress().IsValid())
return {};
lldb::DisassemblerSP disasm_sp = Disassembler::FindPluginForTarget(
target, arch, flavor, cpu, features, plugin_name);
if (!disasm_sp)
return {};
const size_t bytes_disassembled = disasm_sp->ParseInstructions(
target, range.GetBaseAddress(), {Limit::Bytes, range.GetByteSize()},
nullptr, force_live_memory);
if (bytes_disassembled == 0)
return {};
return disasm_sp;
}
lldb::DisassemblerSP
Disassembler::DisassembleBytes(const ArchSpec &arch, const char *plugin_name,
const char *flavor, const char *cpu,
const char *features, const Address &start,
const void *src, size_t src_len,
uint32_t num_instructions, bool data_from_file) {
if (!src)
return {};
lldb::DisassemblerSP disasm_sp =
Disassembler::FindPlugin(arch, flavor, cpu, features, plugin_name);
if (!disasm_sp)
return {};
DataExtractor data(src, src_len, arch.GetByteOrder(),
arch.GetAddressByteSize());
(void)disasm_sp->DecodeInstructions(start, data, 0, num_instructions, false,
data_from_file);
return disasm_sp;
}
bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch,
const char *plugin_name, const char *flavor,
const char *cpu, const char *features,
const ExecutionContext &exe_ctx,
const Address &address, Limit limit,
bool mixed_source_and_assembly,
uint32_t num_mixed_context_lines,
uint32_t options, Stream &strm) {
if (!exe_ctx.GetTargetPtr())
return false;
lldb::DisassemblerSP disasm_sp(Disassembler::FindPluginForTarget(
exe_ctx.GetTargetRef(), arch, flavor, cpu, features, plugin_name));
if (!disasm_sp)
return false;
const bool force_live_memory = true;
size_t bytes_disassembled = disasm_sp->ParseInstructions(
exe_ctx.GetTargetRef(), address, limit, &strm, force_live_memory);
if (bytes_disassembled == 0)
return false;
disasm_sp->PrintInstructions(debugger, arch, exe_ctx,
mixed_source_and_assembly,
num_mixed_context_lines, options, strm);
return true;
}
Disassembler::SourceLine
Disassembler::GetFunctionDeclLineEntry(const SymbolContext &sc) {
if (!sc.function)
return {};
if (!sc.line_entry.IsValid())
return {};
LineEntry prologue_end_line = sc.line_entry;
SupportFileSP func_decl_file_sp;
uint32_t func_decl_line;
sc.function->GetStartLineSourceInfo(func_decl_file_sp, func_decl_line);
if (!func_decl_file_sp)
return {};
if (!func_decl_file_sp->Equal(*prologue_end_line.file_sp,
SupportFile::eEqualFileSpecAndChecksumIfSet) &&
!func_decl_file_sp->Equal(*prologue_end_line.original_file_sp,
SupportFile::eEqualFileSpecAndChecksumIfSet))
return {};
SourceLine decl_line;
decl_line.file = func_decl_file_sp->GetSpecOnly();
decl_line.line = func_decl_line;
// TODO: Do we care about column on these entries? If so, we need to plumb
// that through GetStartLineSourceInfo.
decl_line.column = 0;
return decl_line;
}
void Disassembler::AddLineToSourceLineTables(
SourceLine &line,
std::map<FileSpec, std::set<uint32_t>> &source_lines_seen) {
if (line.IsValid()) {
auto source_lines_seen_pos = source_lines_seen.find(line.file);
if (source_lines_seen_pos == source_lines_seen.end()) {
std::set<uint32_t> lines;
lines.insert(line.line);
source_lines_seen.emplace(line.file, lines);
} else {
source_lines_seen_pos->second.insert(line.line);
}
}
}
bool Disassembler::ElideMixedSourceAndDisassemblyLine(
const ExecutionContext &exe_ctx, const SymbolContext &sc,
SourceLine &line) {
// TODO: should we also check target.process.thread.step-avoid-libraries ?
const RegularExpression *avoid_regex = nullptr;
// Skip any line #0 entries - they are implementation details
if (line.line == 0)
return true;
ThreadSP thread_sp = exe_ctx.GetThreadSP();
if (thread_sp) {
avoid_regex = thread_sp->GetSymbolsToAvoidRegexp();
} else {
TargetSP target_sp = exe_ctx.GetTargetSP();
if (target_sp) {
Status error;
OptionValueSP value_sp = target_sp->GetDebugger().GetPropertyValue(
&exe_ctx, "target.process.thread.step-avoid-regexp", error);
if (value_sp && value_sp->GetType() == OptionValue::eTypeRegex) {
OptionValueRegex *re = value_sp->GetAsRegex();
if (re) {
avoid_regex = re->GetCurrentValue();
}
}
}
}
if (avoid_regex && sc.symbol != nullptr) {
const char *function_name =
sc.GetFunctionName(Mangled::ePreferDemangledWithoutArguments)
.GetCString();
if (function_name && avoid_regex->Execute(function_name)) {
// skip this source line
return true;
}
}
// don't skip this source line
return false;
}
void Disassembler::PrintInstructions(Debugger &debugger, const ArchSpec &arch,
const ExecutionContext &exe_ctx,
bool mixed_source_and_assembly,
uint32_t num_mixed_context_lines,
uint32_t options, Stream &strm) {
// We got some things disassembled...
