llvm-project/llvm/lib/Transforms/Vectorize/VPlanTransforms.cpp
Florian Hahn 39c8e87717
[VPlan] Move recording of Inst->VPValue to VPRecipeBuilder (NFCI). (#84464)
Instead of keeping a mapping of Inst->VPValues (of their corresponding
recipes) in VPlan's Value2VPValue mapping, keep it in VPRecipeBuilder
instead. After recently replacing the last user of this mapping after
initial construction, this mapping is only needed for recipe
construction (to map IR operands to VPValue operands).

By moving the mapping, VPlan's VPValue tracking can be simplified and
limited only to live-ins. It also allows removing disableValue2VPValue
and associated machinery & asserts.

PR: https://github.com/llvm/llvm-project/pull/84464
2024-03-23 18:43:14 +01:00

1268 lines
50 KiB
C++

//===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements a set of utility VPlan to VPlan transformations.
///
//===----------------------------------------------------------------------===//
#include "VPlanTransforms.h"
#include "VPRecipeBuilder.h"
#include "VPlanAnalysis.h"
#include "VPlanCFG.h"
#include "VPlanDominatorTree.h"
#include "VPlanPatternMatch.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/PatternMatch.h"
using namespace llvm;
void VPlanTransforms::VPInstructionsToVPRecipes(
VPlanPtr &Plan,
function_ref<const InductionDescriptor *(PHINode *)>
GetIntOrFpInductionDescriptor,
ScalarEvolution &SE, const TargetLibraryInfo &TLI) {
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT(
Plan->getEntry());
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
VPRecipeBase *Term = VPBB->getTerminator();
auto EndIter = Term ? Term->getIterator() : VPBB->end();
// Introduce each ingredient into VPlan.
for (VPRecipeBase &Ingredient :
make_early_inc_range(make_range(VPBB->begin(), EndIter))) {
VPValue *VPV = Ingredient.getVPSingleValue();
Instruction *Inst = cast<Instruction>(VPV->getUnderlyingValue());
VPRecipeBase *NewRecipe = nullptr;
if (auto *VPPhi = dyn_cast<VPWidenPHIRecipe>(&Ingredient)) {
auto *Phi = cast<PHINode>(VPPhi->getUnderlyingValue());
const auto *II = GetIntOrFpInductionDescriptor(Phi);
if (!II)
continue;
VPValue *Start = Plan->getVPValueOrAddLiveIn(II->getStartValue());
VPValue *Step =
vputils::getOrCreateVPValueForSCEVExpr(*Plan, II->getStep(), SE);
NewRecipe = new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, *II);
} else {
assert(isa<VPInstruction>(&Ingredient) &&
"only VPInstructions expected here");
assert(!isa<PHINode>(Inst) && "phis should be handled above");
// Create VPWidenMemoryInstructionRecipe for loads and stores.
if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
NewRecipe = new VPWidenMemoryInstructionRecipe(
*Load, Ingredient.getOperand(0), nullptr /*Mask*/,
false /*Consecutive*/, false /*Reverse*/);
} else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
NewRecipe = new VPWidenMemoryInstructionRecipe(
*Store, Ingredient.getOperand(1), Ingredient.getOperand(0),
nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/);
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
NewRecipe = new VPWidenGEPRecipe(GEP, Ingredient.operands());
} else if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
NewRecipe = new VPWidenCallRecipe(
*CI, drop_end(Ingredient.operands()),
getVectorIntrinsicIDForCall(CI, &TLI), CI->getDebugLoc());
} else if (SelectInst *SI = dyn_cast<SelectInst>(Inst)) {
NewRecipe = new VPWidenSelectRecipe(*SI, Ingredient.operands());
} else if (auto *CI = dyn_cast<CastInst>(Inst)) {
NewRecipe = new VPWidenCastRecipe(
CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), *CI);
} else {
NewRecipe = new VPWidenRecipe(*Inst, Ingredient.operands());
}
}
NewRecipe->insertBefore(&Ingredient);
if (NewRecipe->getNumDefinedValues() == 1)
VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue());
else
assert(NewRecipe->getNumDefinedValues() == 0 &&
"Only recpies with zero or one defined values expected");
Ingredient.eraseFromParent();
}
}
}
static bool sinkScalarOperands(VPlan &Plan) {
auto Iter = vp_depth_first_deep(Plan.getEntry());
bool Changed = false;
// First, collect the operands of all recipes in replicate blocks as seeds for
// sinking.
SetVector<std::pair<VPBasicBlock *, VPSingleDefRecipe *>> WorkList;
for (VPRegionBlock *VPR : VPBlockUtils::blocksOnly<VPRegionBlock>(Iter)) {
VPBasicBlock *EntryVPBB = VPR->getEntryBasicBlock();
if (!VPR->isReplicator() || EntryVPBB->getSuccessors().size() != 2)
continue;
VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(EntryVPBB->getSuccessors()[0]);
if (!VPBB || VPBB->getSingleSuccessor() != VPR->getExitingBasicBlock())
continue;
for (auto &Recipe : *VPBB) {
for (VPValue *Op : Recipe.operands())
if (auto *Def =
dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe()))
WorkList.insert(std::make_pair(VPBB, Def));
}
}
bool ScalarVFOnly = Plan.hasScalarVFOnly();
// Try to sink each replicate or scalar IV steps recipe in the worklist.
for (unsigned I = 0; I != WorkList.size(); ++I) {
VPBasicBlock *SinkTo;
VPSingleDefRecipe *SinkCandidate;
std::tie(SinkTo, SinkCandidate) = WorkList[I];
if (SinkCandidate->getParent() == SinkTo ||
SinkCandidate->mayHaveSideEffects() ||
SinkCandidate->mayReadOrWriteMemory())
continue;
if (auto *RepR = dyn_cast<VPReplicateRecipe>(SinkCandidate)) {
if (!ScalarVFOnly && RepR->isUniform())
continue;
} else if (!isa<VPScalarIVStepsRecipe>(SinkCandidate))
continue;
bool NeedsDuplicating = false;
// All recipe users of the sink candidate must be in the same block SinkTo
// or all users outside of SinkTo must be uniform-after-vectorization (
// i.e., only first lane is used) . In the latter case, we need to duplicate
// SinkCandidate.
auto CanSinkWithUser = [SinkTo, &NeedsDuplicating,
SinkCandidate](VPUser *U) {
auto *UI = dyn_cast<VPRecipeBase>(U);
if (!UI)
return false;
if (UI->getParent() == SinkTo)
return true;
NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate);
// We only know how to duplicate VPRecipeRecipes for now.
return NeedsDuplicating && isa<VPReplicateRecipe>(SinkCandidate);
};
if (!all_of(SinkCandidate->users(), CanSinkWithUser))
continue;
if (NeedsDuplicating) {
if (ScalarVFOnly)
continue;
Instruction *I = SinkCandidate->getUnderlyingInstr();
auto *Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true);
// TODO: add ".cloned" suffix to name of Clone's VPValue.
