Alex Zinenko ee168fb90e [mlir][python] Fix issues with block argument slices
The type extraction helper function for block argument and op result
list objects was ignoring the slice entirely. So was the slice addition.
Both are caused by a misleading naming convention to implement slices
via CRTP. Make the convention more explicit and hide the helper
functions so users have harder time calling them directly.

Closes #56540.

Reviewed By: stellaraccident

Differential Revision: https://reviews.llvm.org/D130271
2022-07-21 14:41:12 +00:00

957 lines
39 KiB
C++

//===- IRAffine.cpp - Exports 'ir' module affine related bindings ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <utility>
#include "IRModule.h"
#include "PybindUtils.h"
#include "mlir-c/AffineMap.h"
#include "mlir-c/Bindings/Python/Interop.h"
#include "mlir-c/IntegerSet.h"
namespace py = pybind11;
using namespace mlir;
using namespace mlir::python;
using llvm::SmallVector;
using llvm::StringRef;
using llvm::Twine;
static const char kDumpDocstring[] =
R"(Dumps a debug representation of the object to stderr.)";
/// Attempts to populate `result` with the content of `list` casted to the
/// appropriate type (Python and C types are provided as template arguments).
/// Throws errors in case of failure, using "action" to describe what the caller
/// was attempting to do.
template <typename PyType, typename CType>
static void pyListToVector(const py::list &list,
llvm::SmallVectorImpl<CType> &result,
StringRef action) {
result.reserve(py::len(list));
for (py::handle item : list) {
try {
result.push_back(item.cast<PyType>());
} catch (py::cast_error &err) {
std::string msg = (llvm::Twine("Invalid expression when ") + action +
" (" + err.what() + ")")
.str();
throw py::cast_error(msg);
} catch (py::reference_cast_error &err) {
std::string msg = (llvm::Twine("Invalid expression (None?) when ") +
action + " (" + err.what() + ")")
.str();
throw py::cast_error(msg);
}
}
}
template <typename PermutationTy>
static bool isPermutation(std::vector<PermutationTy> permutation) {
llvm::SmallVector<bool, 8> seen(permutation.size(), false);
for (auto val : permutation) {
if (val < permutation.size()) {
if (seen[val])
return false;
seen[val] = true;
continue;
}
return false;
}
return true;
}
namespace {
/// CRTP base class for Python MLIR affine expressions that subclass AffineExpr
/// and should be castable from it. Intermediate hierarchy classes can be
/// modeled by specifying BaseTy.
template <typename DerivedTy, typename BaseTy = PyAffineExpr>
class PyConcreteAffineExpr : public BaseTy {
public:
// Derived classes must define statics for:
// IsAFunctionTy isaFunction
// const char *pyClassName
// and redefine bindDerived.
using ClassTy = py::class_<DerivedTy, BaseTy>;
using IsAFunctionTy = bool (*)(MlirAffineExpr);
PyConcreteAffineExpr() = default;
PyConcreteAffineExpr(PyMlirContextRef contextRef, MlirAffineExpr affineExpr)
: BaseTy(std::move(contextRef), affineExpr) {}
PyConcreteAffineExpr(PyAffineExpr &orig)
: PyConcreteAffineExpr(orig.getContext(), castFrom(orig)) {}
static MlirAffineExpr castFrom(PyAffineExpr &orig) {
if (!DerivedTy::isaFunction(orig)) {
auto origRepr = py::repr(py::cast(orig)).cast<std::string>();
throw SetPyError(PyExc_ValueError,
Twine("Cannot cast affine expression to ") +
DerivedTy::pyClassName + " (from " + origRepr + ")");
}
return orig;
}
static void bind(py::module &m) {
auto cls = ClassTy(m, DerivedTy::pyClassName, py::module_local());
cls.def(py::init<PyAffineExpr &>(), py::arg("expr"));
cls.def_static(
"isinstance",
[](PyAffineExpr &otherAffineExpr) -> bool {
return DerivedTy::isaFunction(otherAffineExpr);
},
py::arg("other"));
DerivedTy::bindDerived(cls);
}
/// Implemented by derived classes to add methods to the Python subclass.
static void bindDerived(ClassTy &m) {}
};
class PyAffineConstantExpr : public PyConcreteAffineExpr<PyAffineConstantExpr> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAffineExprIsAConstant;
static constexpr const char *pyClassName = "AffineConstantExpr";
using PyConcreteAffineExpr::PyConcreteAffineExpr;
static PyAffineConstantExpr get(intptr_t value,
DefaultingPyMlirContext context) {
MlirAffineExpr affineExpr =
mlirAffineConstantExprGet(context->get(), static_cast<int64_t>(value));
return PyAffineConstantExpr(context->getRef(), affineExpr);
}
static void bindDerived(ClassTy &c) {
c.def_static("get", &PyAffineConstantExpr::get, py::arg("value"),
py::arg("context") = py::none());
c.def_property_readonly("value", [](PyAffineConstantExpr &self) {
return mlirAffineConstantExprGetValue(self);
});
}
};
class PyAffineDimExpr : public PyConcreteAffineExpr<PyAffineDimExpr> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAffineExprIsADim;
static constexpr const char *pyClassName = "AffineDimExpr";
