Nick Sarnie 3b9ebe9201
[clang] Simplify device kernel attributes (#137882)
We have multiple different attributes in clang representing device
kernels for specific targets/languages. Refactor them into one attribute
with different spellings to make it more easily scalable for new
languages/targets.

---------

Signed-off-by: Sarnie, Nick <nick.sarnie@intel.com>
2025-06-05 14:15:38 +00:00

395 lines
15 KiB
C++

//===- NVPTX.cpp ----------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ABIInfoImpl.h"
#include "TargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/IntrinsicsNVPTX.h"
using namespace clang;
using namespace clang::CodeGen;
//===----------------------------------------------------------------------===//
// NVPTX ABI Implementation
//===----------------------------------------------------------------------===//
namespace {
class NVPTXTargetCodeGenInfo;
class NVPTXABIInfo : public ABIInfo {
NVPTXTargetCodeGenInfo &CGInfo;
public:
NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
: ABIInfo(CGT), CGInfo(Info) {}
ABIArgInfo classifyReturnType(QualType RetTy) const;
ABIArgInfo classifyArgumentType(QualType Ty) const;
void computeInfo(CGFunctionInfo &FI) const override;
RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
AggValueSlot Slot) const override;
bool isUnsupportedType(QualType T) const;
ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
};
class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
public:
NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
: TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
CodeGen::CodeGenModule &M) const override;
bool shouldEmitStaticExternCAliases() const override;
llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
llvm::PointerType *T,
QualType QT) const override;
llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
// On the device side, surface reference is represented as an object handle
// in 64-bit integer.
return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
}
llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
// On the device side, texture reference is represented as an object handle
// in 64-bit integer.
return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
}
bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
LValue Src) const override {
emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
return true;
}
bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
LValue Src) const override {
emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
return true;
}
unsigned getOpenCLKernelCallingConv() const override {
return llvm::CallingConv::PTX_Kernel;
}
// Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
// resulting MDNode to the nvvm.annotations MDNode.
static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
int Operand);
static void
addGridConstantNVVMMetadata(llvm::GlobalValue *GV,
const SmallVectorImpl<int> &GridConstantArgs);
private:
static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
LValue Src) {
llvm::Value *Handle = nullptr;
llvm::Constant *C =
llvm::dyn_cast<llvm::Constant>(Src.getAddress().emitRawPointer(CGF));
// Lookup `addrspacecast` through the constant pointer if any.
if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
// Load the handle from the specific global variable using
// `nvvm.texsurf.handle.internal` intrinsic.
Handle = CGF.EmitRuntimeCall(
CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
{GV->getType()}),
{GV}, "texsurf_handle");
} else
Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
CGF.EmitStoreOfScalar(Handle, Dst);
}
};
/// Checks if the type is unsupported directly by the current target.
bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
ASTContext &Context = getContext();
if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
return true;
if (!Context.getTargetInfo().hasFloat128Type() &&
(T->isFloat128Type() ||
(T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
return true;
if (const auto *EIT = T->getAs<BitIntType>())
return EIT->getNumBits() >
(Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
Context.getTypeSize(T) > 64U)
return true;
if (const auto *AT = T->getAsArrayTypeUnsafe())
return isUnsupportedType(AT->getElementType());
const auto *RT = T->getAs<RecordType>();
if (!RT)
return false;
const RecordDecl *RD = RT->getDecl();
// If this is a C++ record, check the bases first.
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
for (const CXXBaseSpecifier &I : CXXRD->bases())
if (isUnsupportedType(I.getType()))
return true;
for (const FieldDecl *I : RD->fields())
if (isUnsupportedType(I->getType()))
return true;
return false;
}
/// Coerce the given type into an array with maximum allowed size of elements.
ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
unsigned MaxSize) const {
// Alignment and Size are measured in bits.
const uint64_t Size = getContext().getTypeSize(Ty);
const uint64_t Alignment = getContext().getTypeAlign(Ty);
const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
const uint64_t NumElements = (Size + Div - 1) / Div;
return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
}
ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
if (RetTy->isVoidType())
return ABIArgInfo::getIgnore();
if (getContext().getLangOpts().OpenMP &&
getContext().getLangOpts().OpenMPIsTargetDevice &&
isUnsupportedType(RetTy))
return coerceToIntArrayWithLimit(RetTy, 64);
// note: this is different from default ABI
if (!RetTy->isScalarType())
return ABIArgInfo::getDirect();
// Treat an enum type as its underlying type.
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
RetTy = EnumTy->getDecl()->getIntegerType();
return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
: ABIArgInfo::getDirect());
}
ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
// Treat an enum type as its underlying type.
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
Ty = EnumTy->getDecl()->getIntegerType();
// Return aggregates type as indirect by value
if (isAggregateTypeForABI(Ty)) {
// Under CUDA device compilation, tex/surf builtin types are replaced with
// object types and passed directly.
if (getContext().getLangOpts().CUDAIsDevice) {
if (Ty->isCUDADeviceBuiltinSurfaceType())
return ABIArgInfo::getDirect(
CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
if (Ty->isCUDADeviceBuiltinTextureType())
return ABIArgInfo::getDirect(
CGInfo.getCUDADeviceBuiltinTextureDeviceType());
}
return getNaturalAlignIndirect(
Ty, /* AddrSpace */ getDataLayout().getAllocaAddrSpace(),
/* byval */ true);
}
if (const auto *EIT = Ty->getAs<BitIntType>()) {
if ((EIT->getNumBits() > 128) ||
(!getContext().getTargetInfo().hasInt128Type() &&
EIT->getNumBits() > 64))
return getNaturalAlignIndirect(
Ty, /* AddrSpace */ getDataLayout().getAllocaAddrSpace(),
/* byval */ true);
}
return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
: ABIArgInfo::getDirect());
}
void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
if (!getCXXABI().classifyReturnType(FI))
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
for (auto &&[ArgumentsCount, I] : llvm::enumerate(FI.arguments()))
I.info = ArgumentsCount < FI.getNumRequiredArgs()
? classifyArgumentType(I.type)
: ABIArgInfo::getDirect();
// Always honor user-specified calling convention.
if (FI.getCallingConvention() != llvm::CallingConv::C)
return;
FI.setEffectiveCallingConvention(getRuntimeCC());
}
RValue NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
QualType Ty, AggValueSlot Slot) const {
return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*IsIndirect=*/false,
getContext().getTypeInfoInChars(Ty),
CharUnits::fromQuantity(1),
/*AllowHigherAlign=*/true, Slot);
}
void NVPTXTargetCodeGenInfo::setTargetAttributes(
const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
if (GV->isDeclaration())
return;
const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
if (VD) {
if (M.getLangOpts().CUDA) {
if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
addNVVMMetadata(GV, "surface", 1);
else if (VD->getType()->isCUDADeviceBuiltinTextureType())
addNVVMMetadata(GV, "texture", 1);
return;
}
}
const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
if (!FD)
return;
llvm::Function *F = cast<llvm::Function>(GV);
// Perform special handling in OpenCL/CUDA mode
if (M.getLangOpts().OpenCL || M.getLangOpts().CUDA) {
// Use function attributes to check for kernel functions
// By default, all functions are device functions
if (FD->hasAttr<DeviceKernelAttr>() || FD->hasAttr<CUDAGlobalAttr>()) {
// OpenCL/CUDA kernel functions get kernel metadata
// Create !{<func-ref>, metadata !"kernel", i32 1} node
// And kernel functions are not subject to inlining
F->addFnAttr(llvm::Attribute::NoInline);
if (FD->hasAttr<CUDAGlobalAttr>()) {
SmallVector<int, 10> GCI;
for (auto IV : llvm::enumerate(FD->parameters()))
if (IV.value()->hasAttr<CUDAGridConstantAttr>())
// For some reason arg indices are 1-based in NVVM
GCI.push_back(IV.index() + 1);
// Create !{<func-ref>, metadata !"kernel", i32 1} node
F->setCallingConv(llvm::CallingConv::PTX_Kernel);
addGridConstantNVVMMetadata(F, GCI);
}
if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>())
M.handleCUDALaunchBoundsAttr(F, Attr);
}
}
// Attach kernel metadata directly if compiling for NVPTX.