size_t num_instructions_found = GetInstructionList().GetSize();
const uint32_t max_opcode_byte_size =
GetInstructionList().GetMaxOpcocdeByteSize();
SymbolContext sc;
SymbolContext prev_sc;
AddressRange current_source_line_range;
const Address *pc_addr_ptr = nullptr;
StackFrame *frame = exe_ctx.GetFramePtr();
TargetSP target_sp(exe_ctx.GetTargetSP());
SourceManager &source_manager =
target_sp ? target_sp->GetSourceManager() : debugger.GetSourceManager();
if (frame) {
pc_addr_ptr = &frame->GetFrameCodeAddress();
}
const uint32_t scope =
eSymbolContextLineEntry | eSymbolContextFunction | eSymbolContextSymbol;
const bool use_inline_block_range = false;
const FormatEntity::Entry *disassembly_format = nullptr;
FormatEntity::Entry format;
if (exe_ctx.HasTargetScope()) {
disassembly_format =
exe_ctx.GetTargetRef().GetDebugger().GetDisassemblyFormat();
} else {
FormatEntity::Parse("${addr}: ", format);
disassembly_format = &format;
}
// First pass: step through the list of instructions, find how long the
// initial addresses strings are, insert padding in the second pass so the
// opcodes all line up nicely.
// Also build up the source line mapping if this is mixed source & assembly
// mode. Calculate the source line for each assembly instruction (eliding
// inlined functions which the user wants to skip).
std::map<FileSpec, std::set<uint32_t>> source_lines_seen;
Symbol *previous_symbol = nullptr;
size_t address_text_size = 0;
for (size_t i = 0; i < num_instructions_found; ++i) {
Instruction *inst = GetInstructionList().GetInstructionAtIndex(i).get();
if (inst) {
const Address &addr = inst->GetAddress();
ModuleSP module_sp(addr.GetModule());
if (module_sp) {
const SymbolContextItem resolve_mask = eSymbolContextFunction |
eSymbolContextSymbol |
eSymbolContextLineEntry;
uint32_t resolved_mask =
module_sp->ResolveSymbolContextForAddress(addr, resolve_mask, sc);
if (resolved_mask) {
StreamString strmstr;
Debugger::FormatDisassemblerAddress(disassembly_format, &sc, nullptr,
&exe_ctx, &addr, strmstr);
size_t cur_line = strmstr.GetSizeOfLastLine();
if (cur_line > address_text_size)
address_text_size = cur_line;
// Add entries to our "source_lines_seen" map+set which list which
// sources lines occur in this disassembly session. We will print
// lines of context around a source line, but we don't want to print
// a source line that has a line table entry of its own - we'll leave
// that source line to be printed when it actually occurs in the
// disassembly.
if (mixed_source_and_assembly && sc.line_entry.IsValid()) {
if (sc.symbol != previous_symbol) {
SourceLine decl_line = GetFunctionDeclLineEntry(sc);
if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, decl_line))
AddLineToSourceLineTables(decl_line, source_lines_seen);
}
if (sc.line_entry.IsValid()) {
SourceLine this_line;
this_line.file = sc.line_entry.GetFile();
this_line.line = sc.line_entry.line;
this_line.column = sc.line_entry.column;
if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, this_line))
AddLineToSourceLineTables(this_line, source_lines_seen);
}
}
}
sc.Clear(false);
}
}
}
previous_symbol = nullptr;
SourceLine previous_line;
for (size_t i = 0; i < num_instructions_found; ++i) {
Instruction *inst = GetInstructionList().GetInstructionAtIndex(i).get();
if (inst) {
const Address &addr = inst->GetAddress();
const bool inst_is_at_pc = pc_addr_ptr && addr == *pc_addr_ptr;
SourceLinesToDisplay source_lines_to_display;
prev_sc = sc;
ModuleSP module_sp(addr.GetModule());
if (module_sp) {
uint32_t resolved_mask = module_sp->ResolveSymbolContextForAddress(
addr, eSymbolContextEverything, sc);
if (resolved_mask) {
if (mixed_source_and_assembly) {
// If we've started a new function (non-inlined), print all of the
// source lines from the function declaration until the first line
// table entry - typically the opening curly brace of the function.
if (previous_symbol != sc.symbol) {
// The default disassembly format puts an extra blank line
// between functions - so when we're displaying the source
// context for a function, we don't want to add a blank line
// after the source context or we'll end up with two of them.
