Wang Pengcheng 3ac9fe69f7
[RISCV] CodeGen of RVE and ilp32e/lp64e ABIs (#76777)
This commit includes the necessary changes to clang and LLVM to support
codegen of `RVE` and the `ilp32e`/`lp64e` ABIs.

The differences between `RVE` and `RVI` are:
* `RVE` reduces the integer register count to 16(x0-x16).
* The ABI should be `ilp32e` for 32 bits and `lp64e` for 64 bits.

`RVE` can be combined with all current standard extensions.

The central changes in ilp32e/lp64e ABI, compared to ilp32/lp64 are:
* Only 6 integer argument registers (rather than 8).
* Only 2 callee-saved registers (rather than 12).
* A Stack Alignment of 32bits (rather than 128bits).
* ilp32e isn't compatible with D ISA extension.

If `ilp32e` or `lp64` is used with an ISA that has any of the registers
x16-x31 and f0-f31, then these registers are considered temporaries.

To be compatible with the implementation of ilp32e in GCC, we don't use
aligned registers to pass variadic arguments and set stack alignment\
to 4-bytes for types with length of 2*XLEN.

FastCC is also supported on RVE, while GHC isn't since there is only one
avaiable register.

Differential Revision: https://reviews.llvm.org/D70401
2024-01-16 20:44:30 +08:00

