
This introduces a new `ptrtoaddr` instruction which is similar to `ptrtoint` but has two differences: 1) Unlike `ptrtoint`, `ptrtoaddr` does not capture provenance 2) `ptrtoaddr` only extracts (and then extends/truncates) the low index-width bits of the pointer For most architectures, difference 2) does not matter since index (address) width and pointer representation width are the same, but this does make a difference for architectures that have pointers that aren't just plain integer addresses such as AMDGPU fat pointers or CHERI capabilities. This commit introduces textual and bitcode IR support as well as basic code generation, but optimization passes do not handle the new instruction yet so it may result in worse code than using ptrtoint. Follow-up changes will update capture tracking, etc. for the new instruction. RFC: https://discourse.llvm.org/t/clarifiying-the-semantics-of-ptrtoint/83987/54 Reviewed By: nikic Pull Request: https://github.com/llvm/llvm-project/pull/139357
2290 lines
79 KiB
C++
2290 lines
79 KiB
C++
//===- ConstantRange.cpp - ConstantRange implementation -------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Represent a range of possible values that may occur when the program is run
|
|
// for an integral value. This keeps track of a lower and upper bound for the
|
|
// constant, which MAY wrap around the end of the numeric range. To do this, it
|
|
// keeps track of a [lower, upper) bound, which specifies an interval just like
|
|
// STL iterators. When used with boolean values, the following are important
|
|
// ranges (other integral ranges use min/max values for special range values):
|
|
//
|
|
// [F, F) = {} = Empty set
|
|
// [T, F) = {T}
|
|
// [F, T) = {F}
|
|
// [T, T) = {F, T} = Full set
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/ConstantRange.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <optional>
|
|
|
|
using namespace llvm;
|
|
|
|
ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
|
|
: Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
|
|
Upper(Lower) {}
|
|
|
|
ConstantRange::ConstantRange(APInt V)
|
|
: Lower(std::move(V)), Upper(Lower + 1) {}
|
|
|
|
ConstantRange::ConstantRange(APInt L, APInt U)
|
|
: Lower(std::move(L)), Upper(std::move(U)) {
|
|
assert(Lower.getBitWidth() == Upper.getBitWidth() &&
|
|
"ConstantRange with unequal bit widths");
|
|
assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
|
|
"Lower == Upper, but they aren't min or max value!");
|
|
}
|
|
|
|
ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known,
|
|
bool IsSigned) {
|
|
if (Known.hasConflict())
|
|
return getEmpty(Known.getBitWidth());
|
|
if (Known.isUnknown())
|
|
return getFull(Known.getBitWidth());
|
|
|
|
// For unsigned ranges, or signed ranges with known sign bit, create a simple
|
|
// range between the smallest and largest possible value.
|
|
if (!IsSigned || Known.isNegative() || Known.isNonNegative())
|
|
return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1);
|
|
|
|
// If we don't know the sign bit, pick the lower bound as a negative number
|
|
// and the upper bound as a non-negative one.
|
|
APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue();
|
|
Lower.setSignBit();
|
|
Upper.clearSignBit();
|
|
return ConstantRange(Lower, Upper + 1);
|
|
}
|
|
|
|
KnownBits ConstantRange::toKnownBits() const {
|
|
// TODO: We could return conflicting known bits here, but consumers are
|
|
// likely not prepared for that.
|
|
if (isEmptySet())
|
|
return KnownBits(getBitWidth());
|
|
|
|
// We can only retain the top bits that are the same between min and max.
|
|
APInt Min = getUnsignedMin();
|
|
APInt Max = getUnsignedMax();
|
|
KnownBits Known = KnownBits::makeConstant(Min);
|
|
if (std::optional<unsigned> DifferentBit =
|
|
APIntOps::GetMostSignificantDifferentBit(Min, Max)) {
|
|
Known.Zero.clearLowBits(*DifferentBit + 1);
|
|
Known.One.clearLowBits(*DifferentBit + 1);
|
|
}
|
|
return Known;
|
|
}
|
|
|
|
std::pair<ConstantRange, ConstantRange> ConstantRange::splitPosNeg() const {
|
|
uint32_t BW = getBitWidth();
|
|
APInt Zero = APInt::getZero(BW), One = APInt(BW, 1);
|
|
APInt SignedMin = APInt::getSignedMinValue(BW);
|
|
// There are no positive 1-bit values. The 1 would get interpreted as -1.
|
|
ConstantRange PosFilter =
|
|
BW == 1 ? getEmpty() : ConstantRange(One, SignedMin);
|
|
ConstantRange NegFilter(SignedMin, Zero);
|
|
return {intersectWith(PosFilter), intersectWith(NegFilter)};
|
|
}
|
|
|
|
ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
|
|
const ConstantRange &CR) {
|
|
if (CR.isEmptySet())
|
|
return CR;
|
|
|
|
uint32_t W = CR.getBitWidth();
|
|
switch (Pred) {
|
|
default:
|
|
llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
|
|
case CmpInst::ICMP_EQ:
|
|
return CR;
|
|
case CmpInst::ICMP_NE:
|
|
if (CR.isSingleElement())
|
|
return ConstantRange(CR.getUpper(), CR.getLower());
|
|
return getFull(W);
|
|
case CmpInst::ICMP_ULT: {
|
|
APInt UMax(CR.getUnsignedMax());
|
|
if (UMax.isMinValue())
|
|
return getEmpty(W);
|
|
return ConstantRange(APInt::getMinValue(W), std::move(UMax));
|
|
}
|
|
case CmpInst::ICMP_SLT: {
|
|
APInt SMax(CR.getSignedMax());
|
|
if (SMax.isMinSignedValue())
|
|
return getEmpty(W);
|
|
return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
|
|
}
|
|
case CmpInst::ICMP_ULE:
|
|
return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1);
|
|
case CmpInst::ICMP_SLE:
|
|
return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1);
|
|
case CmpInst::ICMP_UGT: {
|
|
APInt UMin(CR.getUnsignedMin());
|
|
if (UMin.isMaxValue())
|
|
return getEmpty(W);
|
|
return ConstantRange(std::move(UMin) + 1, APInt::getZero(W));
|
|
}
|
|
case CmpInst::ICMP_SGT: {
|
|
APInt SMin(CR.getSignedMin());
|
|
if (SMin.isMaxSignedValue())
|
|
return getEmpty(W);
|
|
return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
|
|
}
|
|
case CmpInst::ICMP_UGE:
|
|
return getNonEmpty(CR.getUnsignedMin(), APInt::getZero(W));
|
|
case CmpInst::ICMP_SGE:
|
|
return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W));
|
|
}
|
|
}
|
|
|
|
ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
|
|
const ConstantRange &CR) {
|
|
// Follows from De-Morgan's laws:
|
|
//
|
|
// ~(~A union ~B) == A intersect B.
|
|
//
|
|
return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
|
|
.inverse();
|
|
}
|
|
|
|
ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
|
|
const APInt &C) {
|
|
// Computes the exact range that is equal to both the constant ranges returned
|
|
// by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
|
|
// when RHS is a singleton such as an APInt. However for non-singleton RHS,
|
|
// for example ult [2,5) makeAllowedICmpRegion returns [0,4) but
|
|
// makeSatisfyICmpRegion returns [0,2).
|
|
//
|
|
return makeAllowedICmpRegion(Pred, C);
|
|
}
|
|
|
|
bool ConstantRange::areInsensitiveToSignednessOfICmpPredicate(
|
|
const ConstantRange &CR1, const ConstantRange &CR2) {
|
|
if (CR1.isEmptySet() || CR2.isEmptySet())
|
|
return true;
|
|
|
|
return (CR1.isAllNonNegative() && CR2.isAllNonNegative()) ||
|
|
(CR1.isAllNegative() && CR2.isAllNegative());
|
|
}
|
|
|
|
bool ConstantRange::areInsensitiveToSignednessOfInvertedICmpPredicate(
|
|
const ConstantRange &CR1, const ConstantRange &CR2) {
|
|
if (CR1.isEmptySet() || CR2.isEmptySet())
|
|
return true;
|
|
|
|
return (CR1.isAllNonNegative() && CR2.isAllNegative()) ||
|
|
(CR1.isAllNegative() && CR2.isAllNonNegative());
|
|
}
|
|
|
|
CmpInst::Predicate ConstantRange::getEquivalentPredWithFlippedSignedness(
|
|
CmpInst::Predicate Pred, const ConstantRange &CR1,
|
|
const ConstantRange &CR2) {
|
|
assert(CmpInst::isIntPredicate(Pred) && CmpInst::isRelational(Pred) &&
|
|
"Only for relational integer predicates!");
|
|
|
|
CmpInst::Predicate FlippedSignednessPred =
|
|
ICmpInst::getFlippedSignednessPredicate(Pred);
|
|
|
|
if (areInsensitiveToSignednessOfICmpPredicate(CR1, CR2))
|
|
return FlippedSignednessPred;
|
|
|
|
if (areInsensitiveToSignednessOfInvertedICmpPredicate(CR1, CR2))
|
|
return CmpInst::getInversePredicate(FlippedSignednessPred);
|
|
|
|
return CmpInst::Predicate::BAD_ICMP_PREDICATE;
|
|
}
|
|
|
|
void ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
|
|
APInt &RHS, APInt &Offset) const {
|
|
Offset = APInt(getBitWidth(), 0);
|
|
if (isFullSet() || isEmptySet()) {
|
|
Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
|
|
RHS = APInt(getBitWidth(), 0);
|
|
} else if (auto *OnlyElt = getSingleElement()) {
|
|
Pred = CmpInst::ICMP_EQ;
|
|
RHS = *OnlyElt;
|
|
} else if (auto *OnlyMissingElt = getSingleMissingElement()) {
|
|
Pred = CmpInst::ICMP_NE;
|
|
RHS = *OnlyMissingElt;
|
|
} else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
|
|
Pred =
|
|
getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
|
|
RHS = getUpper();
|
|
} else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
|
|
Pred =
|
|
getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
|
|
RHS = getLower();
|
|
} else {
|
|
Pred = CmpInst::ICMP_ULT;
|
|
RHS = getUpper() - getLower();
|
|
Offset = -getLower();
|
|
}
|
|
|
|
assert(ConstantRange::makeExactICmpRegion(Pred, RHS) == add(Offset) &&
|
|
"Bad result!");
|
|
}
|
|
|
|
bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
|
|
APInt &RHS) const {
|
|
APInt Offset;
|
|
getEquivalentICmp(Pred, RHS, Offset);
|
|
return Offset.isZero();
|
|
}
|
|
|
|
bool ConstantRange::icmp(CmpInst::Predicate Pred,
|
|
const ConstantRange &Other) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return true;
|
|
|
|
switch (Pred) {
|
|
case CmpInst::ICMP_EQ:
|
|
if (const APInt *L = getSingleElement())
|
|
if (const APInt *R = Other.getSingleElement())
|
|
return *L == *R;
|
|
return false;
|
|
case CmpInst::ICMP_NE:
|
|
return inverse().contains(Other);
|
|
case CmpInst::ICMP_ULT:
|
|
return getUnsignedMax().ult(Other.getUnsignedMin());
|
|
case CmpInst::ICMP_ULE:
|
|
return getUnsignedMax().ule(Other.getUnsignedMin());
|
|
case CmpInst::ICMP_UGT:
|
|
return getUnsignedMin().ugt(Other.getUnsignedMax());
|
|
case CmpInst::ICMP_UGE:
|
|
return getUnsignedMin().uge(Other.getUnsignedMax());
|
|
case CmpInst::ICMP_SLT:
|
|
return getSignedMax().slt(Other.getSignedMin());
|
|
case CmpInst::ICMP_SLE:
|
|
return getSignedMax().sle(Other.getSignedMin());
|
|
case CmpInst::ICMP_SGT:
|
|
return getSignedMin().sgt(Other.getSignedMax());
|
|
case CmpInst::ICMP_SGE:
|
|
return getSignedMin().sge(Other.getSignedMax());
|
|
default:
|
|
llvm_unreachable("Invalid ICmp predicate");
|
|
}
|
|
}
|
|
|
|
/// Exact mul nuw region for single element RHS.