if (FD->hasAttr<DeviceKernelAttr>()) {
F->setCallingConv(llvm::CallingConv::PTX_Kernel);
}
}
void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
StringRef Name, int Operand) {
llvm::Module *M = GV->getParent();
llvm::LLVMContext &Ctx = M->getContext();
// Get "nvvm.annotations" metadata node
llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
SmallVector<llvm::Metadata *, 5> MDVals = {
llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
llvm::ConstantAsMetadata::get(
llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
// Append metadata to nvvm.annotations
MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
}
void NVPTXTargetCodeGenInfo::addGridConstantNVVMMetadata(
llvm::GlobalValue *GV, const SmallVectorImpl<int> &GridConstantArgs) {
llvm::Module *M = GV->getParent();
llvm::LLVMContext &Ctx = M->getContext();
// Get "nvvm.annotations" metadata node
llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
SmallVector<llvm::Metadata *, 5> MDVals = {llvm::ConstantAsMetadata::get(GV)};
if (!GridConstantArgs.empty()) {
SmallVector<llvm::Metadata *, 10> GCM;
for (int I : GridConstantArgs)
GCM.push_back(llvm::ConstantAsMetadata::get(
llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), I)));
MDVals.append({llvm::MDString::get(Ctx, "grid_constant"),
llvm::MDNode::get(Ctx, GCM)});
}
// Append metadata to nvvm.annotations
MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
}
bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
return false;
}
llvm::Constant *
NVPTXTargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
llvm::PointerType *PT,
QualType QT) const {
auto &Ctx = CGM.getContext();
if (PT->getAddressSpace() != Ctx.getTargetAddressSpace(LangAS::opencl_local))
return llvm::ConstantPointerNull::get(PT);
auto NPT = llvm::PointerType::get(
PT->getContext(), Ctx.getTargetAddressSpace(LangAS::opencl_generic));
return llvm::ConstantExpr::getAddrSpaceCast(
llvm::ConstantPointerNull::get(NPT), PT);
}
} // namespace
void CodeGenModule::handleCUDALaunchBoundsAttr(llvm::Function *F,
const CUDALaunchBoundsAttr *Attr,
int32_t *MaxThreadsVal,
int32_t *MinBlocksVal,
int32_t *MaxClusterRankVal) {
llvm::APSInt MaxThreads(32);
MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(getContext());
if (MaxThreads > 0) {
if (MaxThreadsVal)
*MaxThreadsVal = MaxThreads.getExtValue();
if (F)
F->addFnAttr("nvvm.maxntid", llvm::utostr(MaxThreads.getExtValue()));
}
// min and max blocks is an optional argument for CUDALaunchBoundsAttr. If it
// was not specified in __launch_bounds__ or if the user specified a 0 value,
// we don't have to add a PTX directive.
if (Attr->getMinBlocks()) {
llvm::APSInt MinBlocks(32);
MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(getContext());
if (MinBlocks > 0) {
if (MinBlocksVal)
*MinBlocksVal = MinBlocks.getExtValue();
if (F)
F->addFnAttr("nvvm.minctasm", llvm::utostr(MinBlocks.getExtValue()));
}
}
if (Attr->getMaxBlocks()) {
llvm::APSInt MaxBlocks(32);
MaxBlocks = Attr->getMaxBlocks()->EvaluateKnownConstInt(getContext());
if (MaxBlocks > 0) {
if (MaxClusterRankVal)
*MaxClusterRankVal = MaxBlocks.getExtValue();
if (F)
F->addFnAttr("nvvm.maxclusterrank",
llvm::utostr(MaxBlocks.getExtValue()));
}
}
}
std::unique_ptr<TargetCodeGenInfo>
CodeGen::createNVPTXTargetCodeGenInfo(CodeGenModule &CGM) {
return std::make_unique<NVPTXTargetCodeGenInfo>(CGM.getTypes());
}