494 lines
17 KiB
C++

//===--- RISCV.cpp - Implement RISC-V target feature support --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements RISC-V TargetInfo objects.
//
//===----------------------------------------------------------------------===//
#include "RISCV.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/MacroBuilder.h"
#include "clang/Basic/TargetBuiltins.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/RISCVTargetParser.h"
#include <optional>
using namespace clang;
using namespace clang::targets;
ArrayRef<const char *> RISCVTargetInfo::getGCCRegNames() const {
// clang-format off
static const char *const GCCRegNames[] = {
// Integer registers
"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
"x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
"x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
"x24", "x25", "x26", "x27", "x28", "x29", "x30", "x31",
// Floating point registers
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
// Vector registers
"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
"v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
"v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
"v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",
// CSRs
"fflags", "frm", "vtype", "vl", "vxsat", "vxrm"
};
// clang-format on
return llvm::ArrayRef(GCCRegNames);
}
ArrayRef<TargetInfo::GCCRegAlias> RISCVTargetInfo::getGCCRegAliases() const {
static const TargetInfo::GCCRegAlias GCCRegAliases[] = {
{{"zero"}, "x0"}, {{"ra"}, "x1"}, {{"sp"}, "x2"}, {{"gp"}, "x3"},
{{"tp"}, "x4"}, {{"t0"}, "x5"}, {{"t1"}, "x6"}, {{"t2"}, "x7"},
{{"s0"}, "x8"}, {{"s1"}, "x9"}, {{"a0"}, "x10"}, {{"a1"}, "x11"},
{{"a2"}, "x12"}, {{"a3"}, "x13"}, {{"a4"}, "x14"}, {{"a5"}, "x15"},
{{"a6"}, "x16"}, {{"a7"}, "x17"}, {{"s2"}, "x18"}, {{"s3"}, "x19"},
{{"s4"}, "x20"}, {{"s5"}, "x21"}, {{"s6"}, "x22"}, {{"s7"}, "x23"},
{{"s8"}, "x24"}, {{"s9"}, "x25"}, {{"s10"}, "x26"}, {{"s11"}, "x27"},
{{"t3"}, "x28"}, {{"t4"}, "x29"}, {{"t5"}, "x30"}, {{"t6"}, "x31"},
{{"ft0"}, "f0"}, {{"ft1"}, "f1"}, {{"ft2"}, "f2"}, {{"ft3"}, "f3"},
{{"ft4"}, "f4"}, {{"ft5"}, "f5"}, {{"ft6"}, "f6"}, {{"ft7"}, "f7"},
{{"fs0"}, "f8"}, {{"fs1"}, "f9"}, {{"fa0"}, "f10"}, {{"fa1"}, "f11"},
{{"fa2"}, "f12"}, {{"fa3"}, "f13"}, {{"fa4"}, "f14"}, {{"fa5"}, "f15"},
{{"fa6"}, "f16"}, {{"fa7"}, "f17"}, {{"fs2"}, "f18"}, {{"fs3"}, "f19"},
{{"fs4"}, "f20"}, {{"fs5"}, "f21"}, {{"fs6"}, "f22"}, {{"fs7"}, "f23"},
{{"fs8"}, "f24"}, {{"fs9"}, "f25"}, {{"fs10"}, "f26"}, {{"fs11"}, "f27"},
{{"ft8"}, "f28"}, {{"ft9"}, "f29"}, {{"ft10"}, "f30"}, {{"ft11"}, "f31"}};
return llvm::ArrayRef(GCCRegAliases);
}
bool RISCVTargetInfo::validateAsmConstraint(
const char *&Name, TargetInfo::ConstraintInfo &Info) const {
switch (*Name) {
default:
return false;
case 'I':
// A 12-bit signed immediate.
Info.setRequiresImmediate(-2048, 2047);
return true;
case 'J':
// Integer zero.
Info.setRequiresImmediate(0);
return true;
case 'K':
// A 5-bit unsigned immediate for CSR access instructions.
Info.setRequiresImmediate(0, 31);
return true;
case 'f':
// A floating-point register.
Info.setAllowsRegister();
return true;
case 'A':
// An address that is held in a general-purpose register.
Info.setAllowsMemory();
return true;
case 'S': // A symbolic address
Info.setAllowsRegister();
return true;
case 'v':
// A vector register.
if (Name[1] == 'r' || Name[1] == 'm') {
Info.setAllowsRegister();
Name += 1;
return true;
}
return false;
}
}
std::string RISCVTargetInfo::convertConstraint(const char *&Constraint) const {
std::string R;
switch (*Constraint) {
case 'v':
R = std::string("^") + std::string(Constraint, 2);
Constraint += 1;
break;
default:
R = TargetInfo::convertConstraint(Constraint);
break;
}
return R;
}
static unsigned getVersionValue(unsigned MajorVersion, unsigned MinorVersion) {