|
|
static ConstantRange makeExactMulNUWRegion(const APInt &V) {
|
|
unsigned BitWidth = V.getBitWidth();
|
|
if (V == 0)
|
|
return ConstantRange::getFull(V.getBitWidth());
|
|
|
|
return ConstantRange::getNonEmpty(
|
|
APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V,
|
|
APInt::Rounding::UP),
|
|
APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V,
|
|
APInt::Rounding::DOWN) + 1);
|
|
}
|
|
|
|
/// Exact mul nsw region for single element RHS.
|
|
static ConstantRange makeExactMulNSWRegion(const APInt &V) {
|
|
// Handle 0 and -1 separately to avoid division by zero or overflow.
|
|
unsigned BitWidth = V.getBitWidth();
|
|
if (V == 0)
|
|
return ConstantRange::getFull(BitWidth);
|
|
|
|
APInt MinValue = APInt::getSignedMinValue(BitWidth);
|
|
APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
|
|
// e.g. Returning [-127, 127], represented as [-127, -128).
|
|
if (V.isAllOnes())
|
|
return ConstantRange(-MaxValue, MinValue);
|
|
|
|
APInt Lower, Upper;
|
|
if (V.isNegative()) {
|
|
Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
|
|
Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
|
|
} else {
|
|
Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
|
|
Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
|
|
}
|
|
return ConstantRange::getNonEmpty(Lower, Upper + 1);
|
|
}
|
|
|
|
ConstantRange
|
|
ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
|
|
const ConstantRange &Other,
|
|
unsigned NoWrapKind) {
|
|
using OBO = OverflowingBinaryOperator;
|
|
|
|
assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
|
|
|
|
assert((NoWrapKind == OBO::NoSignedWrap ||
|
|
NoWrapKind == OBO::NoUnsignedWrap) &&
|
|
"NoWrapKind invalid!");
|
|
|
|
bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
|
|
unsigned BitWidth = Other.getBitWidth();
|
|
|
|
switch (BinOp) {
|
|
default:
|
|
llvm_unreachable("Unsupported binary op");
|
|
|
|
case Instruction::Add: {
|
|
if (Unsigned)
|
|
return getNonEmpty(APInt::getZero(BitWidth), -Other.getUnsignedMax());
|
|
|
|
APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
|
|
APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
|
|
return getNonEmpty(
|
|
SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal,
|
|
SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal);
|
|
}
|
|
|
|
case Instruction::Sub: {
|
|
if (Unsigned)
|
|
return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth));
|
|
|
|
APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
|
|
APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
|
|
return getNonEmpty(
|
|
SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal,
|
|
SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal);
|
|
}
|
|
|
|
case Instruction::Mul:
|
|
if (Unsigned)
|
|
return makeExactMulNUWRegion(Other.getUnsignedMax());
|
|
|
|
// Avoid one makeExactMulNSWRegion() call for the common case of constants.
|
|
if (const APInt *C = Other.getSingleElement())
|
|
return makeExactMulNSWRegion(*C);
|
|
|
|
return makeExactMulNSWRegion(Other.getSignedMin())
|
|
.intersectWith(makeExactMulNSWRegion(Other.getSignedMax()));
|
|
|
|
case Instruction::Shl: {
|
|
// For given range of shift amounts, if we ignore all illegal shift amounts
|
|
// (that always produce poison), what shift amount range is left?
|
|
ConstantRange ShAmt = Other.intersectWith(
|
|
ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1)));
|
|
if (ShAmt.isEmptySet()) {
|
|
// If the entire range of shift amounts is already poison-producing,
|
|
// then we can freely add more poison-producing flags ontop of that.
|
|
return getFull(BitWidth);
|
|
}
|
|
// There are some legal shift amounts, we can compute conservatively-correct
|
|
// range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax
|
|
// to be at most bitwidth-1, which results in most conservative range.
|
|
APInt ShAmtUMax = ShAmt.getUnsignedMax();
|
|
if (Unsigned)
|
|
return getNonEmpty(APInt::getZero(BitWidth),
|
|
APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1);
|
|
return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax),
|
|
APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
|
|
const APInt &Other,
|
|
unsigned NoWrapKind) {
|
|
// makeGuaranteedNoWrapRegion() is exact for single-element ranges, as
|
|
// "for all" and "for any" coincide in this case.
|
|
return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind);
|
|
}
|
|
|
|
ConstantRange ConstantRange::makeMaskNotEqualRange(const APInt &Mask,
|
|
const APInt &C) {
|
|
unsigned BitWidth = Mask.getBitWidth();
|
|
|
|
if ((Mask & C) != C)
|
|
return getFull(BitWidth);
|
|
|
|
if (Mask.isZero())
|
|
return getEmpty(BitWidth);
|
|
|
|
// If (Val & Mask) != C, constrained to the non-equality being
|
|
// satisfiable, then the value must be larger than the lowest set bit of
|
|
// Mask, offset by constant C.
|
|
return ConstantRange::getNonEmpty(
|
|
APInt::getOneBitSet(BitWidth, Mask.countr_zero()) + C, C);
|
|
}
|
|
|
|
bool ConstantRange::isFullSet() const {
|
|
return Lower == Upper && Lower.isMaxValue();
|
|
}
|
|
|
|
bool ConstantRange::isEmptySet() const {
|
|
return Lower == Upper && Lower.isMinValue();
|
|
}
|
|
|
|
bool ConstantRange::isWrappedSet() const {
|
|
return Lower.ugt(Upper) && !Upper.isZero();
|
|
}
|
|
|
|
bool ConstantRange::isUpperWrapped() const {
|
|
return Lower.ugt(Upper);
|
|
}
|
|
|
|
bool ConstantRange::isSignWrappedSet() const {
|
|
return Lower.sgt(Upper) && !Upper.isMinSignedValue();
|
|
}
|
|
|
|
bool ConstantRange::isUpperSignWrapped() const {
|
|
return Lower.sgt(Upper);
|
|
}
|
|
|
|
bool
|
|
ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
|
|
assert(getBitWidth() == Other.getBitWidth());
|
|
if (isFullSet())
|
|
return false;
|
|
if (Other.isFullSet())
|
|
return true;
|
|
return (Upper - Lower).ult(Other.Upper - Other.Lower);
|
|
}
|
|
|
|
bool
|
|
ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
|
|
// If this a full set, we need special handling to avoid needing an extra bit
|
|
// to represent the size.
|
|
if (isFullSet())
|
|
return MaxSize == 0 || APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);
|
|
|
|
return (Upper - Lower).ugt(MaxSize);
|
|
}
|
|
|
|
bool ConstantRange::isAllNegative() const {
|
|
// Empty set is all negative, full set is not.
|
|
if (isEmptySet())
|
|
return true;
|
|
if (isFullSet())
|
|
return false;
|
|
|
|
return !isUpperSignWrapped() && !Upper.isStrictlyPositive();
|
|
}
|
|
|
|
bool ConstantRange::isAllNonNegative() const {
|
|
// Empty and full set are automatically treated correctly.
|
|
return !isSignWrappedSet() && Lower.isNonNegative();
|
|
}
|
|
|
|
bool ConstantRange::isAllPositive() const {
|
|
// Empty set is all positive, full set is not.
|
|
if (isEmptySet())
|
|
return true;
|
|
if (isFullSet())
|
|
return false;
|
|
|
|
return !isSignWrappedSet() && Lower.isStrictlyPositive();
|
|
}
|
|
|
|
APInt ConstantRange::getUnsignedMax() const {
|
|
if (isFullSet() || isUpperWrapped())
|
|
return APInt::getMaxValue(getBitWidth());
|
|
return getUpper() - 1;
|
|
}
|
|
|
|
APInt ConstantRange::getUnsignedMin() const {
|
|
if (isFullSet() || isWrappedSet())
|
|
return APInt::getMinValue(getBitWidth());
|
|
return getLower();
|
|
}
|
|
|
|
APInt ConstantRange::getSignedMax() const {
|
|
if (isFullSet() || isUpperSignWrapped())
|
|
return APInt::getSignedMaxValue(getBitWidth());
|
|
return getUpper() - 1;
|
|
}
|
|
|
|
APInt ConstantRange::getSignedMin() const {
|
|
if (isFullSet() || isSignWrappedSet())
|
|
return APInt::getSignedMinValue(getBitWidth());
|
|
return getLower();
|
|
}
|
|
|
|
bool ConstantRange::contains(const APInt &V) const {
|
|
if (Lower == Upper)
|
|
return isFullSet();
|
|
|
|
if (!isUpperWrapped())
|
|
return Lower.ule(V) && V.ult(Upper);
|
|
return Lower.ule(V) || V.ult(Upper);
|
|
}
|
|
|
|
bool ConstantRange::contains(const ConstantRange &Other) const {
|
|
if (isFullSet() || Other.isEmptySet()) return true;
|
|
if (isEmptySet() || Other.isFullSet()) return false;
|
|
|
|
if (!isUpperWrapped()) {
|
|
if (Other.isUpperWrapped())
|
|
return false;
|
|
|
|
return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
|
|
}
|
|
|
|
if (!Other.isUpperWrapped())
|
|
return Other.getUpper().ule(Upper) ||
|
|
Lower.ule(Other.getLower());
|
|
|
|
return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
|
|
}
|
|
|
|
unsigned ConstantRange::getActiveBits() const {
|
|
if (isEmptySet())
|
|
return 0;
|
|
|
|
return getUnsignedMax().getActiveBits();
|
|
}
|
|
|
|
unsigned ConstantRange::getMinSignedBits() const {
|
|
if (isEmptySet())
|
|
return 0;
|
|
|
|
return std::max(getSignedMin().getSignificantBits(),
|
|
getSignedMax().getSignificantBits());
|
|
}
|
|
|
|
ConstantRange ConstantRange::subtract(const APInt &Val) const {
|
|
assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
|
|
// If the set is empty or full, don't modify the endpoints.
|
|
if (Lower == Upper)
|
|
return *this;
|
|
return ConstantRange(Lower - Val, Upper - Val);
|
|
}
|
|
|
|
ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
|
|
return intersectWith(CR.inverse());
|
|
}
|
|
|
|
static ConstantRange getPreferredRange(
|
|
const ConstantRange &CR1, const ConstantRange &CR2,
|
|
ConstantRange::PreferredRangeType Type) {
|
|
if (Type == ConstantRange::Unsigned) {
|
|
if (!CR1.isWrappedSet() && CR2.isWrappedSet())
|
|
return CR1;
|
|
if (CR1.isWrappedSet() && !CR2.isWrappedSet())
|
|
return CR2;
|
|
} else if (Type == ConstantRange::Signed) {
|
|
if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet())
|
|
return CR1;
|
|
if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet())
|
|
return CR2;
|
|
}
|
|
|
|
if (CR1.isSizeStrictlySmallerThan(CR2))
|
|
return CR1;
|
|
return CR2;
|
|
}
|
|
|
|
ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
|
|
PreferredRangeType Type) const {
|
|
assert(getBitWidth() == CR.getBitWidth() &&
|
|
"ConstantRange types don't agree!");
|
|
|
|
// Handle common cases.