Clone->insertBefore(SinkCandidate);
SinkCandidate->replaceUsesWithIf(Clone, [SinkTo](VPUser &U, unsigned) {
return cast<VPRecipeBase>(&U)->getParent() != SinkTo;
});
}
SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi());
for (VPValue *Op : SinkCandidate->operands())
if (auto *Def =
dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe()))
WorkList.insert(std::make_pair(SinkTo, Def));
Changed = true;
}
return Changed;
}
/// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return
/// the mask.
VPValue *getPredicatedMask(VPRegionBlock *R) {
auto *EntryBB = dyn_cast<VPBasicBlock>(R->getEntry());
if (!EntryBB || EntryBB->size() != 1 ||
!isa<VPBranchOnMaskRecipe>(EntryBB->begin()))
return nullptr;
return cast<VPBranchOnMaskRecipe>(&*EntryBB->begin())->getOperand(0);
}
/// If \p R is a triangle region, return the 'then' block of the triangle.
static VPBasicBlock *getPredicatedThenBlock(VPRegionBlock *R) {
auto *EntryBB = cast<VPBasicBlock>(R->getEntry());
if (EntryBB->getNumSuccessors() != 2)
return nullptr;
auto *Succ0 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[0]);
auto *Succ1 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[1]);
if (!Succ0 || !Succ1)
return nullptr;
if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1)
return nullptr;
if (Succ0->getSingleSuccessor() == Succ1)
return Succ0;
if (Succ1->getSingleSuccessor() == Succ0)
return Succ1;
return nullptr;
}
// Merge replicate regions in their successor region, if a replicate region
// is connected to a successor replicate region with the same predicate by a
// single, empty VPBasicBlock.
static bool mergeReplicateRegionsIntoSuccessors(VPlan &Plan) {
SetVector<VPRegionBlock *> DeletedRegions;
// Collect replicate regions followed by an empty block, followed by another
// replicate region with matching masks to process front. This is to avoid
// iterator invalidation issues while merging regions.
SmallVector<VPRegionBlock *, 8> WorkList;
for (VPRegionBlock *Region1 : VPBlockUtils::blocksOnly<VPRegionBlock>(
vp_depth_first_deep(Plan.getEntry()))) {
if (!Region1->isReplicator())
continue;
auto *MiddleBasicBlock =
dyn_cast_or_null<VPBasicBlock>(Region1->getSingleSuccessor());
if (!MiddleBasicBlock || !MiddleBasicBlock->empty())
continue;
auto *Region2 =
dyn_cast_or_null<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
if (!Region2 || !Region2->isReplicator())
continue;
VPValue *Mask1 = getPredicatedMask(Region1);
VPValue *Mask2 = getPredicatedMask(Region2);
if (!Mask1 || Mask1 != Mask2)
continue;
assert(Mask1 && Mask2 && "both region must have conditions");
WorkList.push_back(Region1);
}
// Move recipes from Region1 to its successor region, if both are triangles.
for (VPRegionBlock *Region1 : WorkList) {
if (DeletedRegions.contains(Region1))
continue;
auto *MiddleBasicBlock = cast<VPBasicBlock>(Region1->getSingleSuccessor());
auto *Region2 = cast<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
VPBasicBlock *Then1 = getPredicatedThenBlock(Region1);
VPBasicBlock *Then2 = getPredicatedThenBlock(Region2);
if (!Then1 || !Then2)
continue;
// Note: No fusion-preventing memory dependencies are expected in either
// region. Such dependencies should be rejected during earlier dependence
// checks, which guarantee accesses can be re-ordered for vectorization.
//
// Move recipes to the successor region.
for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1)))
ToMove.moveBefore(*Then2, Then2->getFirstNonPhi());
auto *Merge1 = cast<VPBasicBlock>(Then1->getSingleSuccessor());
auto *Merge2 = cast<VPBasicBlock>(Then2->getSingleSuccessor());
// Move VPPredInstPHIRecipes from the merge block to the successor region's
// merge block. Update all users inside the successor region to use the
// original values.
for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) {
VPValue *PredInst1 =
cast<VPPredInstPHIRecipe>(&Phi1ToMove)->getOperand(0);
VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue();
Phi1ToMoveV->replaceUsesWithIf(PredInst1, [Then2](VPUser &U, unsigned) {
auto *UI = dyn_cast<VPRecipeBase>(&U);
return UI && UI->getParent() == Then2;
});
Phi1ToMove.moveBefore(*Merge2, Merge2->begin());
}
// Finally, remove the first region.
for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) {
VPBlockUtils::disconnectBlocks(Pred, Region1);
VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock);
}
VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock);
DeletedRegions.insert(Region1);
}
for (VPRegionBlock *ToDelete : DeletedRegions)
delete ToDelete;
return !DeletedRegions.empty();
}
static VPRegionBlock *createReplicateRegion(VPReplicateRecipe *PredRecipe,
VPlan &Plan) {
Instruction *Instr = PredRecipe->getUnderlyingInstr();
// Build the triangular if-then region.
std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
assert(Instr->getParent() && "Predicated instruction not in any basic block");
auto *BlockInMask = PredRecipe->getMask();
auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
// Replace predicated replicate recipe with a replicate recipe without a
// mask but in the replicate region.
auto *RecipeWithoutMask = new VPReplicateRecipe(
PredRecipe->getUnderlyingInstr(),
make_range(PredRecipe->op_begin(), std::prev(PredRecipe->op_end())),
PredRecipe->isUniform());
auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", RecipeWithoutMask);
VPPredInstPHIRecipe *PHIRecipe = nullptr;
if (PredRecipe->getNumUsers() != 0) {
PHIRecipe = new VPPredInstPHIRecipe(RecipeWithoutMask);
PredRecipe->replaceAllUsesWith(PHIRecipe);
PHIRecipe->setOperand(0, RecipeWithoutMask);
}
PredRecipe->eraseFromParent();
auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true);
// Note: first set Entry as region entry and then connect successors starting
// from it in order, to propagate the "parent" of each VPBasicBlock.
VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry);
VPBlockUtils::connectBlocks(Pred, Exiting);
return Region;
}
static void addReplicateRegions(VPlan &Plan) {
SmallVector<VPReplicateRecipe *> WorkList;
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
vp_depth_first_deep(Plan.getEntry()))) {
for (VPRecipeBase &R : *VPBB)
if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
if (RepR->isPredicated())
WorkList.push_back(RepR);
}
}
unsigned BBNum = 0;
for (VPReplicateRecipe *RepR : WorkList) {
VPBasicBlock *CurrentBlock = RepR->getParent();
VPBasicBlock *SplitBlock = CurrentBlock->splitAt(RepR->getIterator());
BasicBlock *OrigBB = RepR->getUnderlyingInstr()->getParent();
SplitBlock->setName(
OrigBB->hasName() ? OrigBB->getName() + "." + Twine(BBNum++) : "");
// Record predicated instructions for above packing optimizations.
VPBlockBase *Region = createReplicateRegion(RepR, Plan);
Region->setParent(CurrentBlock->getParent());
VPBlockUtils::disconnectBlocks(CurrentBlock, SplitBlock);
VPBlockUtils::connectBlocks(CurrentBlock, Region);
VPBlockUtils::connectBlocks(Region, SplitBlock);
}
}
/// Remove redundant VPBasicBlocks by merging them into their predecessor if
/// the predecessor has a single successor.
static bool mergeBlocksIntoPredecessors(VPlan &Plan) {
SmallVector<VPBasicBlock *> WorkList;
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
vp_depth_first_deep(Plan.getEntry()))) {
auto *PredVPBB =
dyn_cast_or_null<VPBasicBlock>(VPBB->getSinglePredecessor());
if (PredVPBB && PredVPBB->getNumSuccessors() == 1)
WorkList.push_back(VPBB);
}
for (VPBasicBlock *VPBB : WorkList) {
VPBasicBlock *PredVPBB = cast<VPBasicBlock>(VPBB->getSinglePredecessor());
for (VPRecipeBase &R : make_early_inc_range(*VPBB))
R.moveBefore(*PredVPBB, PredVPBB->end());
VPBlockUtils::disconnectBlocks(PredVPBB, VPBB);
auto *ParentRegion = cast_or_null<VPRegionBlock>(VPBB->getParent());
if (ParentRegion && ParentRegion->getExiting() == VPBB)
ParentRegion->setExiting(PredVPBB);
for (auto *Succ : to_vector(VPBB->successors())) {
VPBlockUtils::disconnectBlocks(VPBB, Succ);
VPBlockUtils::connectBlocks(PredVPBB, Succ);
}
delete VPBB;
}
return !WorkList.empty();
}
void VPlanTransforms::createAndOptimizeReplicateRegions(VPlan &Plan) {
// Convert masked VPReplicateRecipes to if-then region blocks.
addReplicateRegions(Plan);
bool ShouldSimplify = true;
while (ShouldSimplify) {
ShouldSimplify = sinkScalarOperands(Plan);
ShouldSimplify |= mergeReplicateRegionsIntoSuccessors(Plan);
ShouldSimplify |= mergeBlocksIntoPredecessors(Plan);
}
}
/// Remove redundant casts of inductions.
///
/// Such redundant casts are casts of induction variables that can be ignored,
/// because we already proved that the casted phi is equal to the uncasted phi
/// in the vectorized loop. There is no need to vectorize the cast - the same
/// value can be used for both the phi and casts in the vector loop.
static void removeRedundantInductionCasts(VPlan &Plan) {
for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
if (!IV || IV->getTruncInst())
continue;
// A sequence of IR Casts has potentially been recorded for IV, which
// *must be bypassed* when the IV is vectorized, because the vectorized IV
// will produce the desired casted value. This sequence forms a def-use
// chain and is provided in reverse order, ending with the cast that uses
// the IV phi. Search for the recipe of the last cast in the chain and
// replace it with the original IV. Note that only the final cast is
// expected to have users outside the cast-chain and the dead casts left
// over will be cleaned up later.
auto &Casts = IV->getInductionDescriptor().getCastInsts();
VPValue *FindMyCast = IV;
for (Instruction *IRCast : reverse(Casts)) {
VPSingleDefRecipe *FoundUserCast = nullptr;
for (auto *U : FindMyCast->users()) {
auto *UserCast = dyn_cast<VPSingleDefRecipe>(U);
if (UserCast && UserCast->getUnderlyingValue() == IRCast) {
FoundUserCast = UserCast;
break;
}
}
FindMyCast = FoundUserCast;
}
FindMyCast->replaceAllUsesWith(IV);
}
}
/// Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV
/// recipe, if it exists.
static void removeRedundantCanonicalIVs(VPlan &Plan) {
VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
VPWidenCanonicalIVRecipe *WidenNewIV = nullptr;
for (VPUser *U : CanonicalIV->users()) {
WidenNewIV = dyn_cast<VPWidenCanonicalIVRecipe>(U);
if (WidenNewIV)
break;
}
if (!WidenNewIV)
return;
VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
if (!WidenOriginalIV || !WidenOriginalIV->isCanonical() ||
WidenOriginalIV->getScalarType() != WidenNewIV->getScalarType())
continue;
// Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides
// everything WidenNewIV's users need. That is, WidenOriginalIV will
// generate a vector phi or all users of WidenNewIV demand the first lane
// only.
if (any_of(WidenOriginalIV->users(),
[WidenOriginalIV](VPUser *U) {
return !U->usesScalars(WidenOriginalIV);
}) ||
vputils::onlyFirstLaneUsed(WidenNewIV)) {
WidenNewIV->replaceAllUsesWith(WidenOriginalIV);
WidenNewIV->eraseFromParent();
return;
}
}
}
static void removeDeadRecipes(VPlan &Plan) {
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT(
Plan.getEntry());
for (VPBasicBlock *VPBB : reverse(VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT))) {
// The recipes in the block are processed in reverse order, to catch chains
// of dead recipes.
