Richard Smith 3c1a41ad99 [modules] Track how 'header' directives were written in module map files,
rather than trying to extract this information from the FileEntry after the
fact.

This has a number of beneficial effects. For instance, diagnostic messages for
failed module builds give a path relative to the "module root" rather than an
absolute file path, and the contents of the module includes file is no longer
dependent on what files the including TU happened to inspect prior to
triggering the module build.

llvm-svn: 223095
2014-12-02 00:08:08 +00:00

458 lines
13 KiB
C++

//===--- Module.cpp - Describe a module -----------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Module class, which describes a module in the source
// code.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/Module.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
Module::Module(StringRef Name, SourceLocation DefinitionLoc, Module *Parent,
bool IsFramework, bool IsExplicit)
: Name(Name), DefinitionLoc(DefinitionLoc), Parent(Parent), Directory(),
Umbrella(), ASTFile(nullptr), IsMissingRequirement(false),
IsAvailable(true), IsFromModuleFile(false), IsFramework(IsFramework),
IsExplicit(IsExplicit), IsSystem(false), IsExternC(false),
IsInferred(false), InferSubmodules(false), InferExplicitSubmodules(false),
InferExportWildcard(false), ConfigMacrosExhaustive(false),
NameVisibility(Hidden) {
if (Parent) {
if (!Parent->isAvailable())
IsAvailable = false;
if (Parent->IsSystem)
IsSystem = true;
if (Parent->IsExternC)
IsExternC = true;
IsMissingRequirement = Parent->IsMissingRequirement;
Parent->SubModuleIndex[Name] = Parent->SubModules.size();
Parent->SubModules.push_back(this);
}
}
Module::~Module() {
for (submodule_iterator I = submodule_begin(), IEnd = submodule_end();
I != IEnd; ++I) {
delete *I;
}
}
/// \brief Determine whether a translation unit built using the current
/// language options has the given feature.
static bool hasFeature(StringRef Feature, const LangOptions &LangOpts,
const TargetInfo &Target) {
return llvm::StringSwitch<bool>(Feature)
.Case("altivec", LangOpts.AltiVec)
.Case("blocks", LangOpts.Blocks)
.Case("cplusplus", LangOpts.CPlusPlus)
.Case("cplusplus11", LangOpts.CPlusPlus11)
.Case("objc", LangOpts.ObjC1)
.Case("objc_arc", LangOpts.ObjCAutoRefCount)
.Case("opencl", LangOpts.OpenCL)
.Case("tls", Target.isTLSSupported())
.Default(Target.hasFeature(Feature));
}
bool Module::isAvailable(const LangOptions &LangOpts, const TargetInfo &Target,
Requirement &Req,
UnresolvedHeaderDirective &MissingHeader) const {
if (IsAvailable)
return true;
for (const Module *Current = this; Current; Current = Current->Parent) {
if (!Current->MissingHeaders.empty()) {
MissingHeader = Current->MissingHeaders.front();
return false;
}
for (unsigned I = 0, N = Current->Requirements.size(); I != N; ++I) {
if (hasFeature(Current->Requirements[I].first, LangOpts, Target) !=
Current->Requirements[I].second) {
Req = Current->Requirements[I];
return false;
}
}
}
llvm_unreachable("could not find a reason why module is unavailable");
}
bool Module::isSubModuleOf(const Module *Other) const {
const Module *This = this;
do {
if (This == Other)
return true;
This = This->Parent;
} while (This);
return false;
}
const Module *Module::getTopLevelModule() const {
const Module *Result = this;
while (Result->Parent)
Result = Result->Parent;
return Result;
}
std::string Module::getFullModuleName() const {
SmallVector<StringRef, 2> Names;
// Build up the set of module names (from innermost to outermost).
for (const Module *M = this; M; M = M->Parent)
Names.push_back(M->Name);
std::string Result;
for (SmallVectorImpl<StringRef>::reverse_iterator I = Names.rbegin(),
IEnd = Names.rend();
I != IEnd; ++I) {
if (!Result.empty())
Result += '.';
Result += *I;
}
return Result;
}
const DirectoryEntry *Module::getUmbrellaDir() const {
if (const FileEntry *Header = getUmbrellaHeader())
return Header->getDir();
return Umbrella.dyn_cast<const DirectoryEntry *>();
}
ArrayRef<const FileEntry *> Module::getTopHeaders(FileManager &FileMgr) {
if (!TopHeaderNames.empty()) {
for (std::vector<std::string>::iterator
I = TopHeaderNames.begin(), E = TopHeaderNames.end(); I != E; ++I) {
if (const FileEntry *FE = FileMgr.getFile(*I))
TopHeaders.insert(FE);
}
TopHeaderNames.clear();
}
return llvm::makeArrayRef(TopHeaders.begin(), TopHeaders.end());
}
void Module::addRequirement(StringRef Feature, bool RequiredState,
const LangOptions &LangOpts,
const TargetInfo &Target) {
Requirements.push_back(Requirement(Feature, RequiredState));
// If this feature is currently available, we're done.