|
|
if ( isEmptySet() || CR.isFullSet()) return *this;
|
|
if (CR.isEmptySet() || isFullSet()) return CR;
|
|
|
|
if (!isUpperWrapped() && CR.isUpperWrapped())
|
|
return CR.intersectWith(*this, Type);
|
|
|
|
if (!isUpperWrapped() && !CR.isUpperWrapped()) {
|
|
if (Lower.ult(CR.Lower)) {
|
|
// L---U : this
|
|
// L---U : CR
|
|
if (Upper.ule(CR.Lower))
|
|
return getEmpty();
|
|
|
|
// L---U : this
|
|
// L---U : CR
|
|
if (Upper.ult(CR.Upper))
|
|
return ConstantRange(CR.Lower, Upper);
|
|
|
|
// L-------U : this
|
|
// L---U : CR
|
|
return CR;
|
|
}
|
|
// L---U : this
|
|
// L-------U : CR
|
|
if (Upper.ult(CR.Upper))
|
|
return *this;
|
|
|
|
// L-----U : this
|
|
// L-----U : CR
|
|
if (Lower.ult(CR.Upper))
|
|
return ConstantRange(Lower, CR.Upper);
|
|
|
|
// L---U : this
|
|
// L---U : CR
|
|
return getEmpty();
|
|
}
|
|
|
|
if (isUpperWrapped() && !CR.isUpperWrapped()) {
|
|
if (CR.Lower.ult(Upper)) {
|
|
// ------U L--- : this
|
|
// L--U : CR
|
|
if (CR.Upper.ult(Upper))
|
|
return CR;
|
|
|
|
// ------U L--- : this
|
|
// L------U : CR
|
|
if (CR.Upper.ule(Lower))
|
|
return ConstantRange(CR.Lower, Upper);
|
|
|
|
// ------U L--- : this
|
|
// L----------U : CR
|
|
return getPreferredRange(*this, CR, Type);
|
|
}
|
|
if (CR.Lower.ult(Lower)) {
|
|
// --U L---- : this
|
|
// L--U : CR
|
|
if (CR.Upper.ule(Lower))
|
|
return getEmpty();
|
|
|
|
// --U L---- : this
|
|
// L------U : CR
|
|
return ConstantRange(Lower, CR.Upper);
|
|
}
|
|
|
|
// --U L------ : this
|
|
// L--U : CR
|
|
return CR;
|
|
}
|
|
|
|
if (CR.Upper.ult(Upper)) {
|
|
// ------U L-- : this
|
|
// --U L------ : CR
|
|
if (CR.Lower.ult(Upper))
|
|
return getPreferredRange(*this, CR, Type);
|
|
|
|
// ----U L-- : this
|
|
// --U L---- : CR
|
|
if (CR.Lower.ult(Lower))
|
|
return ConstantRange(Lower, CR.Upper);
|
|
|
|
// ----U L---- : this
|
|
// --U L-- : CR
|
|
return CR;
|
|
}
|
|
if (CR.Upper.ule(Lower)) {
|
|
// --U L-- : this
|
|
// ----U L---- : CR
|
|
if (CR.Lower.ult(Lower))
|
|
return *this;
|
|
|
|
// --U L---- : this
|
|
// ----U L-- : CR
|
|
return ConstantRange(CR.Lower, Upper);
|
|
}
|
|
|
|
// --U L------ : this
|
|
// ------U L-- : CR
|
|
return getPreferredRange(*this, CR, Type);
|
|
}
|
|
|
|
ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
|
|
PreferredRangeType Type) const {
|
|
assert(getBitWidth() == CR.getBitWidth() &&
|
|
"ConstantRange types don't agree!");
|
|
|
|
if ( isFullSet() || CR.isEmptySet()) return *this;
|
|
if (CR.isFullSet() || isEmptySet()) return CR;
|
|
|
|
if (!isUpperWrapped() && CR.isUpperWrapped())
|
|
return CR.unionWith(*this, Type);
|
|
|
|
if (!isUpperWrapped() && !CR.isUpperWrapped()) {
|
|
// L---U and L---U : this
|
|
// L---U L---U : CR
|
|
// result in one of
|
|
// L---------U
|
|
// -----U L-----
|
|
if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower))
|
|
return getPreferredRange(
|
|
ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
|
|
|
|
APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
|
|
APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;
|
|
|
|
if (L.isZero() && U.isZero())
|
|
return getFull();
|
|
|
|
return ConstantRange(std::move(L), std::move(U));
|
|
}
|
|
|
|
if (!CR.isUpperWrapped()) {
|
|
// ------U L----- and ------U L----- : this
|
|
// L--U L--U : CR
|
|
if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
|
|
return *this;
|
|
|
|
// ------U L----- : this
|
|
// L---------U : CR
|
|
if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
|
|
return getFull();
|
|
|
|
// ----U L---- : this
|
|
// L---U : CR
|
|
// results in one of
|
|
// ----------U L----
|
|
// ----U L----------
|
|
if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower))
|
|
return getPreferredRange(
|
|
ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
|
|
|
|
// ----U L----- : this
|
|
// L----U : CR
|
|
if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper))
|
|
return ConstantRange(CR.Lower, Upper);
|
|
|
|
// ------U L---- : this
|
|
// L-----U : CR
|
|
assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) &&
|
|
"ConstantRange::unionWith missed a case with one range wrapped");
|
|
return ConstantRange(Lower, CR.Upper);
|
|
}
|
|
|
|
// ------U L---- and ------U L---- : this
|
|
// -U L----------- and ------------U L : CR
|
|
if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
|
|
return getFull();
|
|
|
|
APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
|
|
APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;
|
|
|
|
return ConstantRange(std::move(L), std::move(U));
|
|
}
|
|
|
|
std::optional<ConstantRange>
|
|
ConstantRange::exactIntersectWith(const ConstantRange &CR) const {
|
|
// TODO: This can be implemented more efficiently.
|
|
ConstantRange Result = intersectWith(CR);
|
|
if (Result == inverse().unionWith(CR.inverse()).inverse())
|
|
return Result;
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<ConstantRange>
|
|
ConstantRange::exactUnionWith(const ConstantRange &CR) const {
|
|
// TODO: This can be implemented more efficiently.
|
|
ConstantRange Result = unionWith(CR);
|
|
if (Result == inverse().intersectWith(CR.inverse()).inverse())
|
|
return Result;
|
|
return std::nullopt;
|
|
}
|
|
|
|
ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
|
|
uint32_t ResultBitWidth) const {
|
|
switch (CastOp) {
|
|
default:
|
|
llvm_unreachable("unsupported cast type");
|
|
case Instruction::Trunc:
|
|
return truncate(ResultBitWidth);
|
|
case Instruction::SExt:
|
|
return signExtend(ResultBitWidth);
|
|
case Instruction::ZExt:
|
|
return zeroExtend(ResultBitWidth);
|
|
case Instruction::BitCast:
|
|
return *this;
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
if (getBitWidth() == ResultBitWidth)
|
|
return *this;
|
|
else
|
|
return getFull(ResultBitWidth);
|
|
case Instruction::UIToFP: {
|
|
// TODO: use input range if available
|
|
auto BW = getBitWidth();
|
|
APInt Min = APInt::getMinValue(BW);
|
|
APInt Max = APInt::getMaxValue(BW);
|
|
if (ResultBitWidth > BW) {
|
|
Min = Min.zext(ResultBitWidth);
|
|
Max = Max.zext(ResultBitWidth);
|
|
}
|
|
return getNonEmpty(std::move(Min), std::move(Max) + 1);
|
|
}
|
|
case Instruction::SIToFP: {
|
|
// TODO: use input range if available
|
|
auto BW = getBitWidth();
|
|
APInt SMin = APInt::getSignedMinValue(BW);
|
|
APInt SMax = APInt::getSignedMaxValue(BW);
|
|
if (ResultBitWidth > BW) {
|
|
SMin = SMin.sext(ResultBitWidth);
|
|
SMax = SMax.sext(ResultBitWidth);
|
|
}
|
|
return getNonEmpty(std::move(SMin), std::move(SMax) + 1);
|
|
}
|
|
case Instruction::FPTrunc:
|
|
case Instruction::FPExt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::PtrToAddr:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::AddrSpaceCast:
|
|
// Conservatively return getFull set.
|
|
return getFull(ResultBitWidth);
|
|
};
|
|
}
|
|
|
|
ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
|
|
if (isEmptySet()) return getEmpty(DstTySize);
|
|
|
|
unsigned SrcTySize = getBitWidth();
|
|
assert(SrcTySize < DstTySize && "Not a value extension");
|
|
if (isFullSet() || isUpperWrapped()) {
|
|
// Change into [0, 1 << src bit width)
|
|
APInt LowerExt(DstTySize, 0);
|
|
if (!Upper) // special case: [X, 0) -- not really wrapping around
|
|
LowerExt = Lower.zext(DstTySize);
|
|
return ConstantRange(std::move(LowerExt),
|
|
APInt::getOneBitSet(DstTySize, SrcTySize));
|
|
}
|
|
|
|
return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
|
|
}
|
|
|
|
ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
|
|
if (isEmptySet()) return getEmpty(DstTySize);
|
|
|
|
unsigned SrcTySize = getBitWidth();
|
|
assert(SrcTySize < DstTySize && "Not a value extension");
|
|
|
|
// special case: [X, INT_MIN) -- not really wrapping around
|
|
if (Upper.isMinSignedValue())
|
|
return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
|
|
|
|
if (isFullSet() || isSignWrappedSet()) {
|
|
return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
|
|
APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
|
|
}
|
|
|
|
return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
|
|
}
|
|
|
|
ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
|
|
assert(getBitWidth() > DstTySize && "Not a value truncation");
|
|
if (isEmptySet())
|
|
return getEmpty(DstTySize);
|
|
if (isFullSet())
|
|
return getFull(DstTySize);
|
|
|
|
APInt LowerDiv(Lower), UpperDiv(Upper);
|
|
ConstantRange Union(DstTySize, /*isFullSet=*/false);
|
|
|
|
// Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
|
|
// We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
|
|
// then we do the union with [MaxValue, Upper)
|
|
if (isUpperWrapped()) {
|
|
// If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
|
|
// truncated range.
|
|
if (Upper.getActiveBits() > DstTySize || Upper.countr_one() == DstTySize)
|
|
return getFull(DstTySize);
|
|
|
|
Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
|
|
UpperDiv.setAllBits();
|
|
|
|
// Union covers the MaxValue case, so return if the remaining range is just
|
|
// MaxValue(DstTy).
|
|
if (LowerDiv == UpperDiv)
|
|
return Union;
|
|
}
|
|
|
|
// Chop off the most significant bits that are past the destination bitwidth.
|
|
if (LowerDiv.getActiveBits() > DstTySize) {
|
|
// Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
|
|
APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
|
|
LowerDiv -= Adjust;
|
|
UpperDiv -= Adjust;
|
|
}
|
|
|
|
unsigned UpperDivWidth = UpperDiv.getActiveBits();
|
|
if (UpperDivWidth <= DstTySize)
|
|
return ConstantRange(LowerDiv.trunc(DstTySize),
|
|
UpperDiv.trunc(DstTySize)).unionWith(Union);
|
|
|
|
// The truncated value wraps around. Check if we can do better than fullset.
|
|
if (UpperDivWidth == DstTySize + 1) {
|
|
// Clear the MSB so that UpperDiv wraps around.