for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) {
// A user keeps R alive:
if (any_of(R.definedValues(),
[](VPValue *V) { return V->getNumUsers(); }))
continue;
using namespace llvm::PatternMatch;
// Having side effects keeps R alive, but do remove conditional assume
// instructions as their conditions may be flattened.
auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
bool IsConditionalAssume =
RepR && RepR->isPredicated() &&
match(RepR->getUnderlyingInstr(), m_Intrinsic<Intrinsic::assume>());
if (R.mayHaveSideEffects() && !IsConditionalAssume)
continue;
R.eraseFromParent();
}
}
}
static VPValue *createScalarIVSteps(VPlan &Plan, const InductionDescriptor &ID,
ScalarEvolution &SE, Instruction *TruncI,
VPValue *StartV, VPValue *Step,
VPBasicBlock::iterator IP) {
VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
VPSingleDefRecipe *BaseIV = CanonicalIV;
if (!CanonicalIV->isCanonical(ID.getKind(), StartV, Step)) {
BaseIV = new VPDerivedIVRecipe(ID, StartV, CanonicalIV, Step);
HeaderVPBB->insert(BaseIV, IP);
}
// Truncate base induction if needed.
VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType(),
SE.getContext());
Type *ResultTy = TypeInfo.inferScalarType(BaseIV);
if (TruncI) {
Type *TruncTy = TruncI->getType();
assert(ResultTy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits() &&
"Not truncating.");
assert(ResultTy->isIntegerTy() && "Truncation requires an integer type");
BaseIV = new VPScalarCastRecipe(Instruction::Trunc, BaseIV, TruncTy);
HeaderVPBB->insert(BaseIV, IP);
ResultTy = TruncTy;
}
// Truncate step if needed.
Type *StepTy = TypeInfo.inferScalarType(Step);
if (ResultTy != StepTy) {
assert(StepTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits() &&
"Not truncating.");
assert(StepTy->isIntegerTy() && "Truncation requires an integer type");
Step = new VPScalarCastRecipe(Instruction::Trunc, Step, ResultTy);
auto *VecPreheader =
cast<VPBasicBlock>(HeaderVPBB->getSingleHierarchicalPredecessor());
VecPreheader->appendRecipe(Step->getDefiningRecipe());
}
VPScalarIVStepsRecipe *Steps = new VPScalarIVStepsRecipe(ID, BaseIV, Step);
HeaderVPBB->insert(Steps, IP);
return Steps;
}
/// If any user of a VPWidenIntOrFpInductionRecipe needs scalar values,
/// provide them by building scalar steps off of the canonical scalar IV and
/// update the original IV's users. This is an optional optimization to reduce
/// the needs of vector extracts.
static void optimizeInductions(VPlan &Plan, ScalarEvolution &SE) {
SmallVector<VPRecipeBase *> ToRemove;
VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
bool HasOnlyVectorVFs = !Plan.hasVF(ElementCount::getFixed(1));
VPBasicBlock::iterator InsertPt = HeaderVPBB->getFirstNonPhi();
for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
auto *WideIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
if (!WideIV)
continue;
if (HasOnlyVectorVFs && none_of(WideIV->users(), [WideIV](VPUser *U) {
return U->usesScalars(WideIV);
}))
continue;
const InductionDescriptor &ID = WideIV->getInductionDescriptor();
VPValue *Steps = createScalarIVSteps(Plan, ID, SE, WideIV->getTruncInst(),
WideIV->getStartValue(),
WideIV->getStepValue(), InsertPt);
// Update scalar users of IV to use Step instead.
if (!HasOnlyVectorVFs)
WideIV->replaceAllUsesWith(Steps);
else
WideIV->replaceUsesWithIf(Steps, [WideIV](VPUser &U, unsigned) {
return U.usesScalars(WideIV);
});
}
}
/// Remove redundant EpxandSCEVRecipes in \p Plan's entry block by replacing
/// them with already existing recipes expanding the same SCEV expression.
static void removeRedundantExpandSCEVRecipes(VPlan &Plan) {
DenseMap<const SCEV *, VPValue *> SCEV2VPV;
for (VPRecipeBase &R :
make_early_inc_range(*Plan.getEntry()->getEntryBasicBlock())) {
auto *ExpR = dyn_cast<VPExpandSCEVRecipe>(&R);
if (!ExpR)
continue;
auto I = SCEV2VPV.insert({ExpR->getSCEV(), ExpR});
if (I.second)
continue;
ExpR->replaceAllUsesWith(I.first->second);
ExpR->eraseFromParent();
}
}
void VPlanTransforms::optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF,
unsigned BestUF,
PredicatedScalarEvolution &PSE) {
assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan");
assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan");
VPBasicBlock *ExitingVPBB =
Plan.getVectorLoopRegion()->getExitingBasicBlock();
auto *Term = &ExitingVPBB->back();
// Try to simplify the branch condition if TC <= VF * UF when preparing to
// execute the plan for the main vector loop. We only do this if the
// terminator is:
// 1. BranchOnCount, or
// 2. BranchOnCond where the input is Not(ActiveLaneMask).
using namespace llvm::VPlanPatternMatch;
if (!match(Term, m_BranchOnCount(m_VPValue(), m_VPValue())) &&
!match(Term,
m_BranchOnCond(m_Not(m_ActiveLaneMask(m_VPValue(), m_VPValue())))))
return;
Type *IdxTy =
Plan.getCanonicalIV()->getStartValue()->getLiveInIRValue()->getType();
const SCEV *TripCount = createTripCountSCEV(IdxTy, PSE);
ScalarEvolution &SE = *PSE.getSE();
ElementCount NumElements = BestVF.multiplyCoefficientBy(BestUF);
const SCEV *C = SE.getElementCount(TripCount->getType(), NumElements);
if (TripCount->isZero() ||
!SE.isKnownPredicate(CmpInst::ICMP_ULE, TripCount, C))
return;
LLVMContext &Ctx = SE.getContext();
auto *BOC = new VPInstruction(
VPInstruction::BranchOnCond,
{Plan.getVPValueOrAddLiveIn(ConstantInt::getTrue(Ctx))});
Term->eraseFromParent();
ExitingVPBB->appendRecipe(BOC);
Plan.setVF(BestVF);
Plan.setUF(BestUF);
// TODO: Further simplifications are possible
// 1. Replace inductions with constants.