if (previous_symbol != nullptr)
source_lines_to_display.print_source_context_end_eol = false;
previous_symbol = sc.symbol;
if (sc.function && sc.line_entry.IsValid()) {
LineEntry prologue_end_line = sc.line_entry;
if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc,
prologue_end_line)) {
SupportFileSP func_decl_file_sp;
uint32_t func_decl_line;
sc.function->GetStartLineSourceInfo(func_decl_file_sp,
func_decl_line);
if (func_decl_file_sp &&
(func_decl_file_sp->Equal(
*prologue_end_line.file_sp,
SupportFile::eEqualFileSpecAndChecksumIfSet) ||
func_decl_file_sp->Equal(
*prologue_end_line.original_file_sp,
SupportFile::eEqualFileSpecAndChecksumIfSet))) {
// Add all the lines between the function declaration and
// the first non-prologue source line to the list of lines
// to print.
for (uint32_t lineno = func_decl_line;
lineno <= prologue_end_line.line; lineno++) {
SourceLine this_line;
this_line.file = func_decl_file_sp->GetSpecOnly();
this_line.line = lineno;
source_lines_to_display.lines.push_back(this_line);
}
// Mark the last line as the "current" one. Usually this
// is the open curly brace.
if (source_lines_to_display.lines.size() > 0)
source_lines_to_display.current_source_line =
source_lines_to_display.lines.size() - 1;
}
}
}
sc.GetAddressRange(scope, 0, use_inline_block_range,
current_source_line_range);
}
// If we've left a previous source line's address range, print a
// new source line
if (!current_source_line_range.ContainsFileAddress(addr)) {
sc.GetAddressRange(scope, 0, use_inline_block_range,
current_source_line_range);
if (sc != prev_sc && sc.comp_unit && sc.line_entry.IsValid()) {
SourceLine this_line;
this_line.file = sc.line_entry.GetFile();
this_line.line = sc.line_entry.line;
if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc,
this_line)) {
// Only print this source line if it is different from the
// last source line we printed. There may have been inlined
// functions between these lines that we elided, resulting in
// the same line being printed twice in a row for a
// contiguous block of assembly instructions.
if (this_line != previous_line) {
std::vector<uint32_t> previous_lines;
for (uint32_t i = 0;
i < num_mixed_context_lines &&
(this_line.line - num_mixed_context_lines) > 0;
i++) {
uint32_t line =
this_line.line - num_mixed_context_lines + i;
auto pos = source_lines_seen.find(this_line.file);
if (pos != source_lines_seen.end()) {
if (pos->second.count(line) == 1) {
previous_lines.clear();
} else {
previous_lines.push_back(line);
}
}
}
for (size_t i = 0; i < previous_lines.size(); i++) {
SourceLine previous_line;
previous_line.file = this_line.file;
previous_line.line = previous_lines[i];
auto pos = source_lines_seen.find(previous_line.file);
if (pos != source_lines_seen.end()) {
pos->second.insert(previous_line.line);
}
source_lines_to_display.lines.push_back(previous_line);
}
source_lines_to_display.lines.push_back(this_line);
source_lines_to_display.current_source_line =
source_lines_to_display.lines.size() - 1;
for (uint32_t i = 0; i < num_mixed_context_lines; i++) {
SourceLine next_line;
next_line.file = this_line.file;
next_line.line = this_line.line + i + 1;
auto pos = source_lines_seen.find(next_line.file);
if (pos != source_lines_seen.end()) {
if (pos->second.count(next_line.line) == 1)
break;
pos->second.insert(next_line.line);
}
source_lines_to_display.lines.push_back(next_line);
}
}
previous_line = this_line;
}
}
}
}
} else {
sc.Clear(true);
}
}
if (source_lines_to_display.lines.size() > 0) {
strm.EOL();
for (size_t idx = 0; idx < source_lines_to_display.lines.size();
idx++) {
SourceLine ln = source_lines_to_display.lines[idx];
const char *line_highlight = "";
if (inst_is_at_pc && (options & eOptionMarkPCSourceLine)) {
line_highlight = "->";
} else if (idx == source_lines_to_display.current_source_line) {
line_highlight = "**";
}
source_manager.DisplaySourceLinesWithLineNumbers(
std::make_shared<SupportFile>(ln.file), ln.line, ln.column, 0, 0,
line_highlight, &strm);
}
if (source_lines_to_display.print_source_context_end_eol)
strm.EOL();
}
const bool show_bytes = (options & eOptionShowBytes) != 0;
const bool show_control_flow_kind =
(options & eOptionShowControlFlowKind) != 0;
inst->Dump(&strm, max_opcode_byte_size, true, show_bytes,
show_control_flow_kind, &exe_ctx, &sc, &prev_sc, nullptr,
address_text_size);
strm.EOL();
} else {
break;
}
}
}
bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch,
StackFrame &frame, Stream &strm) {
AddressRange range;
SymbolContext sc(
frame.GetSymbolContext(eSymbolContextFunction | eSymbolContextSymbol));
if (sc.function) {
range = sc.function->GetAddressRange();
} else if (sc.symbol && sc.symbol->ValueIsAddress()) {