|
|
UpperDiv.clearBit(DstTySize);
|
|
if (UpperDiv.ult(LowerDiv))
|
|
return ConstantRange(LowerDiv.trunc(DstTySize),
|
|
UpperDiv.trunc(DstTySize)).unionWith(Union);
|
|
}
|
|
|
|
return getFull(DstTySize);
|
|
}
|
|
|
|
ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
|
|
unsigned SrcTySize = getBitWidth();
|
|
if (SrcTySize > DstTySize)
|
|
return truncate(DstTySize);
|
|
if (SrcTySize < DstTySize)
|
|
return zeroExtend(DstTySize);
|
|
return *this;
|
|
}
|
|
|
|
ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
|
|
unsigned SrcTySize = getBitWidth();
|
|
if (SrcTySize > DstTySize)
|
|
return truncate(DstTySize);
|
|
if (SrcTySize < DstTySize)
|
|
return signExtend(DstTySize);
|
|
return *this;
|
|
}
|
|
|
|
ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
|
|
const ConstantRange &Other) const {
|
|
assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
|
|
|
|
switch (BinOp) {
|
|
case Instruction::Add:
|
|
return add(Other);
|
|
case Instruction::Sub:
|
|
return sub(Other);
|
|
case Instruction::Mul:
|
|
return multiply(Other);
|
|
case Instruction::UDiv:
|
|
return udiv(Other);
|
|
case Instruction::SDiv:
|
|
return sdiv(Other);
|
|
case Instruction::URem:
|
|
return urem(Other);
|
|
case Instruction::SRem:
|
|
return srem(Other);
|
|
case Instruction::Shl:
|
|
return shl(Other);
|
|
case Instruction::LShr:
|
|
return lshr(Other);
|
|
case Instruction::AShr:
|
|
return ashr(Other);
|
|
case Instruction::And:
|
|
return binaryAnd(Other);
|
|
case Instruction::Or:
|
|
return binaryOr(Other);
|
|
case Instruction::Xor:
|
|
return binaryXor(Other);
|
|
// Note: floating point operations applied to abstract ranges are just
|
|
// ideal integer operations with a lossy representation
|
|
case Instruction::FAdd:
|
|
return add(Other);
|
|
case Instruction::FSub:
|
|
return sub(Other);
|
|
case Instruction::FMul:
|
|
return multiply(Other);
|
|
default:
|
|
// Conservatively return getFull set.
|
|
return getFull();
|
|
}
|
|
}
|
|
|
|
ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp,
|
|
const ConstantRange &Other,
|
|
unsigned NoWrapKind) const {
|
|
assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
|
|
|
|
switch (BinOp) {
|
|
case Instruction::Add:
|
|
return addWithNoWrap(Other, NoWrapKind);
|
|
case Instruction::Sub:
|
|
return subWithNoWrap(Other, NoWrapKind);
|
|
case Instruction::Mul:
|
|
return multiplyWithNoWrap(Other, NoWrapKind);
|
|
case Instruction::Shl:
|
|
return shlWithNoWrap(Other, NoWrapKind);
|
|
default:
|
|
// Don't know about this Overflowing Binary Operation.
|
|
// Conservatively fallback to plain binop handling.
|
|
return binaryOp(BinOp, Other);
|
|
}
|
|
}
|
|
|
|
bool ConstantRange::isIntrinsicSupported(Intrinsic::ID IntrinsicID) {
|
|
switch (IntrinsicID) {
|
|
case Intrinsic::uadd_sat:
|
|
case Intrinsic::usub_sat:
|
|
case Intrinsic::sadd_sat:
|
|
case Intrinsic::ssub_sat:
|
|
case Intrinsic::umin:
|
|
case Intrinsic::umax:
|
|
case Intrinsic::smin:
|
|
case Intrinsic::smax:
|
|
case Intrinsic::abs:
|
|
case Intrinsic::ctlz:
|
|
case Intrinsic::cttz:
|
|
case Intrinsic::ctpop:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
ConstantRange ConstantRange::intrinsic(Intrinsic::ID IntrinsicID,
|
|
ArrayRef<ConstantRange> Ops) {
|
|
switch (IntrinsicID) {
|
|
case Intrinsic::uadd_sat:
|
|
return Ops[0].uadd_sat(Ops[1]);
|
|
case Intrinsic::usub_sat:
|
|
return Ops[0].usub_sat(Ops[1]);
|
|
case Intrinsic::sadd_sat:
|
|
return Ops[0].sadd_sat(Ops[1]);
|
|
case Intrinsic::ssub_sat:
|
|
return Ops[0].ssub_sat(Ops[1]);
|
|
case Intrinsic::umin:
|
|
return Ops[0].umin(Ops[1]);
|
|
case Intrinsic::umax:
|
|
return Ops[0].umax(Ops[1]);
|
|
case Intrinsic::smin:
|
|
return Ops[0].smin(Ops[1]);
|
|
case Intrinsic::smax:
|
|
return Ops[0].smax(Ops[1]);
|
|
case Intrinsic::abs: {
|
|
const APInt *IntMinIsPoison = Ops[1].getSingleElement();
|
|
assert(IntMinIsPoison && "Must be known (immarg)");
|
|
assert(IntMinIsPoison->getBitWidth() == 1 && "Must be boolean");
|
|
return Ops[0].abs(IntMinIsPoison->getBoolValue());
|
|
}
|
|
case Intrinsic::ctlz: {
|
|
const APInt *ZeroIsPoison = Ops[1].getSingleElement();
|
|
assert(ZeroIsPoison && "Must be known (immarg)");
|
|
assert(ZeroIsPoison->getBitWidth() == 1 && "Must be boolean");
|
|
return Ops[0].ctlz(ZeroIsPoison->getBoolValue());
|
|
}
|
|
case Intrinsic::cttz: {
|
|
const APInt *ZeroIsPoison = Ops[1].getSingleElement();
|
|
assert(ZeroIsPoison && "Must be known (immarg)");
|
|
assert(ZeroIsPoison->getBitWidth() == 1 && "Must be boolean");
|
|
return Ops[0].cttz(ZeroIsPoison->getBoolValue());
|
|
}
|
|
case Intrinsic::ctpop:
|
|
return Ops[0].ctpop();
|
|
default:
|
|
assert(!isIntrinsicSupported(IntrinsicID) && "Shouldn't be supported");
|
|
llvm_unreachable("Unsupported intrinsic");
|
|
}
|
|
}
|
|
|
|
ConstantRange
|
|
ConstantRange::add(const ConstantRange &Other) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
if (isFullSet() || Other.isFullSet())
|
|
return getFull();
|
|
|
|
APInt NewLower = getLower() + Other.getLower();
|
|
APInt NewUpper = getUpper() + Other.getUpper() - 1;
|
|
if (NewLower == NewUpper)
|
|
return getFull();
|
|
|
|
ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
|
|
if (X.isSizeStrictlySmallerThan(*this) ||
|
|
X.isSizeStrictlySmallerThan(Other))
|
|
// We've wrapped, therefore, full set.
|
|
return getFull();
|
|
return X;
|
|
}
|
|
|
|
ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other,
|
|
unsigned NoWrapKind,
|
|
PreferredRangeType RangeType) const {
|
|
// Calculate the range for "X + Y" which is guaranteed not to wrap(overflow).
|
|
// (X is from this, and Y is from Other)
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
if (isFullSet() && Other.isFullSet())
|
|
return getFull();
|
|
|
|
using OBO = OverflowingBinaryOperator;
|
|
ConstantRange Result = add(Other);
|
|
|
|
// If an overflow happens for every value pair in these two constant ranges,
|
|
// we must return Empty set. In this case, we get that for free, because we
|
|
// get lucky that intersection of add() with uadd_sat()/sadd_sat() results
|
|
// in an empty set.
|
|
|
|
if (NoWrapKind & OBO::NoSignedWrap)
|
|
Result = Result.intersectWith(sadd_sat(Other), RangeType);
|
|
|
|
if (NoWrapKind & OBO::NoUnsignedWrap)
|
|
Result = Result.intersectWith(uadd_sat(Other), RangeType);
|
|
|
|
return Result;
|
|
}
|
|
|
|
ConstantRange
|
|
ConstantRange::sub(const ConstantRange &Other) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
if (isFullSet() || Other.isFullSet())
|
|
return getFull();
|
|
|
|
APInt NewLower = getLower() - Other.getUpper() + 1;
|
|
APInt NewUpper = getUpper() - Other.getLower();
|
|
if (NewLower == NewUpper)
|
|
return getFull();
|
|
|
|
ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
|
|
if (X.isSizeStrictlySmallerThan(*this) ||
|
|
X.isSizeStrictlySmallerThan(Other))
|
|
// We've wrapped, therefore, full set.
|
|
return getFull();
|
|
return X;
|
|
}
|
|
|
|
ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other,
|
|
unsigned NoWrapKind,
|
|
PreferredRangeType RangeType) const {
|
|
// Calculate the range for "X - Y" which is guaranteed not to wrap(overflow).
|
|
// (X is from this, and Y is from Other)
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
if (isFullSet() && Other.isFullSet())
|
|
return getFull();
|
|
|
|
using OBO = OverflowingBinaryOperator;
|
|
ConstantRange Result = sub(Other);
|
|
|
|
// If an overflow happens for every value pair in these two constant ranges,
|
|
// we must return Empty set. In signed case, we get that for free, because we
|
|
// get lucky that intersection of sub() with ssub_sat() results in an
|
|
// empty set. But for unsigned we must perform the overflow check manually.
|
|
|
|
if (NoWrapKind & OBO::NoSignedWrap)
|
|
Result = Result.intersectWith(ssub_sat(Other), RangeType);
|
|
|
|
if (NoWrapKind & OBO::NoUnsignedWrap) {
|
|
if (getUnsignedMax().ult(Other.getUnsignedMin()))
|
|
return getEmpty(); // Always overflows.
|
|
Result = Result.intersectWith(usub_sat(Other), RangeType);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
ConstantRange
|
|
ConstantRange::multiply(const ConstantRange &Other) const {
|
|
// TODO: If either operand is a single element and the multiply is known to
|
|
// be non-wrapping, round the result min and max value to the appropriate
|
|
// multiple of that element. If wrapping is possible, at least adjust the
|
|
// range according to the greatest power-of-two factor of the single element.
|
|
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
|
|
if (const APInt *C = getSingleElement()) {
|
|
if (C->isOne())
|
|
return Other;
|
|
if (C->isAllOnes())
|
|
return ConstantRange(APInt::getZero(getBitWidth())).sub(Other);
|
|
}
|
|
|
|
if (const APInt *C = Other.getSingleElement()) {
|
|
if (C->isOne())
|
|
return *this;
|
|
if (C->isAllOnes())
|
|
return ConstantRange(APInt::getZero(getBitWidth())).sub(*this);
|
|
}
|
|
|
|
// Multiplication is signedness-independent. However different ranges can be
|
|
// obtained depending on how the input ranges are treated. These different
|
|
// ranges are all conservatively correct, but one might be better than the
|
|
// other. We calculate two ranges; one treating the inputs as unsigned
|
|
// and the other signed, then return the smallest of these ranges.
|
|
|
|
// Unsigned range first.
|
|
APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
|
|
APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
|
|
APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
|
|
APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
|
|
|
|
ConstantRange Result_zext = ConstantRange(this_min * Other_min,
|
|
this_max * Other_max + 1);
|
|
ConstantRange UR = Result_zext.truncate(getBitWidth());
|
|
|
|
// If the unsigned range doesn't wrap, and isn't negative then it's a range
|
|
// from one positive number to another which is as good as we can generate.