// 2. Replace vector loop region with VPBasicBlock.
}
#ifndef NDEBUG
static VPRegionBlock *GetReplicateRegion(VPRecipeBase *R) {
auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
if (Region && Region->isReplicator()) {
assert(Region->getNumSuccessors() == 1 &&
Region->getNumPredecessors() == 1 && "Expected SESE region!");
assert(R->getParent()->size() == 1 &&
"A recipe in an original replicator region must be the only "
"recipe in its block");
return Region;
}
return nullptr;
}
#endif
static bool properlyDominates(const VPRecipeBase *A, const VPRecipeBase *B,
VPDominatorTree &VPDT) {
if (A == B)
return false;
auto LocalComesBefore = [](const VPRecipeBase *A, const VPRecipeBase *B) {
for (auto &R : *A->getParent()) {
if (&R == A)
return true;
if (&R == B)
return false;
}
llvm_unreachable("recipe not found");
};
const VPBlockBase *ParentA = A->getParent();
const VPBlockBase *ParentB = B->getParent();
if (ParentA == ParentB)
return LocalComesBefore(A, B);
assert(!GetReplicateRegion(const_cast<VPRecipeBase *>(A)) &&
"No replicate regions expected at this point");
assert(!GetReplicateRegion(const_cast<VPRecipeBase *>(B)) &&
"No replicate regions expected at this point");
return VPDT.properlyDominates(ParentA, ParentB);
}
/// Sink users of \p FOR after the recipe defining the previous value \p
/// Previous of the recurrence. \returns true if all users of \p FOR could be
/// re-arranged as needed or false if it is not possible.
static bool
sinkRecurrenceUsersAfterPrevious(VPFirstOrderRecurrencePHIRecipe *FOR,
VPRecipeBase *Previous,
VPDominatorTree &VPDT) {
// Collect recipes that need sinking.
SmallVector<VPRecipeBase *> WorkList;
SmallPtrSet<VPRecipeBase *, 8> Seen;
Seen.insert(Previous);
auto TryToPushSinkCandidate = [&](VPRecipeBase *SinkCandidate) {
// The previous value must not depend on the users of the recurrence phi. In
// that case, FOR is not a fixed order recurrence.
if (SinkCandidate == Previous)
return false;
if (isa<VPHeaderPHIRecipe>(SinkCandidate) ||
!Seen.insert(SinkCandidate).second ||
properlyDominates(Previous, SinkCandidate, VPDT))
return true;
if (SinkCandidate->mayHaveSideEffects())
return false;
WorkList.push_back(SinkCandidate);
return true;
};
// Recursively sink users of FOR after Previous.
WorkList.push_back(FOR);
for (unsigned I = 0; I != WorkList.size(); ++I) {
VPRecipeBase *Current = WorkList[I];
assert(Current->getNumDefinedValues() == 1 &&
"only recipes with a single defined value expected");
for (VPUser *User : Current->getVPSingleValue()->users()) {
if (auto *R = dyn_cast<VPRecipeBase>(User))
if (!TryToPushSinkCandidate(R))
return false;
}
}
// Keep recipes to sink ordered by dominance so earlier instructions are
// processed first.
sort(WorkList, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) {
return properlyDominates(A, B, VPDT);
});
for (VPRecipeBase *SinkCandidate : WorkList) {
if (SinkCandidate == FOR)
continue;
SinkCandidate->moveAfter(Previous);
Previous = SinkCandidate;
}
return true;
}
bool VPlanTransforms::adjustFixedOrderRecurrences(VPlan &Plan,
VPBuilder &Builder) {
VPDominatorTree VPDT;
VPDT.recalculate(Plan);
SmallVector<VPFirstOrderRecurrencePHIRecipe *> RecurrencePhis;
for (VPRecipeBase &R :
Plan.getVectorLoopRegion()->getEntry()->getEntryBasicBlock()->phis())
if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
RecurrencePhis.push_back(FOR);
for (VPFirstOrderRecurrencePHIRecipe *FOR : RecurrencePhis) {
SmallPtrSet<VPFirstOrderRecurrencePHIRecipe *, 4> SeenPhis;
VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe();
// Fixed-order recurrences do not contain cycles, so this loop is guaranteed
// to terminate.
while (auto *PrevPhi =
dyn_cast_or_null<VPFirstOrderRecurrencePHIRecipe>(Previous)) {
assert(PrevPhi->getParent() == FOR->getParent());
assert(SeenPhis.insert(PrevPhi).second);
Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe();
}
if (!sinkRecurrenceUsersAfterPrevious(FOR, Previous, VPDT))
return false;
// Introduce a recipe to combine the incoming and previous values of a
// fixed-order recurrence.
VPBasicBlock *InsertBlock = Previous->getParent();
if (isa<VPHeaderPHIRecipe>(Previous))
Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
else
Builder.setInsertPoint(InsertBlock, std::next(Previous->getIterator()));
auto *RecurSplice = cast<VPInstruction>(
Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
{FOR, FOR->getBackedgeValue()}));
FOR->replaceAllUsesWith(RecurSplice);
// Set the first operand of RecurSplice to FOR again, after replacing
// all users.
RecurSplice->setOperand(0, FOR);
}
return true;
}
void VPlanTransforms::clearReductionWrapFlags(VPlan &Plan) {
for (VPRecipeBase &R :
Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
if (!PhiR)
continue;
const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
RecurKind RK = RdxDesc.getRecurrenceKind();
if (RK != RecurKind::Add && RK != RecurKind::Mul)
continue;
SmallSetVector<VPValue *, 8> Worklist;
Worklist.insert(PhiR);
for (unsigned I = 0; I != Worklist.size(); ++I) {
VPValue *Cur = Worklist[I];
if (auto *RecWithFlags =
dyn_cast<VPRecipeWithIRFlags>(Cur->getDefiningRecipe())) {
RecWithFlags->dropPoisonGeneratingFlags();
}
for (VPUser *U : Cur->users()) {
auto *UserRecipe = dyn_cast<VPRecipeBase>(U);
if (!UserRecipe)
continue;
for (VPValue *V : UserRecipe->definedValues())
Worklist.insert(V);
}
}
}
}
/// Try to simplify recipe \p R.