range.GetBaseAddress() = sc.symbol->GetAddressRef();
range.SetByteSize(sc.symbol->GetByteSize());
} else {
range.GetBaseAddress() = frame.GetFrameCodeAddress();
}
if (range.GetBaseAddress().IsValid() && range.GetByteSize() == 0)
range.SetByteSize(DEFAULT_DISASM_BYTE_SIZE);
Disassembler::Limit limit = {Disassembler::Limit::Bytes,
range.GetByteSize()};
if (limit.value == 0)
limit.value = DEFAULT_DISASM_BYTE_SIZE;
return Disassemble(debugger, arch, nullptr, nullptr, nullptr, nullptr,
frame, range.GetBaseAddress(), limit, false, 0, 0, strm);
}
Instruction::Instruction(const Address &address, AddressClass addr_class)
: m_address(address), m_address_class(addr_class), m_opcode(),
m_calculated_strings(false) {}
Instruction::~Instruction() = default;
AddressClass Instruction::GetAddressClass() {
if (m_address_class == AddressClass::eInvalid)
m_address_class = m_address.GetAddressClass();
return m_address_class;
}
const char *Instruction::GetNameForInstructionControlFlowKind(
lldb::InstructionControlFlowKind instruction_control_flow_kind) {
switch (instruction_control_flow_kind) {
case eInstructionControlFlowKindUnknown:
return "unknown";
case eInstructionControlFlowKindOther:
return "other";
case eInstructionControlFlowKindCall:
return "call";
case eInstructionControlFlowKindReturn:
return "return";
case eInstructionControlFlowKindJump:
return "jump";
case eInstructionControlFlowKindCondJump:
return "cond jump";
case eInstructionControlFlowKindFarCall:
return "far call";
case eInstructionControlFlowKindFarReturn:
return "far return";
case eInstructionControlFlowKindFarJump:
return "far jump";
}
llvm_unreachable("Fully covered switch above!");
}
void Instruction::Dump(lldb_private::Stream *s, uint32_t max_opcode_byte_size,
bool show_address, bool show_bytes,
bool show_control_flow_kind,
const ExecutionContext *exe_ctx,
const SymbolContext *sym_ctx,
const SymbolContext *prev_sym_ctx,
const FormatEntity::Entry *disassembly_addr_format,
size_t max_address_text_size) {
size_t opcode_column_width = 7;
const size_t operand_column_width = 25;
CalculateMnemonicOperandsAndCommentIfNeeded(exe_ctx);
StreamString ss;
if (show_address) {
Debugger::FormatDisassemblerAddress(disassembly_addr_format, sym_ctx,
prev_sym_ctx, exe_ctx, &m_address, ss);
ss.FillLastLineToColumn(max_address_text_size, ' ');
}
if (show_bytes) {
if (m_opcode.GetType() == Opcode::eTypeBytes) {
// x86_64 and i386 are the only ones that use bytes right now so pad out
// the byte dump to be able to always show 15 bytes (3 chars each) plus a
// space
if (max_opcode_byte_size > 0)
m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1);
else
m_opcode.Dump(&ss, 15 * 3 + 1);
} else {
// Else, we have ARM or MIPS which can show up to a uint32_t 0x00000000
// (10 spaces) plus two for padding...
if (max_opcode_byte_size > 0)
m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1);
else
m_opcode.Dump(&ss, 12);
}
}
if (show_control_flow_kind) {
lldb::InstructionControlFlowKind instruction_control_flow_kind =
GetControlFlowKind(exe_ctx);
ss.Printf("%-12s", GetNameForInstructionControlFlowKind(
instruction_control_flow_kind));
}
bool show_color = false;
if (exe_ctx) {
if (TargetSP target_sp = exe_ctx->GetTargetSP()) {
show_color = target_sp->GetDebugger().GetUseColor();
}
}
const size_t opcode_pos = ss.GetSizeOfLastLine();
const std::string &opcode_name =
show_color ? m_markup_opcode_name : m_opcode_name;
const std::string &mnemonics = show_color ? m_markup_mnemonics : m_mnemonics;
// The default opcode size of 7 characters is plenty for most architectures
// but some like arm can pull out the occasional vqrshrun.s16. We won't get
// consistent column spacing in these cases, unfortunately. Also note that we
// need to directly use m_opcode_name here (instead of opcode_name) so we
// don't include color codes as characters.
if (m_opcode_name.length() >= opcode_column_width) {
opcode_column_width = m_opcode_name.length() + 1;
}
ss.PutCString(opcode_name);
ss.FillLastLineToColumn(opcode_pos + opcode_column_width, ' ');
ss.PutCString(mnemonics);
if (!m_comment.empty()) {
ss.FillLastLineToColumn(
opcode_pos + opcode_column_width + operand_column_width, ' ');
ss.PutCString(" ; ");
ss.PutCString(m_comment);
}
s->PutCString(ss.GetString());
}
bool Instruction::DumpEmulation(const ArchSpec &arch) {
std::unique_ptr<EmulateInstruction> insn_emulator_up(
EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr));
if (insn_emulator_up) {
insn_emulator_up->SetInstruction(GetOpcode(), GetAddress(), nullptr);
return insn_emulator_up->EvaluateInstruction(0);
}
return false;
}
bool Instruction::CanSetBreakpoint () {
return !HasDelaySlot();
}
bool Instruction::HasDelaySlot() {
// Default is false.