|
|
// In this case, skip the extra work of generating signed ranges which aren't
|
|
// going to be better than this range.
|
|
if (!UR.isUpperWrapped() &&
|
|
(UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
|
|
return UR;
|
|
|
|
// Now the signed range. Because we could be dealing with negative numbers
|
|
// here, the lower bound is the smallest of the cartesian product of the
|
|
// lower and upper ranges; for example:
|
|
// [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
|
|
// Similarly for the upper bound, swapping min for max.
|
|
|
|
this_min = getSignedMin().sext(getBitWidth() * 2);
|
|
this_max = getSignedMax().sext(getBitWidth() * 2);
|
|
Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
|
|
Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
|
|
|
|
auto L = {this_min * Other_min, this_min * Other_max,
|
|
this_max * Other_min, this_max * Other_max};
|
|
auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
|
|
ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
|
|
ConstantRange SR = Result_sext.truncate(getBitWidth());
|
|
|
|
return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
|
|
}
|
|
|
|
ConstantRange
|
|
ConstantRange::multiplyWithNoWrap(const ConstantRange &Other,
|
|
unsigned NoWrapKind,
|
|
PreferredRangeType RangeType) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
if (isFullSet() && Other.isFullSet())
|
|
return getFull();
|
|
|
|
ConstantRange Result = multiply(Other);
|
|
|
|
if (NoWrapKind & OverflowingBinaryOperator::NoSignedWrap)
|
|
Result = Result.intersectWith(smul_sat(Other), RangeType);
|
|
|
|
if (NoWrapKind & OverflowingBinaryOperator::NoUnsignedWrap)
|
|
Result = Result.intersectWith(umul_sat(Other), RangeType);
|
|
|
|
// mul nsw nuw X, Y s>= 0 if X s> 1 or Y s> 1
|
|
if ((NoWrapKind == (OverflowingBinaryOperator::NoSignedWrap |
|
|
OverflowingBinaryOperator::NoUnsignedWrap)) &&
|
|
!Result.isAllNonNegative()) {
|
|
if (getSignedMin().sgt(1) || Other.getSignedMin().sgt(1))
|
|
Result = Result.intersectWith(
|
|
getNonEmpty(APInt::getZero(getBitWidth()),
|
|
APInt::getSignedMinValue(getBitWidth())),
|
|
RangeType);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
ConstantRange ConstantRange::smul_fast(const ConstantRange &Other) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
|
|
APInt Min = getSignedMin();
|
|
APInt Max = getSignedMax();
|
|
APInt OtherMin = Other.getSignedMin();
|
|
APInt OtherMax = Other.getSignedMax();
|
|
|
|
bool O1, O2, O3, O4;
|
|
auto Muls = {Min.smul_ov(OtherMin, O1), Min.smul_ov(OtherMax, O2),
|
|
Max.smul_ov(OtherMin, O3), Max.smul_ov(OtherMax, O4)};
|
|
if (O1 || O2 || O3 || O4)
|
|
return getFull();
|
|
|
|
auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
|
|
return getNonEmpty(std::min(Muls, Compare), std::max(Muls, Compare) + 1);
|
|
}
|
|
|
|
ConstantRange
|
|
ConstantRange::smax(const ConstantRange &Other) const {
|
|
// X smax Y is: range(smax(X_smin, Y_smin),
|
|
// smax(X_smax, Y_smax))
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
|
|
APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
|
|
ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
|
|
if (isSignWrappedSet() || Other.isSignWrappedSet())
|
|
return Res.intersectWith(unionWith(Other, Signed), Signed);
|
|
return Res;
|
|
}
|
|
|
|
ConstantRange
|
|
ConstantRange::umax(const ConstantRange &Other) const {
|
|
// X umax Y is: range(umax(X_umin, Y_umin),
|
|
// umax(X_umax, Y_umax))
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
|
|
APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
|
|
ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
|
|
if (isWrappedSet() || Other.isWrappedSet())
|
|
return Res.intersectWith(unionWith(Other, Unsigned), Unsigned);
|
|
return Res;
|
|
}
|
|
|
|
ConstantRange
|
|
ConstantRange::smin(const ConstantRange &Other) const {
|
|
// X smin Y is: range(smin(X_smin, Y_smin),
|
|
// smin(X_smax, Y_smax))
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
|
|
APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
|
|
ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
|
|
if (isSignWrappedSet() || Other.isSignWrappedSet())
|
|
return Res.intersectWith(unionWith(Other, Signed), Signed);
|
|
return Res;
|
|
}
|
|
|
|
ConstantRange
|
|
ConstantRange::umin(const ConstantRange &Other) const {
|
|
// X umin Y is: range(umin(X_umin, Y_umin),
|
|
// umin(X_umax, Y_umax))
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
|
|
APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
|
|
ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
|
|
if (isWrappedSet() || Other.isWrappedSet())
|
|
return Res.intersectWith(unionWith(Other, Unsigned), Unsigned);
|
|
return Res;
|
|
}
|
|
|
|
ConstantRange
|
|
ConstantRange::udiv(const ConstantRange &RHS) const {
|
|
if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero())
|
|
return getEmpty();
|
|
|
|
APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
|
|
|
|
APInt RHS_umin = RHS.getUnsignedMin();
|
|
if (RHS_umin.isZero()) {
|
|
// We want the lowest value in RHS excluding zero. Usually that would be 1
|
|
// except for a range in the form of [X, 1) in which case it would be X.
|
|
if (RHS.getUpper() == 1)
|
|
RHS_umin = RHS.getLower();
|
|
else
|
|
RHS_umin = 1;
|
|
}
|
|
|
|
APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
|
|
return getNonEmpty(std::move(Lower), std::move(Upper));
|
|
}
|
|
|
|
ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const {
|
|
APInt Zero = APInt::getZero(getBitWidth());
|
|
APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
|
|
|
|
// We split up the LHS and RHS into positive and negative components
|
|
// and then also compute the positive and negative components of the result
|
|
// separately by combining division results with the appropriate signs.
|
|
auto [PosL, NegL] = splitPosNeg();
|
|
auto [PosR, NegR] = RHS.splitPosNeg();
|
|
|
|
ConstantRange PosRes = getEmpty();
|
|
if (!PosL.isEmptySet() && !PosR.isEmptySet())
|
|
// pos / pos = pos.
|
|
PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1),
|
|
(PosL.Upper - 1).sdiv(PosR.Lower) + 1);
|
|
|
|
if (!NegL.isEmptySet() && !NegR.isEmptySet()) {
|
|
// neg / neg = pos.
|
|
//
|
|
// We need to deal with one tricky case here: SignedMin / -1 is UB on the
|
|
// IR level, so we'll want to exclude this case when calculating bounds.
|
|
// (For APInts the operation is well-defined and yields SignedMin.) We
|
|
// handle this by dropping either SignedMin from the LHS or -1 from the RHS.
|
|
APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower);
|
|
if (NegL.Lower.isMinSignedValue() && NegR.Upper.isZero()) {
|
|
// Remove -1 from the LHS. Skip if it's the only element, as this would
|
|
// leave us with an empty set.
|
|
if (!NegR.Lower.isAllOnes()) {
|
|
APInt AdjNegRUpper;
|
|
if (RHS.Lower.isAllOnes())
|
|
// Negative part of [-1, X] without -1 is [SignedMin, X].
|
|
AdjNegRUpper = RHS.Upper;
|
|
else
|
|
// [X, -1] without -1 is [X, -2].
|
|
AdjNegRUpper = NegR.Upper - 1;
|
|
|
|
PosRes = PosRes.unionWith(
|
|
ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1));
|
|
}
|
|
|
|
// Remove SignedMin from the RHS. Skip if it's the only element, as this
|
|
// would leave us with an empty set.
|
|
if (NegL.Upper != SignedMin + 1) {
|
|
APInt AdjNegLLower;
|
|
if (Upper == SignedMin + 1)
|
|
// Negative part of [X, SignedMin] without SignedMin is [X, -1].
|
|
AdjNegLLower = Lower;
|
|
else
|
|
// [SignedMin, X] without SignedMin is [SignedMin + 1, X].
|
|
AdjNegLLower = NegL.Lower + 1;
|
|
|
|
PosRes = PosRes.unionWith(
|
|
ConstantRange(std::move(Lo),
|
|
AdjNegLLower.sdiv(NegR.Upper - 1) + 1));
|
|
}
|
|
} else {
|
|
PosRes = PosRes.unionWith(
|
|
ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1));
|
|
}
|
|
}
|
|
|
|
ConstantRange NegRes = getEmpty();
|
|
if (!PosL.isEmptySet() && !NegR.isEmptySet())
|
|
// pos / neg = neg.
|
|
NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1),
|
|
PosL.Lower.sdiv(NegR.Lower) + 1);
|
|
|
|
if (!NegL.isEmptySet() && !PosR.isEmptySet())
|
|
// neg / pos = neg.
|
|
NegRes = NegRes.unionWith(
|
|
ConstantRange(NegL.Lower.sdiv(PosR.Lower),
|
|
(NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1));
|
|
|
|
// Prefer a non-wrapping signed range here.
|
|
ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed);
|
|
|
|
// Preserve the zero that we dropped when splitting the LHS by sign.
|
|
if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet()))
|
|
Res = Res.unionWith(ConstantRange(Zero));
|
|
return Res;
|
|
}
|
|
|
|
ConstantRange ConstantRange::urem(const ConstantRange &RHS) const {
|
|
if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero())
|
|
return getEmpty();
|
|
|
|
if (const APInt *RHSInt = RHS.getSingleElement()) {
|
|
// UREM by null is UB.
|
|
if (RHSInt->isZero())
|
|
return getEmpty();
|
|
// Use APInt's implementation of UREM for single element ranges.
|
|
if (const APInt *LHSInt = getSingleElement())
|
|
return {LHSInt->urem(*RHSInt)};
|
|
}
|
|
|
|
// L % R for L < R is L.
|
|
if (getUnsignedMax().ult(RHS.getUnsignedMin()))
|
|
return *this;
|
|
|
|
// L % R is <= L and < R.
|
|
APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1;
|
|
return getNonEmpty(APInt::getZero(getBitWidth()), std::move(Upper));
|
|
}
|
|
|
|
ConstantRange ConstantRange::srem(const ConstantRange &RHS) const {
|
|
if (isEmptySet() || RHS.isEmptySet())
|
|
return getEmpty();
|
|
|
|
if (const APInt *RHSInt = RHS.getSingleElement()) {
|
|
// SREM by null is UB.
|
|
if (RHSInt->isZero())
|
|
return getEmpty();
|
|
// Use APInt's implementation of SREM for single element ranges.
|
|
if (const APInt *LHSInt = getSingleElement())
|
|
return {LHSInt->srem(*RHSInt)};
|
|
}
|
|
|
|
ConstantRange AbsRHS = RHS.abs();
|
|
APInt MinAbsRHS = AbsRHS.getUnsignedMin();
|
|
APInt MaxAbsRHS = AbsRHS.getUnsignedMax();
|
|
|
|
// Modulus by zero is UB.
|
|
if (MaxAbsRHS.isZero())
|
|
return getEmpty();
|
|
|
|
if (MinAbsRHS.isZero())
|
|
++MinAbsRHS;
|
|
|
|
APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax();
|
|
|
|
if (MinLHS.isNonNegative()) {
|
|
// L % R for L < R is L.