if (hasFeature(Feature, LangOpts, Target) == RequiredState)
return;
markUnavailable(/*MissingRequirement*/true);
}
void Module::markUnavailable(bool MissingRequirement) {
if (!IsAvailable)
return;
SmallVector<Module *, 2> Stack;
Stack.push_back(this);
while (!Stack.empty()) {
Module *Current = Stack.back();
Stack.pop_back();
if (!Current->IsAvailable)
continue;
Current->IsAvailable = false;
Current->IsMissingRequirement |= MissingRequirement;
for (submodule_iterator Sub = Current->submodule_begin(),
SubEnd = Current->submodule_end();
Sub != SubEnd; ++Sub) {
if ((*Sub)->IsAvailable)
Stack.push_back(*Sub);
}
}
}
Module *Module::findSubmodule(StringRef Name) const {
llvm::StringMap<unsigned>::const_iterator Pos = SubModuleIndex.find(Name);
if (Pos == SubModuleIndex.end())
return nullptr;
return SubModules[Pos->getValue()];
}
static void printModuleId(raw_ostream &OS, const ModuleId &Id) {
for (unsigned I = 0, N = Id.size(); I != N; ++I) {
if (I)
OS << ".";
OS << Id[I].first;
}
}
void Module::getExportedModules(SmallVectorImpl<Module *> &Exported) const {
// All non-explicit submodules are exported.
for (std::vector<Module *>::const_iterator I = SubModules.begin(),
E = SubModules.end();
I != E; ++I) {
Module *Mod = *I;
if (!Mod->IsExplicit)
Exported.push_back(Mod);
}
// Find re-exported modules by filtering the list of imported modules.
bool AnyWildcard = false;
bool UnrestrictedWildcard = false;
SmallVector<Module *, 4> WildcardRestrictions;
for (unsigned I = 0, N = Exports.size(); I != N; ++I) {
Module *Mod = Exports[I].getPointer();
if (!Exports[I].getInt()) {
// Export a named module directly; no wildcards involved.
Exported.push_back(Mod);
continue;
}
// Wildcard export: export all of the imported modules that match
// the given pattern.
AnyWildcard = true;
if (UnrestrictedWildcard)
continue;
if (Module *Restriction = Exports[I].getPointer())
WildcardRestrictions.push_back(Restriction);
else {
WildcardRestrictions.clear();
UnrestrictedWildcard = true;
}
}
// If there were any wildcards, push any imported modules that were
// re-exported by the wildcard restriction.
if (!AnyWildcard)
return;
for (unsigned I = 0, N = Imports.size(); I != N; ++I) {
Module *Mod = Imports[I];
bool Acceptable = UnrestrictedWildcard;
if (!Acceptable) {
// Check whether this module meets one of the restrictions.
for (unsigned R = 0, NR = WildcardRestrictions.size(); R != NR; ++R) {
Module *Restriction = WildcardRestrictions[R];
if (Mod == Restriction || Mod->isSubModuleOf(Restriction)) {
Acceptable = true;
break;
}
}
}
if (!Acceptable)
continue;
Exported.push_back(Mod);
}
}
void Module::buildVisibleModulesCache() const {
assert(VisibleModulesCache.empty() && "cache does not need building");
// This module is visible to itself.
VisibleModulesCache.insert(this);
// Every imported module is visible.
SmallVector<Module *, 16> Stack(Imports.begin(), Imports.end());
while (!Stack.empty()) {
Module *CurrModule = Stack.pop_back_val();
// Every module transitively exported by an imported module is visible.