static void simplifyRecipe(VPRecipeBase &R, VPTypeAnalysis &TypeInfo) {
// Try to remove redundant blend recipes.
if (auto *Blend = dyn_cast<VPBlendRecipe>(&R)) {
VPValue *Inc0 = Blend->getIncomingValue(0);
for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I)
if (Inc0 != Blend->getIncomingValue(I))
return;
Blend->replaceAllUsesWith(Inc0);
Blend->eraseFromParent();
return;
}
using namespace llvm::VPlanPatternMatch;
VPValue *A;
if (match(&R, m_Trunc(m_ZExtOrSExt(m_VPValue(A))))) {
VPValue *Trunc = R.getVPSingleValue();
Type *TruncTy = TypeInfo.inferScalarType(Trunc);
Type *ATy = TypeInfo.inferScalarType(A);
if (TruncTy == ATy) {
Trunc->replaceAllUsesWith(A);
} else {
// Don't replace a scalarizing recipe with a widened cast.
if (isa<VPReplicateRecipe>(&R))
return;
if (ATy->getScalarSizeInBits() < TruncTy->getScalarSizeInBits()) {
unsigned ExtOpcode = match(R.getOperand(0), m_SExt(m_VPValue()))
? Instruction::SExt
: Instruction::ZExt;
auto *VPC =
new VPWidenCastRecipe(Instruction::CastOps(ExtOpcode), A, TruncTy);
VPC->insertBefore(&R);
Trunc->replaceAllUsesWith(VPC);
} else if (ATy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits()) {
auto *VPC = new VPWidenCastRecipe(Instruction::Trunc, A, TruncTy);
VPC->insertBefore(&R);
Trunc->replaceAllUsesWith(VPC);
}
}
#ifndef NDEBUG
// Verify that the cached type info is for both A and its users is still
// accurate by comparing it to freshly computed types.
VPTypeAnalysis TypeInfo2(
R.getParent()->getPlan()->getCanonicalIV()->getScalarType(),
TypeInfo.getContext());
assert(TypeInfo.inferScalarType(A) == TypeInfo2.inferScalarType(A));
for (VPUser *U : A->users()) {
auto *R = dyn_cast<VPRecipeBase>(U);
if (!R)
continue;
for (VPValue *VPV : R->definedValues())
assert(TypeInfo.inferScalarType(VPV) == TypeInfo2.inferScalarType(VPV));
}
#endif
}
if (match(&R, m_CombineOr(m_Mul(m_VPValue(A), m_SpecificInt(1)),
m_Mul(m_SpecificInt(1), m_VPValue(A)))))
return R.getVPSingleValue()->replaceAllUsesWith(A);
}
/// Try to simplify the recipes in \p Plan.
static void simplifyRecipes(VPlan &Plan, LLVMContext &Ctx) {
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT(
Plan.getEntry());
VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType(), Ctx);
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
simplifyRecipe(R, TypeInfo);
}
}
}
void VPlanTransforms::truncateToMinimalBitwidths(
VPlan &Plan, const MapVector<Instruction *, uint64_t> &MinBWs,
LLVMContext &Ctx) {
#ifndef NDEBUG
// Count the processed recipes and cross check the count later with MinBWs
// size, to make sure all entries in MinBWs have been handled.
unsigned NumProcessedRecipes = 0;
#endif
// Keep track of created truncates, so they can be re-used. Note that we
// cannot use RAUW after creating a new truncate, as this would could make
// other uses have different types for their operands, making them invalidly
// typed.
DenseMap<VPValue *, VPWidenCastRecipe *> ProcessedTruncs;
VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType(), Ctx);
VPBasicBlock *PH = Plan.getEntry();
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
vp_depth_first_deep(Plan.getVectorLoopRegion()))) {
for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
if (!isa<VPWidenRecipe, VPWidenCastRecipe, VPReplicateRecipe,
VPWidenSelectRecipe, VPWidenMemoryInstructionRecipe>(&R))
continue;
if (isa<VPWidenMemoryInstructionRecipe>(&R) &&
cast<VPWidenMemoryInstructionRecipe>(&R)->isStore())
continue;
VPValue *ResultVPV = R.getVPSingleValue();
auto *UI = cast_or_null<Instruction>(ResultVPV->getUnderlyingValue());
unsigned NewResSizeInBits = MinBWs.lookup(UI);
if (!NewResSizeInBits)
continue;
#ifndef NDEBUG
NumProcessedRecipes++;
#endif
// If the value wasn't vectorized, we must maintain the original scalar
// type. Skip those here, after incrementing NumProcessedRecipes. Also
// skip casts which do not need to be handled explicitly here, as
// redundant casts will be removed during recipe simplification.
if (isa<VPReplicateRecipe, VPWidenCastRecipe>(&R)) {
#ifndef NDEBUG
// If any of the operands is a live-in and not used by VPWidenRecipe or
// VPWidenSelectRecipe, but in MinBWs, make sure it is counted as
// processed as well. When MinBWs is currently constructed, there is no
// information about whether recipes are widened or replicated and in
// case they are reciplicated the operands are not truncated. Counting
// them them here ensures we do not miss any recipes in MinBWs.
// TODO: Remove once the analysis is done on VPlan.
for (VPValue *Op : R.operands()) {
if (!Op->isLiveIn())
continue;
auto *UV = dyn_cast_or_null<Instruction>(Op->getUnderlyingValue());
if (UV && MinBWs.contains(UV) && !ProcessedTruncs.contains(Op) &&
all_of(Op->users(), [](VPUser *U) {
return !isa<VPWidenRecipe, VPWidenSelectRecipe>(U);
})) {
// Add an entry to ProcessedTruncs to avoid counting the same
// operand multiple times.