return MajorVersion * 1000000 + MinorVersion * 1000;
}
void RISCVTargetInfo::getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
Builder.defineMacro("__riscv");
bool Is64Bit = getTriple().isRISCV64();
Builder.defineMacro("__riscv_xlen", Is64Bit ? "64" : "32");
StringRef CodeModel = getTargetOpts().CodeModel;
unsigned FLen = ISAInfo->getFLen();
unsigned MinVLen = ISAInfo->getMinVLen();
unsigned MaxELen = ISAInfo->getMaxELen();
unsigned MaxELenFp = ISAInfo->getMaxELenFp();
if (CodeModel == "default")
CodeModel = "small";
if (CodeModel == "small")
Builder.defineMacro("__riscv_cmodel_medlow");
else if (CodeModel == "medium")
Builder.defineMacro("__riscv_cmodel_medany");
StringRef ABIName = getABI();
if (ABIName == "ilp32f" || ABIName == "lp64f")
Builder.defineMacro("__riscv_float_abi_single");
else if (ABIName == "ilp32d" || ABIName == "lp64d")
Builder.defineMacro("__riscv_float_abi_double");
else
Builder.defineMacro("__riscv_float_abi_soft");
if (ABIName == "ilp32e" || ABIName == "lp64e")
Builder.defineMacro("__riscv_abi_rve");
Builder.defineMacro("__riscv_arch_test");
for (auto &Extension : ISAInfo->getExtensions()) {
auto ExtName = Extension.first;
auto ExtInfo = Extension.second;
Builder.defineMacro(Twine("__riscv_", ExtName),
Twine(getVersionValue(ExtInfo.Major, ExtInfo.Minor)));
}
if (ISAInfo->hasExtension("m") || ISAInfo->hasExtension("zmmul"))
Builder.defineMacro("__riscv_mul");
if (ISAInfo->hasExtension("m")) {
Builder.defineMacro("__riscv_div");
Builder.defineMacro("__riscv_muldiv");
}
if (ISAInfo->hasExtension("a")) {
Builder.defineMacro("__riscv_atomic");
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1");
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2");
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4");
if (Is64Bit)
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8");
}
if (FLen) {
Builder.defineMacro("__riscv_flen", Twine(FLen));
Builder.defineMacro("__riscv_fdiv");
Builder.defineMacro("__riscv_fsqrt");
}
if (MinVLen) {
Builder.defineMacro("__riscv_v_min_vlen", Twine(MinVLen));
Builder.defineMacro("__riscv_v_elen", Twine(MaxELen));
Builder.defineMacro("__riscv_v_elen_fp", Twine(MaxELenFp));
}
if (ISAInfo->hasExtension("c"))
Builder.defineMacro("__riscv_compressed");
if (ISAInfo->hasExtension("zve32x")) {
Builder.defineMacro("__riscv_vector");
// Currently we support the v0.12 RISC-V V intrinsics.
Builder.defineMacro("__riscv_v_intrinsic", Twine(getVersionValue(0, 12)));
}
auto VScale = getVScaleRange(Opts);
if (VScale && VScale->first && VScale->first == VScale->second)
Builder.defineMacro("__riscv_v_fixed_vlen",
Twine(VScale->first * llvm::RISCV::RVVBitsPerBlock));
if (FastUnalignedAccess)
Builder.defineMacro("__riscv_misaligned_fast");
else
Builder.defineMacro("__riscv_misaligned_avoid");
if (ISAInfo->hasExtension("e")) {
if (Is64Bit)
Builder.defineMacro("__riscv_64e");
else
Builder.defineMacro("__riscv_32e");
}
}
static constexpr Builtin::Info BuiltinInfo[] = {
#define BUILTIN(ID, TYPE, ATTRS) \
{#ID, TYPE, ATTRS, nullptr, HeaderDesc::NO_HEADER, ALL_LANGUAGES},
#define TARGET_BUILTIN(ID, TYPE, ATTRS, FEATURE) \
{#ID, TYPE, ATTRS, FEATURE, HeaderDesc::NO_HEADER, ALL_LANGUAGES},
#include "clang/Basic/BuiltinsRISCVVector.def"
#define BUILTIN(ID, TYPE, ATTRS) \
{#ID, TYPE, ATTRS, nullptr, HeaderDesc::NO_HEADER, ALL_LANGUAGES},
#define TARGET_BUILTIN(ID, TYPE, ATTRS, FEATURE) \
{#ID, TYPE, ATTRS, FEATURE, HeaderDesc::NO_HEADER, ALL_LANGUAGES},
#include "clang/Basic/BuiltinsRISCV.def"
};
ArrayRef<Builtin::Info> RISCVTargetInfo::getTargetBuiltins() const {
return llvm::ArrayRef(BuiltinInfo,
clang::RISCV::LastTSBuiltin - Builtin::FirstTSBuiltin);
}
static std::vector<std::string>
collectNonISAExtFeature(ArrayRef<std::string> FeaturesNeedOverride, int XLen) {