if (VisibleModulesCache.insert(CurrModule).second)
CurrModule->getExportedModules(Stack);
}
}
void Module::print(raw_ostream &OS, unsigned Indent) const {
OS.indent(Indent);
if (IsFramework)
OS << "framework ";
if (IsExplicit)
OS << "explicit ";
OS << "module " << Name;
if (IsSystem) {
OS.indent(Indent + 2);
OS << " [system]";
}
OS << " {\n";
if (!Requirements.empty()) {
OS.indent(Indent + 2);
OS << "requires ";
for (unsigned I = 0, N = Requirements.size(); I != N; ++I) {
if (I)
OS << ", ";
if (!Requirements[I].second)
OS << "!";
OS << Requirements[I].first;
}
OS << "\n";
}
if (const FileEntry *UmbrellaHeader = getUmbrellaHeader()) {
OS.indent(Indent + 2);
OS << "umbrella header \"";
OS.write_escaped(UmbrellaHeader->getName());
OS << "\"\n";
} else if (const DirectoryEntry *UmbrellaDir = getUmbrellaDir()) {
OS.indent(Indent + 2);
OS << "umbrella \"";
OS.write_escaped(UmbrellaDir->getName());
OS << "\"\n";
}
if (!ConfigMacros.empty() || ConfigMacrosExhaustive) {
OS.indent(Indent + 2);
OS << "config_macros ";
if (ConfigMacrosExhaustive)
OS << "[exhaustive]";
for (unsigned I = 0, N = ConfigMacros.size(); I != N; ++I) {
if (I)
OS << ", ";
OS << ConfigMacros[I];
}
OS << "\n";
}
struct {
StringRef Prefix;
HeaderKind Kind;
} Kinds[] = {{"", HK_Normal},
{"textual ", HK_Textual},
{"private ", HK_Private},
{"private textual ", HK_PrivateTextual},
{"exclude ", HK_Excluded}};
for (auto &K : Kinds) {
for (auto &H : Headers[K.Kind]) {
OS.indent(Indent + 2);
OS << K.Prefix << "header \"";
OS.write_escaped(H.NameAsWritten);
OS << "\"\n";
}
}
for (submodule_const_iterator MI = submodule_begin(), MIEnd = submodule_end();
MI != MIEnd; ++MI)
// Print inferred subframework modules so that we don't need to re-infer
// them (requires expensive directory iteration + stat calls) when we build
// the module. Regular inferred submodules are OK, as we need to look at all
// those header files anyway.
if (!(*MI)->IsInferred || (*MI)->IsFramework)
(*MI)->print(OS, Indent + 2);
for (unsigned I = 0, N = Exports.size(); I != N; ++I) {
OS.indent(Indent + 2);
OS << "export ";
if (Module *Restriction = Exports[I].getPointer()) {
OS << Restriction->getFullModuleName();
if (Exports[I].getInt())
OS << ".*";
} else {
OS << "*";
}
OS << "\n";
}
for (unsigned I = 0, N = UnresolvedExports.size(); I != N; ++I) {
OS.indent(Indent + 2);
OS << "export ";
printModuleId(OS, UnresolvedExports[I].Id);
if (UnresolvedExports[I].Wildcard) {
if (UnresolvedExports[I].Id.empty())
OS << "*";
else
OS << ".*";
}
OS << "\n";
}
for (unsigned I = 0, N = DirectUses.size(); I != N; ++I) {
OS.indent(Indent + 2);
OS << "use ";
OS << DirectUses[I]->getFullModuleName();
OS << "\n";
}
for (unsigned I = 0, N = UnresolvedDirectUses.size(); I != N; ++I) {
OS.indent(Indent + 2);
OS << "use ";
printModuleId(OS, UnresolvedDirectUses[I]);
OS << "\n";
}
for (unsigned I = 0, N = LinkLibraries.size(); I != N; ++I) {
OS.indent(Indent + 2);
OS << "link ";
if (LinkLibraries[I].IsFramework)
OS << "framework ";
OS << "\"";
OS.write_escaped(LinkLibraries[I].Library);
OS << "\"";
}
for (unsigned I = 0, N = UnresolvedConflicts.size(); I != N; ++I) {
OS.indent(Indent + 2);
OS << "conflict ";
printModuleId(OS, UnresolvedConflicts[I].Id);
OS << ", \"";
OS.write_escaped(UnresolvedConflicts[I].Message);
OS << "\"\n";
}
for (unsigned I = 0, N = Conflicts.size(); I != N; ++I) {
OS.indent(Indent + 2);
OS << "conflict ";
OS << Conflicts[I].Other->getFullModuleName();
OS << ", \"";
OS.write_escaped(Conflicts[I].Message);
OS << "\"\n";
}
if (InferSubmodules) {
OS.indent(Indent + 2);
if (InferExplicitSubmodules)
OS << "explicit ";
OS << "module * {\n";
if (InferExportWildcard) {
OS.indent(Indent + 4);
OS << "export *\n";
}
OS.indent(Indent + 2);
OS << "}\n";
}
OS.indent(Indent);
OS << "}\n";
}
void Module::dump() const {
print(llvm::errs());
}