ProcessedTruncs[Op] = nullptr;
NumProcessedRecipes += 1;
}
}
#endif
continue;
}
Type *OldResTy = TypeInfo.inferScalarType(ResultVPV);
unsigned OldResSizeInBits = OldResTy->getScalarSizeInBits();
assert(OldResTy->isIntegerTy() && "only integer types supported");
(void)OldResSizeInBits;
auto *NewResTy = IntegerType::get(Ctx, NewResSizeInBits);
// Any wrapping introduced by shrinking this operation shouldn't be
// considered undefined behavior. So, we can't unconditionally copy
// arithmetic wrapping flags to VPW.
if (auto *VPW = dyn_cast<VPRecipeWithIRFlags>(&R))
VPW->dropPoisonGeneratingFlags();
if (OldResSizeInBits != NewResSizeInBits) {
// Extend result to original width.
auto *Ext =
new VPWidenCastRecipe(Instruction::ZExt, ResultVPV, OldResTy);
Ext->insertAfter(&R);
ResultVPV->replaceAllUsesWith(Ext);
Ext->setOperand(0, ResultVPV);
assert(OldResSizeInBits > NewResSizeInBits && "Nothing to shrink?");
} else
assert(cast<VPWidenRecipe>(&R)->getOpcode() == Instruction::ICmp &&
"Only ICmps should not need extending the result.");
if (isa<VPWidenMemoryInstructionRecipe>(&R)) {
assert(!cast<VPWidenMemoryInstructionRecipe>(&R)->isStore() && "stores cannot be narrowed");
continue;
}
// Shrink operands by introducing truncates as needed.
unsigned StartIdx = isa<VPWidenSelectRecipe>(&R) ? 1 : 0;
for (unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) {
auto *Op = R.getOperand(Idx);
unsigned OpSizeInBits =
TypeInfo.inferScalarType(Op)->getScalarSizeInBits();
if (OpSizeInBits == NewResSizeInBits)
continue;
assert(OpSizeInBits > NewResSizeInBits && "nothing to truncate");
auto [ProcessedIter, IterIsEmpty] =
ProcessedTruncs.insert({Op, nullptr});
VPWidenCastRecipe *NewOp =
IterIsEmpty
? new VPWidenCastRecipe(Instruction::Trunc, Op, NewResTy)
: ProcessedIter->second;
R.setOperand(Idx, NewOp);
if (!IterIsEmpty)
continue;
ProcessedIter->second = NewOp;
if (!Op->isLiveIn()) {
NewOp->insertBefore(&R);
} else {
PH->appendRecipe(NewOp);
#ifndef NDEBUG
auto *OpInst = dyn_cast<Instruction>(Op->getLiveInIRValue());
bool IsContained = MinBWs.contains(OpInst);
NumProcessedRecipes += IsContained;
#endif
}
}
}
}
assert(MinBWs.size() == NumProcessedRecipes &&
"some entries in MinBWs haven't been processed");
}
void VPlanTransforms::optimize(VPlan &Plan, ScalarEvolution &SE) {
removeRedundantCanonicalIVs(Plan);
removeRedundantInductionCasts(Plan);
simplifyRecipes(Plan, SE.getContext());
optimizeInductions(Plan, SE);
removeDeadRecipes(Plan);
createAndOptimizeReplicateRegions(Plan);
removeRedundantExpandSCEVRecipes(Plan);
mergeBlocksIntoPredecessors(Plan);
}
// Add a VPActiveLaneMaskPHIRecipe and related recipes to \p Plan and replace
// the loop terminator with a branch-on-cond recipe with the negated
// active-lane-mask as operand. Note that this turns the loop into an
// uncountable one. Only the existing terminator is replaced, all other existing
// recipes/users remain unchanged, except for poison-generating flags being
// dropped from the canonical IV increment. Return the created
// VPActiveLaneMaskPHIRecipe.
//
// The function uses the following definitions:
//
// %TripCount = DataWithControlFlowWithoutRuntimeCheck ?
// calculate-trip-count-minus-VF (original TC) : original TC
// %IncrementValue = DataWithControlFlowWithoutRuntimeCheck ?
// CanonicalIVPhi : CanonicalIVIncrement
// %StartV is the canonical induction start value.
//
// The function adds the following recipes:
//
// vector.ph:
// %TripCount = calculate-trip-count-minus-VF (original TC)
// [if DataWithControlFlowWithoutRuntimeCheck]
// %EntryInc = canonical-iv-increment-for-part %StartV
// %EntryALM = active-lane-mask %EntryInc, %TripCount
//
// vector.body:
// ...
// %P = active-lane-mask-phi [ %EntryALM, %vector.ph ], [ %ALM, %vector.body ]
// ...
// %InLoopInc = canonical-iv-increment-for-part %IncrementValue
// %ALM = active-lane-mask %InLoopInc, TripCount
// %Negated = Not %ALM
// branch-on-cond %Negated
//
static VPActiveLaneMaskPHIRecipe *addVPLaneMaskPhiAndUpdateExitBranch(
VPlan &Plan, bool DataAndControlFlowWithoutRuntimeCheck) {
VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
VPBasicBlock *EB = TopRegion->getExitingBasicBlock();
auto *CanonicalIVPHI = Plan.getCanonicalIV();
VPValue *StartV = CanonicalIVPHI->getStartValue();
auto *CanonicalIVIncrement =
cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue());
// TODO: Check if dropping the flags is needed if
// !DataAndControlFlowWithoutRuntimeCheck.
CanonicalIVIncrement->dropPoisonGeneratingFlags();
DebugLoc DL = CanonicalIVIncrement->getDebugLoc();
// We can't use StartV directly in the ActiveLaneMask VPInstruction, since
// we have to take unrolling into account. Each part needs to start at
// Part * VF
auto *VecPreheader = cast<VPBasicBlock>(TopRegion->getSinglePredecessor());
VPBuilder Builder(VecPreheader);
// Create the ActiveLaneMask instruction using the correct start values.
VPValue *TC = Plan.getTripCount();
VPValue *TripCount, *IncrementValue;
if (!DataAndControlFlowWithoutRuntimeCheck) {
// When the loop is guarded by a runtime overflow check for the loop
// induction variable increment by VF, we can increment the value before
// the get.active.lane mask and use the unmodified tripcount.
IncrementValue = CanonicalIVIncrement;
TripCount = TC;
} else {
// When avoiding a runtime check, the active.lane.mask inside the loop
// uses a modified trip count and the induction variable increment is
// done after the active.lane.mask intrinsic is called.
IncrementValue = CanonicalIVPHI;
TripCount = Builder.createNaryOp(VPInstruction::CalculateTripCountMinusVF,
{TC}, DL);
}
auto *EntryIncrement = Builder.createOverflowingOp(
VPInstruction::CanonicalIVIncrementForPart, {StartV}, {false, false}, DL,
"index.part.next");
// Create the active lane mask instruction in the VPlan preheader.
auto *EntryALM =
Builder.createNaryOp(VPInstruction::ActiveLaneMask, {EntryIncrement, TC},
DL, "active.lane.mask.entry");
// Now create the ActiveLaneMaskPhi recipe in the main loop using the
// preheader ActiveLaneMask instruction.
auto LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc());
LaneMaskPhi->insertAfter(CanonicalIVPHI);
// Create the active lane mask for the next iteration of the loop before the
// original terminator.