return false;
}
OptionValueSP Instruction::ReadArray(FILE *in_file, Stream &out_stream,
OptionValue::Type data_type) {
bool done = false;
char buffer[1024];
auto option_value_sp = std::make_shared<OptionValueArray>(1u << data_type);
int idx = 0;
while (!done) {
if (!fgets(buffer, 1023, in_file)) {
out_stream.Printf(
"Instruction::ReadArray: Error reading file (fgets).\n");
option_value_sp.reset();
return option_value_sp;
}
std::string line(buffer);
size_t len = line.size();
if (line[len - 1] == '\n') {
line[len - 1] = '\0';
line.resize(len - 1);
}
if ((line.size() == 1) && line[0] == ']') {
done = true;
line.clear();
}
if (!line.empty()) {
std::string value;
static RegularExpression g_reg_exp(
llvm::StringRef("^[ \t]*([^ \t]+)[ \t]*$"));
llvm::SmallVector<llvm::StringRef, 2> matches;
if (g_reg_exp.Execute(line, &matches))
value = matches[1].str();
else
value = line;
OptionValueSP data_value_sp;
switch (data_type) {
case OptionValue::eTypeUInt64:
data_value_sp = std::make_shared<OptionValueUInt64>(0, 0);
data_value_sp->SetValueFromString(value);
break;
// Other types can be added later as needed.
default:
data_value_sp = std::make_shared<OptionValueString>(value.c_str(), "");
break;
}
option_value_sp->GetAsArray()->InsertValue(idx, data_value_sp);
++idx;
}
}
return option_value_sp;
}
OptionValueSP Instruction::ReadDictionary(FILE *in_file, Stream &out_stream) {
bool done = false;
char buffer[1024];
auto option_value_sp = std::make_shared<OptionValueDictionary>();
static constexpr llvm::StringLiteral encoding_key("data_encoding");
OptionValue::Type data_type = OptionValue::eTypeInvalid;
while (!done) {
// Read the next line in the file
if (!fgets(buffer, 1023, in_file)) {
out_stream.Printf(
"Instruction::ReadDictionary: Error reading file (fgets).\n");
option_value_sp.reset();
return option_value_sp;
}
// Check to see if the line contains the end-of-dictionary marker ("}")
std::string line(buffer);
size_t len = line.size();
if (line[len - 1] == '\n') {
line[len - 1] = '\0';
line.resize(len - 1);
}
if ((line.size() == 1) && (line[0] == '}')) {
done = true;
line.clear();
}
// Try to find a key-value pair in the current line and add it to the
// dictionary.
if (!line.empty()) {
static RegularExpression g_reg_exp(llvm::StringRef(
"^[ \t]*([a-zA-Z_][a-zA-Z0-9_]*)[ \t]*=[ \t]*(.*)[ \t]*$"));
llvm::SmallVector<llvm::StringRef, 3> matches;
bool reg_exp_success = g_reg_exp.Execute(line, &matches);
std::string key;
std::string value;
if (reg_exp_success) {
key = matches[1].str();
value = matches[2].str();
} else {
out_stream.Printf("Instruction::ReadDictionary: Failure executing "
"regular expression.\n");
option_value_sp.reset();
return option_value_sp;
}
// Check value to see if it's the start of an array or dictionary.
lldb::OptionValueSP value_sp;
assert(value.empty() == false);
assert(key.empty() == false);
if (value[0] == '{') {
assert(value.size() == 1);
// value is a dictionary
value_sp = ReadDictionary(in_file, out_stream);
if (!value_sp) {
option_value_sp.reset();
return option_value_sp;
}
} else if (value[0] == '[') {
assert(value.size() == 1);
// value is an array
value_sp = ReadArray(in_file, out_stream, data_type);
if (!value_sp) {
option_value_sp.reset();
return option_value_sp;
}
// We've used the data_type to read an array; re-set the type to
// Invalid
data_type = OptionValue::eTypeInvalid;
} else if ((value[0] == '0') && (value[1] == 'x')) {
value_sp = std::make_shared<OptionValueUInt64>(0, 0);
value_sp->SetValueFromString(value);
} else {
size_t len = value.size();
if ((value[0] == '"') && (value[len - 1] == '"'))
value = value.substr(1, len - 2);
value_sp = std::make_shared<OptionValueString>(value.c_str(), "");
}
if (key == encoding_key) {
// A 'data_encoding=..." is NOT a normal key-value pair; it is meta-data
// indicating the data type of an upcoming array (usually the next bit
// of data to be read in).