std::vector<std::string> NonISAExtFeatureVec;
auto IsNonISAExtFeature = [](const std::string &Feature) {
assert(Feature.size() > 1 && (Feature[0] == '+' || Feature[0] == '-'));
StringRef Ext = StringRef(Feature).drop_front(); // drop the +/-
return !llvm::RISCVISAInfo::isSupportedExtensionFeature(Ext);
};
llvm::copy_if(FeaturesNeedOverride, std::back_inserter(NonISAExtFeatureVec),
IsNonISAExtFeature);
return NonISAExtFeatureVec;
}
static std::vector<std::string>
resolveTargetAttrOverride(const std::vector<std::string> &FeaturesVec,
int XLen) {
auto I = llvm::find(FeaturesVec, "__RISCV_TargetAttrNeedOverride");
if (I == FeaturesVec.end())
return FeaturesVec;
ArrayRef<std::string> FeaturesNeedOverride(&*FeaturesVec.begin(), &*I);
std::vector<std::string> NonISAExtFeature =
collectNonISAExtFeature(FeaturesNeedOverride, XLen);
std::vector<std::string> ResolvedFeature(++I, FeaturesVec.end());
ResolvedFeature.insert(ResolvedFeature.end(), NonISAExtFeature.begin(),
NonISAExtFeature.end());
return ResolvedFeature;
}
bool RISCVTargetInfo::initFeatureMap(
llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU,
const std::vector<std::string> &FeaturesVec) const {
unsigned XLen = 32;
if (getTriple().isRISCV64()) {
Features["64bit"] = true;
XLen = 64;
} else {
Features["32bit"] = true;
}
std::vector<std::string> NewFeaturesVec =
resolveTargetAttrOverride(FeaturesVec, XLen);
auto ParseResult = llvm::RISCVISAInfo::parseFeatures(XLen, NewFeaturesVec);
if (!ParseResult) {
std::string Buffer;
llvm::raw_string_ostream OutputErrMsg(Buffer);
handleAllErrors(ParseResult.takeError(), [&](llvm::StringError &ErrMsg) {
OutputErrMsg << ErrMsg.getMessage();
});
Diags.Report(diag::err_invalid_feature_combination) << OutputErrMsg.str();
return false;
}
// RISCVISAInfo makes implications for ISA features
std::vector<std::string> ImpliedFeatures = (*ParseResult)->toFeatures();
// parseFeatures normalizes the feature set by dropping any explicit
// negatives, and non-extension features. We need to preserve the later
// for correctness and want to preserve the former for consistency.
for (auto &Feature : NewFeaturesVec) {
StringRef ExtName = Feature;
assert(ExtName.size() > 1 && (ExtName[0] == '+' || ExtName[0] == '-'));
ExtName = ExtName.drop_front(1); // Drop '+' or '-'
if (!llvm::is_contained(ImpliedFeatures, ("+" + ExtName).str()) &&
!llvm::is_contained(ImpliedFeatures, ("-" + ExtName).str()))
ImpliedFeatures.push_back(Feature);
}
return TargetInfo::initFeatureMap(Features, Diags, CPU, ImpliedFeatures);
}
std::optional<std::pair<unsigned, unsigned>>
RISCVTargetInfo::getVScaleRange(const LangOptions &LangOpts) const {
// RISCV::RVVBitsPerBlock is 64.
unsigned VScaleMin = ISAInfo->getMinVLen() / llvm::RISCV::RVVBitsPerBlock;
if (LangOpts.VScaleMin || LangOpts.VScaleMax) {
// Treat Zvl*b as a lower bound on vscale.
VScaleMin = std::max(VScaleMin, LangOpts.VScaleMin);
unsigned VScaleMax = LangOpts.VScaleMax;
if (VScaleMax != 0 && VScaleMax < VScaleMin)
VScaleMax = VScaleMin;
return std::pair<unsigned, unsigned>(VScaleMin ? VScaleMin : 1, VScaleMax);
}
if (VScaleMin > 0) {
unsigned VScaleMax = ISAInfo->getMaxVLen() / llvm::RISCV::RVVBitsPerBlock;
return std::make_pair(VScaleMin, VScaleMax);
}
return std::nullopt;
}
/// Return true if has this feature, need to sync with handleTargetFeatures.
bool RISCVTargetInfo::hasFeature(StringRef Feature) const {
bool Is64Bit = getTriple().isRISCV64();
auto Result = llvm::StringSwitch<std::optional<bool>>(Feature)
.Case("riscv", true)
.Case("riscv32", !Is64Bit)
.Case("riscv64", Is64Bit)
.Case("32bit", !Is64Bit)
.Case("64bit", Is64Bit)
.Case("experimental", HasExperimental)
.Default(std::nullopt);
if (Result)
return *Result;
return ISAInfo->hasExtension(Feature);
}