VPRecipeBase *OriginalTerminator = EB->getTerminator();
Builder.setInsertPoint(OriginalTerminator);
auto *InLoopIncrement =
Builder.createOverflowingOp(VPInstruction::CanonicalIVIncrementForPart,
{IncrementValue}, {false, false}, DL);
auto *ALM = Builder.createNaryOp(VPInstruction::ActiveLaneMask,
{InLoopIncrement, TripCount}, DL,
"active.lane.mask.next");
LaneMaskPhi->addOperand(ALM);
// Replace the original terminator with BranchOnCond. We have to invert the
// mask here because a true condition means jumping to the exit block.
auto *NotMask = Builder.createNot(ALM, DL);
Builder.createNaryOp(VPInstruction::BranchOnCond, {NotMask}, DL);
OriginalTerminator->eraseFromParent();
return LaneMaskPhi;
}
void VPlanTransforms::addActiveLaneMask(
VPlan &Plan, bool UseActiveLaneMaskForControlFlow,
bool DataAndControlFlowWithoutRuntimeCheck) {
assert((!DataAndControlFlowWithoutRuntimeCheck ||
UseActiveLaneMaskForControlFlow) &&
"DataAndControlFlowWithoutRuntimeCheck implies "
"UseActiveLaneMaskForControlFlow");
auto FoundWidenCanonicalIVUser =
find_if(Plan.getCanonicalIV()->users(),
[](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); });
assert(FoundWidenCanonicalIVUser &&
"Must have widened canonical IV when tail folding!");
auto *WideCanonicalIV =
cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser);
VPSingleDefRecipe *LaneMask;
if (UseActiveLaneMaskForControlFlow) {
LaneMask = addVPLaneMaskPhiAndUpdateExitBranch(
Plan, DataAndControlFlowWithoutRuntimeCheck);
} else {
VPBuilder B = VPBuilder::getToInsertAfter(WideCanonicalIV);
LaneMask = B.createNaryOp(VPInstruction::ActiveLaneMask,
{WideCanonicalIV, Plan.getTripCount()}, nullptr,
"active.lane.mask");
}
// Walk users of WideCanonicalIV and replace all compares of the form
// (ICMP_ULE, WideCanonicalIV, backedge-taken-count) with an
// active-lane-mask.
VPValue *BTC = Plan.getOrCreateBackedgeTakenCount();
for (VPUser *U : SmallVector<VPUser *>(WideCanonicalIV->users())) {
auto *CompareToReplace = dyn_cast<VPInstruction>(U);
if (!CompareToReplace ||
CompareToReplace->getOpcode() != Instruction::ICmp ||
CompareToReplace->getPredicate() != CmpInst::ICMP_ULE ||
CompareToReplace->getOperand(1) != BTC)
continue;
assert(CompareToReplace->getOperand(0) == WideCanonicalIV &&
"WidenCanonicalIV must be the first operand of the compare");
CompareToReplace->replaceAllUsesWith(LaneMask);
CompareToReplace->eraseFromParent();
}
}
void VPlanTransforms::dropPoisonGeneratingRecipes(
VPlan &Plan, function_ref<bool(BasicBlock *)> BlockNeedsPredication) {
// Collect recipes in the backward slice of `Root` that may generate a poison
// value that is used after vectorization.
SmallPtrSet<VPRecipeBase *, 16> Visited;
auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
SmallVector<VPRecipeBase *, 16> Worklist;
Worklist.push_back(Root);
// Traverse the backward slice of Root through its use-def chain.
while (!Worklist.empty()) {
VPRecipeBase *CurRec = Worklist.back();
Worklist.pop_back();
if (!Visited.insert(CurRec).second)
continue;
// Prune search if we find another recipe generating a widen memory
// instruction. Widen memory instructions involved in address computation
// will lead to gather/scatter instructions, which don't need to be
// handled.
if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
isa<VPInterleaveRecipe>(CurRec) ||
isa<VPScalarIVStepsRecipe>(CurRec) ||
isa<VPCanonicalIVPHIRecipe>(CurRec) ||
isa<VPActiveLaneMaskPHIRecipe>(CurRec))
continue;
// This recipe contributes to the address computation of a widen
// load/store. If the underlying instruction has poison-generating flags,
// drop them directly.
if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(CurRec)) {
RecWithFlags->dropPoisonGeneratingFlags();
} else {
Instruction *Instr = dyn_cast_or_null<Instruction>(
CurRec->getVPSingleValue()->getUnderlyingValue());
(void)Instr;
assert((!Instr || !Instr->hasPoisonGeneratingFlags()) &&
"found instruction with poison generating flags not covered by "
"VPRecipeWithIRFlags");
}
// Add new definitions to the worklist.
for (VPValue *operand : CurRec->operands())
if (VPRecipeBase *OpDef = operand->getDefiningRecipe())
Worklist.push_back(OpDef);
}
});
// Traverse all the recipes in the VPlan and collect the poison-generating
// recipes in the backward slice starting at the address of a VPWidenRecipe or
// VPInterleaveRecipe.
auto Iter = vp_depth_first_deep(Plan.getEntry());
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
for (VPRecipeBase &Recipe : *VPBB) {
if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
Instruction &UnderlyingInstr = WidenRec->getIngredient();
VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe();
if (AddrDef && WidenRec->isConsecutive() &&
BlockNeedsPredication(UnderlyingInstr.getParent()))
collectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
} else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe();
if (AddrDef) {
// Check if any member of the interleave group needs predication.
const InterleaveGroup<Instruction> *InterGroup =
InterleaveRec->getInterleaveGroup();
bool NeedPredication = false;
for (int I = 0, NumMembers = InterGroup->getNumMembers();
I < NumMembers; ++I) {
Instruction *Member = InterGroup->getMember(I);
if (Member)
NeedPredication |= BlockNeedsPredication(Member->getParent());
}
if (NeedPredication)
collectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
}
}
}
}
}