|
|
if (MaxLHS.ult(MinAbsRHS))
|
|
return *this;
|
|
|
|
// L % R is <= L and < R.
|
|
APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
|
|
return ConstantRange(APInt::getZero(getBitWidth()), std::move(Upper));
|
|
}
|
|
|
|
// Same basic logic as above, but the result is negative.
|
|
if (MaxLHS.isNegative()) {
|
|
if (MinLHS.ugt(-MinAbsRHS))
|
|
return *this;
|
|
|
|
APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
|
|
return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1));
|
|
}
|
|
|
|
// LHS range crosses zero.
|
|
APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
|
|
APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
|
|
return ConstantRange(std::move(Lower), std::move(Upper));
|
|
}
|
|
|
|
ConstantRange ConstantRange::binaryNot() const {
|
|
return ConstantRange(APInt::getAllOnes(getBitWidth())).sub(*this);
|
|
}
|
|
|
|
/// Estimate the 'bit-masked AND' operation's lower bound.
|
|
///
|
|
/// E.g., given two ranges as follows (single quotes are separators and
|
|
/// have no meaning here),
|
|
///
|
|
/// LHS = [10'00101'1, ; LLo
|
|
/// 10'10000'0] ; LHi
|
|
/// RHS = [10'11111'0, ; RLo
|
|
/// 10'11111'1] ; RHi
|
|
///
|
|
/// we know that the higher 2 bits of the result is always 10; and we also
|
|
/// notice that RHS[1:6] are always 1, so the result[1:6] cannot be less than
|
|
/// LHS[1:6] (i.e., 00101). Thus, the lower bound is 10'00101'0.
|
|
///
|
|
/// The algorithm is as follows,
|
|
/// 1. we first calculate a mask to find the higher common bits by
|
|
/// Mask = ~((LLo ^ LHi) | (RLo ^ RHi) | (LLo ^ RLo));
|
|
/// Mask = clear all non-leading-ones bits in Mask;
|
|
/// in the example, the Mask is set to 11'00000'0;
|
|
/// 2. calculate a new mask by setting all common leading bits to 1 in RHS, and
|
|
/// keeping the longest leading ones (i.e., 11'11111'0 in the example);
|
|
/// 3. return (LLo & new mask) as the lower bound;
|
|
/// 4. repeat the step 2 and 3 with LHS and RHS swapped, and update the lower
|
|
/// bound with the larger one.
|
|
static APInt estimateBitMaskedAndLowerBound(const ConstantRange &LHS,
|
|
const ConstantRange &RHS) {
|
|
auto BitWidth = LHS.getBitWidth();
|
|
// If either is full set or unsigned wrapped, then the range must contain '0'
|
|
// which leads the lower bound to 0.
|
|
if ((LHS.isFullSet() || RHS.isFullSet()) ||
|
|
(LHS.isWrappedSet() || RHS.isWrappedSet()))
|
|
return APInt::getZero(BitWidth);
|
|
|
|
auto LLo = LHS.getLower();
|
|
auto LHi = LHS.getUpper() - 1;
|
|
auto RLo = RHS.getLower();
|
|
auto RHi = RHS.getUpper() - 1;
|
|
|
|
// Calculate the mask for the higher common bits.
|
|
auto Mask = ~((LLo ^ LHi) | (RLo ^ RHi) | (LLo ^ RLo));
|
|
unsigned LeadingOnes = Mask.countLeadingOnes();
|
|
Mask.clearLowBits(BitWidth - LeadingOnes);
|
|
|
|
auto estimateBound = [BitWidth, &Mask](APInt ALo, const APInt &BLo,
|
|
const APInt &BHi) {
|
|
unsigned LeadingOnes = ((BLo & BHi) | Mask).countLeadingOnes();
|
|
unsigned StartBit = BitWidth - LeadingOnes;
|
|
ALo.clearLowBits(StartBit);
|
|
return ALo;
|
|
};
|
|
|
|
auto LowerBoundByLHS = estimateBound(LLo, RLo, RHi);
|
|
auto LowerBoundByRHS = estimateBound(RLo, LLo, LHi);
|
|
|
|
return APIntOps::umax(LowerBoundByLHS, LowerBoundByRHS);
|
|
}
|
|
|
|
ConstantRange ConstantRange::binaryAnd(const ConstantRange &Other) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
|
|
ConstantRange KnownBitsRange =
|
|
fromKnownBits(toKnownBits() & Other.toKnownBits(), false);
|
|
auto LowerBound = estimateBitMaskedAndLowerBound(*this, Other);
|
|
ConstantRange UMinUMaxRange = getNonEmpty(
|
|
LowerBound, APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax()) + 1);
|
|
return KnownBitsRange.intersectWith(UMinUMaxRange);
|
|
}
|
|
|
|
ConstantRange ConstantRange::binaryOr(const ConstantRange &Other) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
|
|
ConstantRange KnownBitsRange =
|
|
fromKnownBits(toKnownBits() | Other.toKnownBits(), false);
|
|
|
|
// ~a & ~b >= x
|
|
// <=> ~(~a & ~b) <= ~x
|
|
// <=> a | b <= ~x
|
|
// <=> a | b < ~x + 1 = -x
|
|
// thus, UpperBound(a | b) == -LowerBound(~a & ~b)
|
|
auto UpperBound =
|
|
-estimateBitMaskedAndLowerBound(binaryNot(), Other.binaryNot());
|
|
// Upper wrapped range.
|
|
ConstantRange UMaxUMinRange = getNonEmpty(
|
|
APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()), UpperBound);
|
|
return KnownBitsRange.intersectWith(UMaxUMinRange);
|
|
}
|
|
|
|
ConstantRange ConstantRange::binaryXor(const ConstantRange &Other) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
|
|
// Use APInt's implementation of XOR for single element ranges.
|
|
if (isSingleElement() && Other.isSingleElement())
|
|
return {*getSingleElement() ^ *Other.getSingleElement()};
|
|
|
|
// Special-case binary complement, since we can give a precise answer.
|
|
if (Other.isSingleElement() && Other.getSingleElement()->isAllOnes())
|
|
return binaryNot();
|
|
if (isSingleElement() && getSingleElement()->isAllOnes())
|
|
return Other.binaryNot();
|
|
|
|
KnownBits LHSKnown = toKnownBits();
|
|
KnownBits RHSKnown = Other.toKnownBits();
|
|
KnownBits Known = LHSKnown ^ RHSKnown;
|
|
ConstantRange CR = fromKnownBits(Known, /*IsSigned*/ false);
|
|
// Typically the following code doesn't improve the result if BW = 1.
|
|
if (getBitWidth() == 1)
|
|
return CR;
|
|
|
|
// If LHS is known to be the subset of RHS, treat LHS ^ RHS as RHS -nuw/nsw
|
|
// LHS. If RHS is known to be the subset of LHS, treat LHS ^ RHS as LHS
|
|
// -nuw/nsw RHS.
|
|
if ((~LHSKnown.Zero).isSubsetOf(RHSKnown.One))
|
|
CR = CR.intersectWith(Other.sub(*this), PreferredRangeType::Unsigned);
|
|
else if ((~RHSKnown.Zero).isSubsetOf(LHSKnown.One))
|
|
CR = CR.intersectWith(this->sub(Other), PreferredRangeType::Unsigned);
|
|
return CR;
|
|
}
|
|
|
|
ConstantRange
|
|
ConstantRange::shl(const ConstantRange &Other) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
|
|
APInt Min = getUnsignedMin();
|
|
APInt Max = getUnsignedMax();
|
|
if (const APInt *RHS = Other.getSingleElement()) {
|
|
unsigned BW = getBitWidth();
|
|
if (RHS->uge(BW))
|
|
return getEmpty();
|
|
|
|
unsigned EqualLeadingBits = (Min ^ Max).countl_zero();
|
|
if (RHS->ule(EqualLeadingBits))
|
|
return getNonEmpty(Min << *RHS, (Max << *RHS) + 1);
|
|
|
|
return getNonEmpty(APInt::getZero(BW),
|
|
APInt::getBitsSetFrom(BW, RHS->getZExtValue()) + 1);
|
|
}
|
|
|
|
APInt OtherMax = Other.getUnsignedMax();
|
|
if (isAllNegative() && OtherMax.ule(Min.countl_one())) {
|
|
// For negative numbers, if the shift does not overflow in a signed sense,
|
|
// a larger shift will make the number smaller.
|
|
Max <<= Other.getUnsignedMin();
|
|
Min <<= OtherMax;
|
|
return ConstantRange::getNonEmpty(std::move(Min), std::move(Max) + 1);
|
|
}
|
|
|
|
// There's overflow!