if (llvm::StringRef(value) == "uint32_t")
data_type = OptionValue::eTypeUInt64;
} else
option_value_sp->GetAsDictionary()->SetValueForKey(key, value_sp,
false);
}
}
return option_value_sp;
}
bool Instruction::TestEmulation(Stream &out_stream, const char *file_name) {
if (!file_name) {
out_stream.Printf("Instruction::TestEmulation: Missing file_name.");
return false;
}
FILE *test_file = FileSystem::Instance().Fopen(file_name, "r");
if (!test_file) {
out_stream.Printf(
"Instruction::TestEmulation: Attempt to open test file failed.");
return false;
}
char buffer[256];
if (!fgets(buffer, 255, test_file)) {
out_stream.Printf(
"Instruction::TestEmulation: Error reading first line of test file.\n");
fclose(test_file);
return false;
}
if (strncmp(buffer, "InstructionEmulationState={", 27) != 0) {
out_stream.Printf("Instructin::TestEmulation: Test file does not contain "
"emulation state dictionary\n");
fclose(test_file);
return false;
}
// Read all the test information from the test file into an
// OptionValueDictionary.
OptionValueSP data_dictionary_sp(ReadDictionary(test_file, out_stream));
if (!data_dictionary_sp) {
out_stream.Printf(
"Instruction::TestEmulation: Error reading Dictionary Object.\n");
fclose(test_file);
return false;
}
fclose(test_file);
OptionValueDictionary *data_dictionary =
data_dictionary_sp->GetAsDictionary();
static constexpr llvm::StringLiteral description_key("assembly_string");
static constexpr llvm::StringLiteral triple_key("triple");
OptionValueSP value_sp = data_dictionary->GetValueForKey(description_key);
if (!value_sp) {
out_stream.Printf("Instruction::TestEmulation: Test file does not "
"contain description string.\n");
return false;
}
SetDescription(value_sp->GetValueAs<llvm::StringRef>().value_or(""));
value_sp = data_dictionary->GetValueForKey(triple_key);
if (!value_sp) {
out_stream.Printf(
"Instruction::TestEmulation: Test file does not contain triple.\n");
return false;
}
ArchSpec arch;
arch.SetTriple(
llvm::Triple(value_sp->GetValueAs<llvm::StringRef>().value_or("")));
bool success = false;
std::unique_ptr<EmulateInstruction> insn_emulator_up(
EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr));
if (insn_emulator_up)
success =
insn_emulator_up->TestEmulation(out_stream, arch, data_dictionary);
if (success)
out_stream.Printf("Emulation test succeeded.");
else
out_stream.Printf("Emulation test failed.");
return success;
}
bool Instruction::Emulate(
const ArchSpec &arch, uint32_t evaluate_options, void *baton,
EmulateInstruction::ReadMemoryCallback read_mem_callback,
EmulateInstruction::WriteMemoryCallback write_mem_callback,
EmulateInstruction::ReadRegisterCallback read_reg_callback,
EmulateInstruction::WriteRegisterCallback write_reg_callback) {
std::unique_ptr<EmulateInstruction> insn_emulator_up(
EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr));
if (insn_emulator_up) {
insn_emulator_up->SetBaton(baton);
insn_emulator_up->SetCallbacks(read_mem_callback, write_mem_callback,
read_reg_callback, write_reg_callback);
insn_emulator_up->SetInstruction(GetOpcode(), GetAddress(), nullptr);
return insn_emulator_up->EvaluateInstruction(evaluate_options);
}
return false;
}
uint32_t Instruction::GetData(DataExtractor &data) {
return m_opcode.GetData(data);
}
InstructionList::InstructionList() : m_instructions() {}
InstructionList::~InstructionList() = default;
size_t InstructionList::GetSize() const { return m_instructions.size(); }
uint32_t InstructionList::GetMaxOpcocdeByteSize() const {
uint32_t max_inst_size = 0;
collection::const_iterator pos, end;
for (pos = m_instructions.begin(), end = m_instructions.end(); pos != end;
++pos) {
uint32_t inst_size = (*pos)->GetOpcode().GetByteSize();
if (max_inst_size < inst_size)
max_inst_size = inst_size;
}
return max_inst_size;
}
InstructionSP InstructionList::GetInstructionAtIndex(size_t idx) const {
InstructionSP inst_sp;
if (idx < m_instructions.size())
inst_sp = m_instructions[idx];
return inst_sp;
}
InstructionSP InstructionList::GetInstructionAtAddress(const Address &address) {
uint32_t index = GetIndexOfInstructionAtAddress(address);
if (index != UINT32_MAX)
return GetInstructionAtIndex(index);
return nullptr;
}
void InstructionList::Dump(Stream *s, bool show_address, bool show_bytes,
bool show_control_flow_kind,