/// Perform initialization based on the user configured set of features.
bool RISCVTargetInfo::handleTargetFeatures(std::vector<std::string> &Features,
DiagnosticsEngine &Diags) {
unsigned XLen = getTriple().isArch64Bit() ? 64 : 32;
auto ParseResult = llvm::RISCVISAInfo::parseFeatures(XLen, Features);
if (!ParseResult) {
std::string Buffer;
llvm::raw_string_ostream OutputErrMsg(Buffer);
handleAllErrors(ParseResult.takeError(), [&](llvm::StringError &ErrMsg) {
OutputErrMsg << ErrMsg.getMessage();
});
Diags.Report(diag::err_invalid_feature_combination) << OutputErrMsg.str();
return false;
} else {
ISAInfo = std::move(*ParseResult);
}
if (ABI.empty())
ABI = ISAInfo->computeDefaultABI().str();
if (ISAInfo->hasExtension("zfh") || ISAInfo->hasExtension("zhinx"))
HasLegalHalfType = true;
FastUnalignedAccess = llvm::is_contained(Features, "+fast-unaligned-access");
if (llvm::is_contained(Features, "+experimental"))
HasExperimental = true;
if (ABI == "ilp32e" && ISAInfo->hasExtension("d")) {
Diags.Report(diag::err_invalid_feature_combination)
<< "ILP32E cannot be used with the D ISA extension";
return false;
}
return true;
}
bool RISCVTargetInfo::isValidCPUName(StringRef Name) const {
bool Is64Bit = getTriple().isArch64Bit();
return llvm::RISCV::parseCPU(Name, Is64Bit);
}
void RISCVTargetInfo::fillValidCPUList(
SmallVectorImpl<StringRef> &Values) const {
bool Is64Bit = getTriple().isArch64Bit();
llvm::RISCV::fillValidCPUArchList(Values, Is64Bit);
}
bool RISCVTargetInfo::isValidTuneCPUName(StringRef Name) const {
bool Is64Bit = getTriple().isArch64Bit();
return llvm::RISCV::parseTuneCPU(Name, Is64Bit);
}
void RISCVTargetInfo::fillValidTuneCPUList(
SmallVectorImpl<StringRef> &Values) const {
bool Is64Bit = getTriple().isArch64Bit();
llvm::RISCV::fillValidTuneCPUArchList(Values, Is64Bit);
}
static void handleFullArchString(StringRef FullArchStr,
std::vector<std::string> &Features) {
Features.push_back("__RISCV_TargetAttrNeedOverride");
auto RII = llvm::RISCVISAInfo::parseArchString(
FullArchStr, /* EnableExperimentalExtension */ true);
if (llvm::errorToBool(RII.takeError())) {
// Forward the invalid FullArchStr.
Features.push_back("+" + FullArchStr.str());
} else {
std::vector<std::string> FeatStrings = (*RII)->toFeatures();
Features.insert(Features.end(), FeatStrings.begin(), FeatStrings.end());
}
}
ParsedTargetAttr RISCVTargetInfo::parseTargetAttr(StringRef Features) const {
ParsedTargetAttr Ret;
if (Features == "default")
return Ret;
SmallVector<StringRef, 1> AttrFeatures;
Features.split(AttrFeatures, ";");
bool FoundArch = false;
for (auto &Feature : AttrFeatures) {
Feature = Feature.trim();
StringRef AttrString = Feature.split("=").second.trim();
if (Feature.starts_with("arch=")) {
// Override last features
Ret.Features.clear();
if (FoundArch)
Ret.Duplicate = "arch=";
FoundArch = true;
if (AttrString.starts_with("+")) {
// EXTENSION like arch=+v,+zbb
SmallVector<StringRef, 1> Exts;
AttrString.split(Exts, ",");
for (auto Ext : Exts) {
if (Ext.empty())
continue;
StringRef ExtName = Ext.substr(1);
std::string TargetFeature =
llvm::RISCVISAInfo::getTargetFeatureForExtension(ExtName);
if (!TargetFeature.empty())
Ret.Features.push_back(Ext.front() + TargetFeature);
else
Ret.Features.push_back(Ext.str());
}
} else {
// full-arch-string like arch=rv64gcv
handleFullArchString(AttrString, Ret.Features);
}
} else if (Feature.starts_with("cpu=")) {
if (!Ret.CPU.empty())
Ret.Duplicate = "cpu=";
Ret.CPU = AttrString;
if (!FoundArch) {
// Update Features with CPU's features
StringRef MarchFromCPU = llvm::RISCV::getMArchFromMcpu(Ret.CPU);
if (MarchFromCPU != "") {
Ret.Features.clear();
handleFullArchString(MarchFromCPU, Ret.Features);
}
}
} else if (Feature.starts_with("tune=")) {
if (!Ret.Tune.empty())
Ret.Duplicate = "tune=";
Ret.Tune = AttrString;
}
}
return Ret;
}