|
|
if (OtherMax.ugt(Max.countl_zero()))
|
|
return getFull();
|
|
|
|
// FIXME: implement the other tricky cases
|
|
|
|
Min <<= Other.getUnsignedMin();
|
|
Max <<= OtherMax;
|
|
|
|
return ConstantRange::getNonEmpty(std::move(Min), std::move(Max) + 1);
|
|
}
|
|
|
|
static ConstantRange computeShlNUW(const ConstantRange &LHS,
|
|
const ConstantRange &RHS) {
|
|
unsigned BitWidth = LHS.getBitWidth();
|
|
bool Overflow;
|
|
APInt LHSMin = LHS.getUnsignedMin();
|
|
unsigned RHSMin = RHS.getUnsignedMin().getLimitedValue(BitWidth);
|
|
APInt MinShl = LHSMin.ushl_ov(RHSMin, Overflow);
|
|
if (Overflow)
|
|
return ConstantRange::getEmpty(BitWidth);
|
|
APInt LHSMax = LHS.getUnsignedMax();
|
|
unsigned RHSMax = RHS.getUnsignedMax().getLimitedValue(BitWidth);
|
|
APInt MaxShl = MinShl;
|
|
unsigned MaxShAmt = LHSMax.countLeadingZeros();
|
|
if (RHSMin <= MaxShAmt)
|
|
MaxShl = LHSMax << std::min(RHSMax, MaxShAmt);
|
|
RHSMin = std::max(RHSMin, MaxShAmt + 1);
|
|
RHSMax = std::min(RHSMax, LHSMin.countLeadingZeros());
|
|
if (RHSMin <= RHSMax)
|
|
MaxShl = APIntOps::umax(MaxShl,
|
|
APInt::getHighBitsSet(BitWidth, BitWidth - RHSMin));
|
|
return ConstantRange::getNonEmpty(MinShl, MaxShl + 1);
|
|
}
|
|
|
|
static ConstantRange computeShlNSWWithNNegLHS(const APInt &LHSMin,
|
|
const APInt &LHSMax,
|
|
unsigned RHSMin,
|
|
unsigned RHSMax) {
|
|
unsigned BitWidth = LHSMin.getBitWidth();
|
|
bool Overflow;
|
|
APInt MinShl = LHSMin.sshl_ov(RHSMin, Overflow);
|
|
if (Overflow)
|
|
return ConstantRange::getEmpty(BitWidth);
|
|
APInt MaxShl = MinShl;
|
|
unsigned MaxShAmt = LHSMax.countLeadingZeros() - 1;
|
|
if (RHSMin <= MaxShAmt)
|
|
MaxShl = LHSMax << std::min(RHSMax, MaxShAmt);
|
|
RHSMin = std::max(RHSMin, MaxShAmt + 1);
|
|
RHSMax = std::min(RHSMax, LHSMin.countLeadingZeros() - 1);
|
|
if (RHSMin <= RHSMax)
|
|
MaxShl = APIntOps::umax(MaxShl,
|
|
APInt::getBitsSet(BitWidth, RHSMin, BitWidth - 1));
|
|
return ConstantRange::getNonEmpty(MinShl, MaxShl + 1);
|
|
}
|
|
|
|
static ConstantRange computeShlNSWWithNegLHS(const APInt &LHSMin,
|
|
const APInt &LHSMax,
|
|
unsigned RHSMin, unsigned RHSMax) {
|
|
unsigned BitWidth = LHSMin.getBitWidth();
|
|
bool Overflow;
|
|
APInt MaxShl = LHSMax.sshl_ov(RHSMin, Overflow);
|
|
if (Overflow)
|
|
return ConstantRange::getEmpty(BitWidth);
|
|
APInt MinShl = MaxShl;
|
|
unsigned MaxShAmt = LHSMin.countLeadingOnes() - 1;
|
|
if (RHSMin <= MaxShAmt)
|
|
MinShl = LHSMin.shl(std::min(RHSMax, MaxShAmt));
|
|
RHSMin = std::max(RHSMin, MaxShAmt + 1);
|
|
RHSMax = std::min(RHSMax, LHSMax.countLeadingOnes() - 1);
|
|
if (RHSMin <= RHSMax)
|
|
MinShl = APInt::getSignMask(BitWidth);
|
|
return ConstantRange::getNonEmpty(MinShl, MaxShl + 1);
|
|
}
|
|
|
|
static ConstantRange computeShlNSW(const ConstantRange &LHS,
|
|
const ConstantRange &RHS) {
|
|
unsigned BitWidth = LHS.getBitWidth();
|
|
unsigned RHSMin = RHS.getUnsignedMin().getLimitedValue(BitWidth);
|
|
unsigned RHSMax = RHS.getUnsignedMax().getLimitedValue(BitWidth);
|
|
APInt LHSMin = LHS.getSignedMin();
|
|
APInt LHSMax = LHS.getSignedMax();
|
|
if (LHSMin.isNonNegative())
|
|
return computeShlNSWWithNNegLHS(LHSMin, LHSMax, RHSMin, RHSMax);
|
|
else if (LHSMax.isNegative())
|
|
return computeShlNSWWithNegLHS(LHSMin, LHSMax, RHSMin, RHSMax);
|
|
return computeShlNSWWithNNegLHS(APInt::getZero(BitWidth), LHSMax, RHSMin,
|
|
RHSMax)
|
|
.unionWith(computeShlNSWWithNegLHS(LHSMin, APInt::getAllOnes(BitWidth),
|
|
RHSMin, RHSMax),
|
|
ConstantRange::Signed);
|
|
}
|
|
|
|
ConstantRange ConstantRange::shlWithNoWrap(const ConstantRange &Other,
|
|
unsigned NoWrapKind,
|
|
PreferredRangeType RangeType) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
|
|
switch (NoWrapKind) {
|
|
case 0:
|
|
return shl(Other);
|
|
case OverflowingBinaryOperator::NoSignedWrap:
|
|
return computeShlNSW(*this, Other);
|
|
case OverflowingBinaryOperator::NoUnsignedWrap:
|
|
return computeShlNUW(*this, Other);
|
|
case OverflowingBinaryOperator::NoSignedWrap |
|
|
OverflowingBinaryOperator::NoUnsignedWrap:
|
|
return computeShlNSW(*this, Other)
|
|
.intersectWith(computeShlNUW(*this, Other), RangeType);
|
|
default:
|
|
llvm_unreachable("Invalid NoWrapKind");
|
|
}
|
|
}
|
|
|
|
ConstantRange
|
|
ConstantRange::lshr(const ConstantRange &Other) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
|
|
APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
|
|
APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
|
|
return getNonEmpty(std::move(min), std::move(max));
|
|
}
|
|
|
|
ConstantRange
|
|
ConstantRange::ashr(const ConstantRange &Other) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
|
|
// May straddle zero, so handle both positive and negative cases.
|
|
// 'PosMax' is the upper bound of the result of the ashr
|
|
// operation, when Upper of the LHS of ashr is a non-negative.
|
|
// number. Since ashr of a non-negative number will result in a
|
|
// smaller number, the Upper value of LHS is shifted right with
|
|
// the minimum value of 'Other' instead of the maximum value.
|
|
APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;
|
|
|
|
// 'PosMin' is the lower bound of the result of the ashr
|
|
// operation, when Lower of the LHS is a non-negative number.
|
|
// Since ashr of a non-negative number will result in a smaller
|
|
// number, the Lower value of LHS is shifted right with the
|
|
// maximum value of 'Other'.
|
|
APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());
|
|
|
|
// 'NegMax' is the upper bound of the result of the ashr
|
|
// operation, when Upper of the LHS of ashr is a negative number.
|
|
// Since 'ashr' of a negative number will result in a bigger
|
|
// number, the Upper value of LHS is shifted right with the
|
|
// maximum value of 'Other'.
|
|
APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;
|
|
|
|
// 'NegMin' is the lower bound of the result of the ashr
|
|
// operation, when Lower of the LHS of ashr is a negative number.
|
|
// Since 'ashr' of a negative number will result in a bigger
|
|
// number, the Lower value of LHS is shifted right with the
|
|
// minimum value of 'Other'.
|
|
APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());
|
|
|
|
APInt max, min;
|
|
if (getSignedMin().isNonNegative()) {
|
|
// Upper and Lower of LHS are non-negative.
|
|
min = PosMin;
|
|
max = PosMax;
|
|
} else if (getSignedMax().isNegative()) {
|
|
// Upper and Lower of LHS are negative.
|
|
min = NegMin;
|
|
max = NegMax;
|
|
} else {
|
|
// Upper is non-negative and Lower is negative.
|
|
min = NegMin;
|
|
max = PosMax;
|
|
}
|
|
return getNonEmpty(std::move(min), std::move(max));
|
|
}
|
|
|
|
ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
|
|
APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin());
|
|
APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1;
|
|
return getNonEmpty(std::move(NewL), std::move(NewU));
|
|
}
|
|
|
|
ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
|
|
APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin());
|
|
APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1;
|
|
return getNonEmpty(std::move(NewL), std::move(NewU));
|
|
}
|
|
|
|
ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
|
|
APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax());
|
|
APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1;
|
|
return getNonEmpty(std::move(NewL), std::move(NewU));
|
|
}
|
|
|
|
ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
|
|
APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax());
|
|
APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1;
|
|
return getNonEmpty(std::move(NewL), std::move(NewU));
|
|
}
|
|
|
|
ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
|
|
APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin());
|
|
APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1;
|
|
return getNonEmpty(std::move(NewL), std::move(NewU));
|
|
}
|
|
|
|
ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
|
|
// Because we could be dealing with negative numbers here, the lower bound is
|
|
// the smallest of the cartesian product of the lower and upper ranges;
|
|
// for example:
|
|
// [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
|
|
// Similarly for the upper bound, swapping min for max.
|
|
|
|
APInt Min = getSignedMin();
|
|
APInt Max = getSignedMax();
|
|
APInt OtherMin = Other.getSignedMin();
|
|
APInt OtherMax = Other.getSignedMax();
|
|
|
|
auto L = {Min.smul_sat(OtherMin), Min.smul_sat(OtherMax),
|
|
Max.smul_sat(OtherMin), Max.smul_sat(OtherMax)};
|
|
auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
|
|
return getNonEmpty(std::min(L, Compare), std::max(L, Compare) + 1);
|
|
}
|
|
|
|
ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
|
|
APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin());
|
|
APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1;
|
|
return getNonEmpty(std::move(NewL), std::move(NewU));
|
|
}
|
|
|
|
ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return getEmpty();
|
|
|
|
APInt Min = getSignedMin(), Max = getSignedMax();
|
|
APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax();
|
|
APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax);
|
|
APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1;
|
|
return getNonEmpty(std::move(NewL), std::move(NewU));
|
|
}
|
|
|
|
ConstantRange ConstantRange::inverse() const {
|
|
if (isFullSet())
|
|
return getEmpty();
|
|
if (isEmptySet())
|
|
return getFull();
|
|
return ConstantRange(Upper, Lower);
|
|
}
|
|
|
|
ConstantRange ConstantRange::abs(bool IntMinIsPoison) const {
|
|
if (isEmptySet())
|
|
return getEmpty();
|
|
|
|
if (isSignWrappedSet()) {
|
|
APInt Lo;
|
|
// Check whether the range crosses zero.
|
|
if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive())
|
|
Lo = APInt::getZero(getBitWidth());
|
|
else
|
|
Lo = APIntOps::umin(Lower, -Upper + 1);
|
|
|
|
// If SignedMin is not poison, then it is included in the result range.
|
|
if (IntMinIsPoison)
|
|
return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()));
|
|
else
|
|
return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1);
|
|
}
|
|
|
|
APInt SMin = getSignedMin(), SMax = getSignedMax();
|
|
|
|
// Skip SignedMin if it is poison.
|
|
if (IntMinIsPoison && SMin.isMinSignedValue()) {
|
|
// The range may become empty if it *only* contains SignedMin.
|
|
if (SMax.isMinSignedValue())
|
|
return getEmpty();
|
|
++SMin;
|
|
}
|
|
|
|
// All non-negative.
|
|
if (SMin.isNonNegative())
|
|
return ConstantRange(SMin, SMax + 1);
|
|
|
|
// All negative.
|
|
if (SMax.isNegative())
|
|
return ConstantRange(-SMax, -SMin + 1);
|
|
|
|
// Range crosses zero.
|
|
return ConstantRange::getNonEmpty(APInt::getZero(getBitWidth()),
|
|
APIntOps::umax(-SMin, SMax) + 1);
|
|
}
|
|
|
|
ConstantRange ConstantRange::ctlz(bool ZeroIsPoison) const {
|
|
if (isEmptySet())
|
|
return getEmpty();
|
|
|
|
APInt Zero = APInt::getZero(getBitWidth());
|
|
if (ZeroIsPoison && contains(Zero)) {
|
|
// ZeroIsPoison is set, and zero is contained. We discern three cases, in
|
|
// which a zero can appear:
|
|
// 1) Lower is zero, handling cases of kind [0, 1), [0, 2), etc.
|
|
// 2) Upper is zero, wrapped set, handling cases of kind [3, 0], etc.
|
|
// 3) Zero contained in a wrapped set, e.g., [3, 2), [3, 1), etc.
|
|
|
|
if (getLower().isZero()) {
|
|
if ((getUpper() - 1).isZero()) {
|
|
// We have in input interval of kind [0, 1). In this case we cannot
|
|
// really help but return empty-set.
|
|
return getEmpty();
|
|
}
|
|
|
|
// Compute the resulting range by excluding zero from Lower.
|
|
return ConstantRange(
|
|
APInt(getBitWidth(), (getUpper() - 1).countl_zero()),
|
|
APInt(getBitWidth(), (getLower() + 1).countl_zero() + 1));
|
|
} else if ((getUpper() - 1).isZero()) {
|
|
// Compute the resulting range by excluding zero from Upper.
|
|
return ConstantRange(Zero,
|
|
APInt(getBitWidth(), getLower().countl_zero() + 1));
|
|
} else {
|
|
return ConstantRange(Zero, APInt(getBitWidth(), getBitWidth()));
|
|
}
|
|
}
|
|
|
|
// Zero is either safe or not in the range. The output range is composed by
|
|
// the result of countLeadingZero of the two extremes.