const ExecutionContext *exe_ctx) {
const uint32_t max_opcode_byte_size = GetMaxOpcocdeByteSize();
collection::const_iterator pos, begin, end;
const FormatEntity::Entry *disassembly_format = nullptr;
FormatEntity::Entry format;
if (exe_ctx && exe_ctx->HasTargetScope()) {
disassembly_format =
exe_ctx->GetTargetRef().GetDebugger().GetDisassemblyFormat();
} else {
FormatEntity::Parse("${addr}: ", format);
disassembly_format = &format;
}
for (begin = m_instructions.begin(), end = m_instructions.end(), pos = begin;
pos != end; ++pos) {
if (pos != begin)
s->EOL();
(*pos)->Dump(s, max_opcode_byte_size, show_address, show_bytes,
show_control_flow_kind, exe_ctx, nullptr, nullptr,
disassembly_format, 0);
}
}
void InstructionList::Clear() { m_instructions.clear(); }
void InstructionList::Append(lldb::InstructionSP &inst_sp) {
if (inst_sp)
m_instructions.push_back(inst_sp);
}
uint32_t
InstructionList::GetIndexOfNextBranchInstruction(uint32_t start,
bool ignore_calls,
bool *found_calls) const {
size_t num_instructions = m_instructions.size();
uint32_t next_branch = UINT32_MAX;
if (found_calls)
*found_calls = false;
for (size_t i = start; i < num_instructions; i++) {
if (m_instructions[i]->DoesBranch()) {
if (ignore_calls && m_instructions[i]->IsCall()) {
if (found_calls)
*found_calls = true;
continue;
}
next_branch = i;
break;
}
}
return next_branch;
}
uint32_t
InstructionList::GetIndexOfInstructionAtAddress(const Address &address) {
size_t num_instructions = m_instructions.size();
uint32_t index = UINT32_MAX;
for (size_t i = 0; i < num_instructions; i++) {
if (m_instructions[i]->GetAddress() == address) {
index = i;
break;
}
}
return index;
}
uint32_t
InstructionList::GetIndexOfInstructionAtLoadAddress(lldb::addr_t load_addr,
Target &target) {
Address address;
address.SetLoadAddress(load_addr, &target);
return GetIndexOfInstructionAtAddress(address);
}
size_t Disassembler::ParseInstructions(Target &target, Address start,
Limit limit, Stream *error_strm_ptr,
bool force_live_memory) {
m_instruction_list.Clear();
if (!start.IsValid())
return 0;
start = ResolveAddress(target, start);
addr_t byte_size = limit.value;
if (limit.kind == Limit::Instructions)
byte_size *= m_arch.GetMaximumOpcodeByteSize();
auto data_sp = std::make_shared<DataBufferHeap>(byte_size, '\0');
Status error;
lldb::addr_t load_addr = LLDB_INVALID_ADDRESS;
const size_t bytes_read =
target.ReadMemory(start, data_sp->GetBytes(), data_sp->GetByteSize(),
error, force_live_memory, &load_addr);
const bool data_from_file = load_addr == LLDB_INVALID_ADDRESS;
if (bytes_read == 0) {
if (error_strm_ptr) {
if (const char *error_cstr = error.AsCString())
error_strm_ptr->Printf("error: %s\n", error_cstr);
}
return 0;
}
if (bytes_read != data_sp->GetByteSize())
data_sp->SetByteSize(bytes_read);
DataExtractor data(data_sp, m_arch.GetByteOrder(),
m_arch.GetAddressByteSize());
return DecodeInstructions(start, data, 0,
limit.kind == Limit::Instructions ? limit.value
: UINT32_MAX,
false, data_from_file);
}
// Disassembler copy constructor
Disassembler::Disassembler(const ArchSpec &arch, const char *flavor)
: m_arch(arch), m_instruction_list(), m_flavor() {
if (flavor == nullptr)
m_flavor.assign("default");
else
m_flavor.assign(flavor);
// If this is an arm variant that can only include thumb (T16, T32)
// instructions, force the arch triple to be "thumbv.." instead of "armv..."
if (arch.IsAlwaysThumbInstructions()) {
std::string thumb_arch_name(arch.GetTriple().getArchName().str());
// Replace "arm" with "thumb" so we get all thumb variants correct
if (thumb_arch_name.size() > 3) {
thumb_arch_name.erase(0, 3);
thumb_arch_name.insert(0, "thumb");
}
m_arch.SetTriple(thumb_arch_name.c_str());
}
}
Disassembler::~Disassembler() = default;
InstructionList &Disassembler::GetInstructionList() {
return m_instruction_list;
}
const InstructionList &Disassembler::GetInstructionList() const {
return m_instruction_list;
}
// Class PseudoInstruction
PseudoInstruction::PseudoInstruction()
: Instruction(Address(), AddressClass::eUnknown), m_description() {}
PseudoInstruction::~PseudoInstruction() = default;
bool PseudoInstruction::DoesBranch() {
// This is NOT a valid question for a pseudo instruction.
return false;
}
bool PseudoInstruction::HasDelaySlot() {
// This is NOT a valid question for a pseudo instruction.