|
|
return getNonEmpty(APInt(getBitWidth(), getUnsignedMax().countl_zero()),
|
|
APInt(getBitWidth(), getUnsignedMin().countl_zero()) + 1);
|
|
}
|
|
|
|
static ConstantRange getUnsignedCountTrailingZerosRange(const APInt &Lower,
|
|
const APInt &Upper) {
|
|
assert(!ConstantRange(Lower, Upper).isWrappedSet() &&
|
|
"Unexpected wrapped set.");
|
|
assert(Lower != Upper && "Unexpected empty set.");
|
|
unsigned BitWidth = Lower.getBitWidth();
|
|
if (Lower + 1 == Upper)
|
|
return ConstantRange(APInt(BitWidth, Lower.countr_zero()));
|
|
if (Lower.isZero())
|
|
return ConstantRange(APInt::getZero(BitWidth),
|
|
APInt(BitWidth, BitWidth + 1));
|
|
|
|
// Calculate longest common prefix.
|
|
unsigned LCPLength = (Lower ^ (Upper - 1)).countl_zero();
|
|
// If Lower is {LCP, 000...}, the maximum is Lower.countr_zero().
|
|
// Otherwise, the maximum is BitWidth - LCPLength - 1 ({LCP, 100...}).
|
|
return ConstantRange(
|
|
APInt::getZero(BitWidth),
|
|
APInt(BitWidth,
|
|
std::max(BitWidth - LCPLength - 1, Lower.countr_zero()) + 1));
|
|
}
|
|
|
|
ConstantRange ConstantRange::cttz(bool ZeroIsPoison) const {
|
|
if (isEmptySet())
|
|
return getEmpty();
|
|
|
|
unsigned BitWidth = getBitWidth();
|
|
APInt Zero = APInt::getZero(BitWidth);
|
|
if (ZeroIsPoison && contains(Zero)) {
|
|
// ZeroIsPoison is set, and zero is contained. We discern three cases, in
|
|
// which a zero can appear:
|
|
// 1) Lower is zero, handling cases of kind [0, 1), [0, 2), etc.
|
|
// 2) Upper is zero, wrapped set, handling cases of kind [3, 0], etc.
|
|
// 3) Zero contained in a wrapped set, e.g., [3, 2), [3, 1), etc.
|
|
|
|
if (Lower.isZero()) {
|
|
if (Upper == 1) {
|
|
// We have in input interval of kind [0, 1). In this case we cannot
|
|
// really help but return empty-set.
|
|
return getEmpty();
|
|
}
|
|
|
|
// Compute the resulting range by excluding zero from Lower.
|
|
return getUnsignedCountTrailingZerosRange(APInt(BitWidth, 1), Upper);
|
|
} else if (Upper == 1) {
|
|
// Compute the resulting range by excluding zero from Upper.
|
|
return getUnsignedCountTrailingZerosRange(Lower, Zero);
|
|
} else {
|
|
ConstantRange CR1 = getUnsignedCountTrailingZerosRange(Lower, Zero);
|
|
ConstantRange CR2 =
|
|
getUnsignedCountTrailingZerosRange(APInt(BitWidth, 1), Upper);
|
|
return CR1.unionWith(CR2);
|
|
}
|
|
}
|
|
|
|
if (isFullSet())
|
|
return getNonEmpty(Zero, APInt(BitWidth, BitWidth) + 1);
|
|
if (!isWrappedSet())
|
|
return getUnsignedCountTrailingZerosRange(Lower, Upper);
|
|
// The range is wrapped. We decompose it into two ranges, [0, Upper) and
|
|
// [Lower, 0).
|
|
// Handle [Lower, 0)
|
|
ConstantRange CR1 = getUnsignedCountTrailingZerosRange(Lower, Zero);
|
|
// Handle [0, Upper)
|
|
ConstantRange CR2 = getUnsignedCountTrailingZerosRange(Zero, Upper);
|
|
return CR1.unionWith(CR2);
|
|
}
|
|
|
|
static ConstantRange getUnsignedPopCountRange(const APInt &Lower,
|
|
const APInt &Upper) {
|
|
assert(!ConstantRange(Lower, Upper).isWrappedSet() &&
|
|
"Unexpected wrapped set.");
|
|
assert(Lower != Upper && "Unexpected empty set.");
|
|
unsigned BitWidth = Lower.getBitWidth();
|
|
if (Lower + 1 == Upper)
|
|
return ConstantRange(APInt(BitWidth, Lower.popcount()));
|
|
|
|
APInt Max = Upper - 1;
|
|
// Calculate longest common prefix.
|
|
unsigned LCPLength = (Lower ^ Max).countl_zero();
|
|
unsigned LCPPopCount = Lower.getHiBits(LCPLength).popcount();
|
|
// If Lower is {LCP, 000...}, the minimum is the popcount of LCP.
|
|
// Otherwise, the minimum is the popcount of LCP + 1.
|
|
unsigned MinBits =
|
|
LCPPopCount + (Lower.countr_zero() < BitWidth - LCPLength ? 1 : 0);
|
|
// If Max is {LCP, 111...}, the maximum is the popcount of LCP + (BitWidth -
|
|
// length of LCP).
|
|
// Otherwise, the minimum is the popcount of LCP + (BitWidth -
|
|
// length of LCP - 1).
|
|
unsigned MaxBits = LCPPopCount + (BitWidth - LCPLength) -
|
|
(Max.countr_one() < BitWidth - LCPLength ? 1 : 0);
|
|
return ConstantRange(APInt(BitWidth, MinBits), APInt(BitWidth, MaxBits + 1));
|
|
}
|
|
|
|
ConstantRange ConstantRange::ctpop() const {
|
|
if (isEmptySet())
|
|
return getEmpty();
|
|
|
|
unsigned BitWidth = getBitWidth();
|
|
APInt Zero = APInt::getZero(BitWidth);
|
|
if (isFullSet())
|
|
return getNonEmpty(Zero, APInt(BitWidth, BitWidth) + 1);
|
|
if (!isWrappedSet())
|
|
return getUnsignedPopCountRange(Lower, Upper);
|
|
// The range is wrapped. We decompose it into two ranges, [0, Upper) and
|
|
// [Lower, 0).
|
|
// Handle [Lower, 0) == [Lower, Max]
|
|
ConstantRange CR1 = ConstantRange(APInt(BitWidth, Lower.countl_one()),
|
|
APInt(BitWidth, BitWidth + 1));
|
|
// Handle [0, Upper)
|
|
ConstantRange CR2 = getUnsignedPopCountRange(Zero, Upper);
|
|
return CR1.unionWith(CR2);
|
|
}
|
|
|
|
ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow(
|
|
const ConstantRange &Other) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return OverflowResult::MayOverflow;
|
|
|
|
APInt Min = getUnsignedMin(), Max = getUnsignedMax();
|
|
APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
|
|
|
|
// a u+ b overflows high iff a u> ~b.
|
|
if (Min.ugt(~OtherMin))
|
|
return OverflowResult::AlwaysOverflowsHigh;
|
|
if (Max.ugt(~OtherMax))
|
|
return OverflowResult::MayOverflow;
|
|
return OverflowResult::NeverOverflows;
|
|
}
|
|
|
|
ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow(
|
|
const ConstantRange &Other) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return OverflowResult::MayOverflow;
|
|
|
|
APInt Min = getSignedMin(), Max = getSignedMax();
|
|
APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
|
|
|
|
APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
|
|
APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
|
|
|
|
// a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
|
|
// a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
|
|
if (Min.isNonNegative() && OtherMin.isNonNegative() &&
|
|
Min.sgt(SignedMax - OtherMin))
|
|
return OverflowResult::AlwaysOverflowsHigh;
|
|
if (Max.isNegative() && OtherMax.isNegative() &&
|
|
Max.slt(SignedMin - OtherMax))
|
|
return OverflowResult::AlwaysOverflowsLow;
|
|
|
|
if (Max.isNonNegative() && OtherMax.isNonNegative() &&
|
|
Max.sgt(SignedMax - OtherMax))
|
|
return OverflowResult::MayOverflow;
|
|
if (Min.isNegative() && OtherMin.isNegative() &&
|
|
Min.slt(SignedMin - OtherMin))
|
|
return OverflowResult::MayOverflow;
|
|
|
|
return OverflowResult::NeverOverflows;
|
|
}
|
|
|
|
ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow(
|
|
const ConstantRange &Other) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return OverflowResult::MayOverflow;
|
|
|
|
APInt Min = getUnsignedMin(), Max = getUnsignedMax();
|
|
APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
|
|
|
|
// a u- b overflows low iff a u< b.
|
|
if (Max.ult(OtherMin))
|
|
return OverflowResult::AlwaysOverflowsLow;
|
|
if (Min.ult(OtherMax))
|
|
return OverflowResult::MayOverflow;
|
|
return OverflowResult::NeverOverflows;
|
|
}
|
|
|
|
ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow(
|
|
const ConstantRange &Other) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return OverflowResult::MayOverflow;
|
|
|
|
APInt Min = getSignedMin(), Max = getSignedMax();
|
|
APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
|
|
|
|
APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
|
|
APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
|
|
|
|
// a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
|
|
// a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
|
|
if (Min.isNonNegative() && OtherMax.isNegative() &&
|
|
Min.sgt(SignedMax + OtherMax))
|
|
return OverflowResult::AlwaysOverflowsHigh;
|
|
if (Max.isNegative() && OtherMin.isNonNegative() &&
|
|
Max.slt(SignedMin + OtherMin))
|
|
return OverflowResult::AlwaysOverflowsLow;
|
|
|
|
if (Max.isNonNegative() && OtherMin.isNegative() &&
|
|
Max.sgt(SignedMax + OtherMin))
|
|
return OverflowResult::MayOverflow;
|
|
if (Min.isNegative() && OtherMax.isNonNegative() &&
|
|
Min.slt(SignedMin + OtherMax))
|
|
return OverflowResult::MayOverflow;
|
|
|
|
return OverflowResult::NeverOverflows;
|
|
}
|
|
|
|
ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow(
|
|
const ConstantRange &Other) const {
|
|
if (isEmptySet() || Other.isEmptySet())
|
|
return OverflowResult::MayOverflow;
|
|
|
|
APInt Min = getUnsignedMin(), Max = getUnsignedMax();
|
|
APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
|
|
bool Overflow;
|
|
|
|
(void) Min.umul_ov(OtherMin, Overflow);
|
|
if (Overflow)
|
|
return OverflowResult::AlwaysOverflowsHigh;
|
|
|
|
(void) Max.umul_ov(OtherMax, Overflow);
|
|
if (Overflow)
|
|
return OverflowResult::MayOverflow;
|
|
|
|
return OverflowResult::NeverOverflows;
|
|
}
|
|
|
|
void ConstantRange::print(raw_ostream &OS) const {
|
|
if (isFullSet())
|
|
OS << "full-set";
|
|
else if (isEmptySet())
|
|
OS << "empty-set";
|
|
else
|
|
OS << "[" << Lower << "," << Upper << ")";
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void ConstantRange::dump() const {
|
|
print(dbgs());
|
|
}
|
|
#endif
|
|
|
|
ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
|
|
const unsigned NumRanges = Ranges.getNumOperands() / 2;
|
|
assert(NumRanges >= 1 && "Must have at least one range!");
|
|
assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
|
|
|
|
auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
|
|
auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
|
|
|
|
ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
|
|
|
|
for (unsigned i = 1; i < NumRanges; ++i) {
|
|
auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
|
|
auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
|
|
|
|
// Note: unionWith will potentially create a range that contains values not
|
|
// contained in any of the original N ranges.
|
|
CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
|
|
}
|
|
|
|
return CR;
|
|
}
|