return false;
}
bool PseudoInstruction::IsLoad() { return false; }
bool PseudoInstruction::IsAuthenticated() { return false; }
size_t PseudoInstruction::Decode(const lldb_private::Disassembler &disassembler,
const lldb_private::DataExtractor &data,
lldb::offset_t data_offset) {
return m_opcode.GetByteSize();
}
void PseudoInstruction::SetOpcode(size_t opcode_size, void *opcode_data) {
if (!opcode_data)
return;
switch (opcode_size) {
case 8: {
uint8_t value8 = *((uint8_t *)opcode_data);
m_opcode.SetOpcode8(value8, eByteOrderInvalid);
break;
}
case 16: {
uint16_t value16 = *((uint16_t *)opcode_data);
m_opcode.SetOpcode16(value16, eByteOrderInvalid);
break;
}
case 32: {
uint32_t value32 = *((uint32_t *)opcode_data);
m_opcode.SetOpcode32(value32, eByteOrderInvalid);
break;
}
case 64: {
uint64_t value64 = *((uint64_t *)opcode_data);
m_opcode.SetOpcode64(value64, eByteOrderInvalid);
break;
}
default:
break;
}
}
void PseudoInstruction::SetDescription(llvm::StringRef description) {
m_description = std::string(description);
}
Instruction::Operand Instruction::Operand::BuildRegister(ConstString &r) {
Operand ret;
ret.m_type = Type::Register;
ret.m_register = r;
return ret;
}
Instruction::Operand Instruction::Operand::BuildImmediate(lldb::addr_t imm,
bool neg) {
Operand ret;
ret.m_type = Type::Immediate;
ret.m_immediate = imm;
ret.m_negative = neg;
return ret;
}
Instruction::Operand Instruction::Operand::BuildImmediate(int64_t imm) {
Operand ret;
ret.m_type = Type::Immediate;
if (imm < 0) {
ret.m_immediate = -imm;
ret.m_negative = true;
} else {
ret.m_immediate = imm;
ret.m_negative = false;
}
return ret;
}
Instruction::Operand
Instruction::Operand::BuildDereference(const Operand &ref) {
Operand ret;
ret.m_type = Type::Dereference;
ret.m_children = {ref};
return ret;
}
Instruction::Operand Instruction::Operand::BuildSum(const Operand &lhs,
const Operand &rhs) {
Operand ret;
ret.m_type = Type::Sum;
ret.m_children = {lhs, rhs};
return ret;
}
Instruction::Operand Instruction::Operand::BuildProduct(const Operand &lhs,
const Operand &rhs) {
Operand ret;
ret.m_type = Type::Product;
ret.m_children = {lhs, rhs};
return ret;
}
std::function<bool(const Instruction::Operand &)>
lldb_private::OperandMatchers::MatchBinaryOp(
std::function<bool(const Instruction::Operand &)> base,
std::function<bool(const Instruction::Operand &)> left,
std::function<bool(const Instruction::Operand &)> right) {
return [base, left, right](const Instruction::Operand &op) -> bool {
return (base(op) && op.m_children.size() == 2 &&
((left(op.m_children[0]) && right(op.m_children[1])) ||
(left(op.m_children[1]) && right(op.m_children[0]))));
};
}
std::function<bool(const Instruction::Operand &)>
lldb_private::OperandMatchers::MatchUnaryOp(
std::function<bool(const Instruction::Operand &)> base,
std::function<bool(const Instruction::Operand &)> child) {
return [base, child](const Instruction::Operand &op) -> bool {
return (base(op) && op.m_children.size() == 1 && child(op.m_children[0]));
};
}
std::function<bool(const Instruction::Operand &)>
lldb_private::OperandMatchers::MatchRegOp(const RegisterInfo &info) {
return [&info](const Instruction::Operand &op) {
return (op.m_type == Instruction::Operand::Type::Register &&
(op.m_register == ConstString(info.name) ||
op.m_register == ConstString(info.alt_name)));
};
}
std::function<bool(const Instruction::Operand &)>
lldb_private::OperandMatchers::FetchRegOp(ConstString &reg) {
return [&reg](const Instruction::Operand &op) {
if (op.m_type != Instruction::Operand::Type::Register) {
return false;
}
reg = op.m_register;
return true;
};
}
std::function<bool(const Instruction::Operand &)>
lldb_private::OperandMatchers::MatchImmOp(int64_t imm) {
return [imm](const Instruction::Operand &op) {
return (op.m_type == Instruction::Operand::Type::Immediate &&
((op.m_negative && op.m_immediate == (uint64_t)-imm) ||
(!op.m_negative && op.m_immediate == (uint64_t)imm)));
};
}
std::function<bool(const Instruction::Operand &)>
lldb_private::OperandMatchers::FetchImmOp(int64_t &imm) {
return [&imm](const Instruction::Operand &op) {
if (op.m_type != Instruction::Operand::Type::Immediate) {
return false;
}
if (op.m_negative) {
imm = -((int64_t)op.m_immediate);
} else {
imm = ((int64_t)op.m_immediate);
}
return true;
};
}
std::function<bool(const Instruction::Operand &)>
lldb_private::OperandMatchers::MatchOpType(Instruction::Operand::Type type) {
return [type](const Instruction::Operand &op) { return op.m_type == type; };
}