using PyConcreteAffineExpr::PyConcreteAffineExpr;
static PyAffineDimExpr get(intptr_t pos, DefaultingPyMlirContext context) {
MlirAffineExpr affineExpr = mlirAffineDimExprGet(context->get(), pos);
return PyAffineDimExpr(context->getRef(), affineExpr);
}
static void bindDerived(ClassTy &c) {
c.def_static("get", &PyAffineDimExpr::get, py::arg("position"),
py::arg("context") = py::none());
c.def_property_readonly("position", [](PyAffineDimExpr &self) {
return mlirAffineDimExprGetPosition(self);
});
}
};
class PyAffineSymbolExpr : public PyConcreteAffineExpr<PyAffineSymbolExpr> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAffineExprIsASymbol;
static constexpr const char *pyClassName = "AffineSymbolExpr";
using PyConcreteAffineExpr::PyConcreteAffineExpr;
static PyAffineSymbolExpr get(intptr_t pos, DefaultingPyMlirContext context) {
MlirAffineExpr affineExpr = mlirAffineSymbolExprGet(context->get(), pos);
return PyAffineSymbolExpr(context->getRef(), affineExpr);
}
static void bindDerived(ClassTy &c) {
c.def_static("get", &PyAffineSymbolExpr::get, py::arg("position"),
py::arg("context") = py::none());
c.def_property_readonly("position", [](PyAffineSymbolExpr &self) {
return mlirAffineSymbolExprGetPosition(self);
});
}
};
class PyAffineBinaryExpr : public PyConcreteAffineExpr<PyAffineBinaryExpr> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAffineExprIsABinary;
static constexpr const char *pyClassName = "AffineBinaryExpr";
using PyConcreteAffineExpr::PyConcreteAffineExpr;
PyAffineExpr lhs() {
MlirAffineExpr lhsExpr = mlirAffineBinaryOpExprGetLHS(get());
return PyAffineExpr(getContext(), lhsExpr);
}
PyAffineExpr rhs() {
MlirAffineExpr rhsExpr = mlirAffineBinaryOpExprGetRHS(get());
return PyAffineExpr(getContext(), rhsExpr);
}
static void bindDerived(ClassTy &c) {
c.def_property_readonly("lhs", &PyAffineBinaryExpr::lhs);
c.def_property_readonly("rhs", &PyAffineBinaryExpr::rhs);
}
};
class PyAffineAddExpr
: public PyConcreteAffineExpr<PyAffineAddExpr, PyAffineBinaryExpr> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAffineExprIsAAdd;
static constexpr const char *pyClassName = "AffineAddExpr";
using PyConcreteAffineExpr::PyConcreteAffineExpr;
static PyAffineAddExpr get(PyAffineExpr lhs, const PyAffineExpr &rhs) {
MlirAffineExpr expr = mlirAffineAddExprGet(lhs, rhs);
return PyAffineAddExpr(lhs.getContext(), expr);
}
static PyAffineAddExpr getRHSConstant(PyAffineExpr lhs, intptr_t rhs) {
MlirAffineExpr expr = mlirAffineAddExprGet(
lhs, mlirAffineConstantExprGet(mlirAffineExprGetContext(lhs), rhs));
return PyAffineAddExpr(lhs.getContext(), expr);
}
static PyAffineAddExpr getLHSConstant(intptr_t lhs, PyAffineExpr rhs) {
MlirAffineExpr expr = mlirAffineAddExprGet(
mlirAffineConstantExprGet(mlirAffineExprGetContext(rhs), lhs), rhs);
return PyAffineAddExpr(rhs.getContext(), expr);
}
static void bindDerived(ClassTy &c) {
c.def_static("get", &PyAffineAddExpr::get);
}
};
class PyAffineMulExpr
: public PyConcreteAffineExpr<PyAffineMulExpr, PyAffineBinaryExpr> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAffineExprIsAMul;
static constexpr const char *pyClassName = "AffineMulExpr";
using PyConcreteAffineExpr::PyConcreteAffineExpr;
static PyAffineMulExpr get(PyAffineExpr lhs, const PyAffineExpr &rhs) {
MlirAffineExpr expr = mlirAffineMulExprGet(lhs, rhs);
return PyAffineMulExpr(lhs.getContext(), expr);
}
static PyAffineMulExpr getRHSConstant(PyAffineExpr lhs, intptr_t rhs) {
MlirAffineExpr expr = mlirAffineMulExprGet(
lhs, mlirAffineConstantExprGet(mlirAffineExprGetContext(lhs), rhs));
return PyAffineMulExpr(lhs.getContext(), expr);
}
static PyAffineMulExpr getLHSConstant(intptr_t lhs, PyAffineExpr rhs) {
MlirAffineExpr expr = mlirAffineMulExprGet(
mlirAffineConstantExprGet(mlirAffineExprGetContext(rhs), lhs), rhs);
return PyAffineMulExpr(rhs.getContext(), expr);
}
static void bindDerived(ClassTy &c) {
c.def_static("get", &PyAffineMulExpr::get);
}
};
class PyAffineModExpr
: public PyConcreteAffineExpr<PyAffineModExpr, PyAffineBinaryExpr> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAffineExprIsAMod;
static constexpr const char *pyClassName = "AffineModExpr";
using PyConcreteAffineExpr::PyConcreteAffineExpr;
static PyAffineModExpr get(PyAffineExpr lhs, const PyAffineExpr &rhs) {
MlirAffineExpr expr = mlirAffineModExprGet(lhs, rhs);
return PyAffineModExpr(lhs.getContext(), expr);
}
static PyAffineModExpr getRHSConstant(PyAffineExpr lhs, intptr_t rhs) {
MlirAffineExpr expr = mlirAffineModExprGet(
lhs, mlirAffineConstantExprGet(mlirAffineExprGetContext(lhs), rhs));
return PyAffineModExpr(lhs.getContext(), expr);
}
static PyAffineModExpr getLHSConstant(intptr_t lhs, PyAffineExpr rhs) {
MlirAffineExpr expr = mlirAffineModExprGet(
mlirAffineConstantExprGet(mlirAffineExprGetContext(rhs), lhs), rhs);
return PyAffineModExpr(rhs.getContext(), expr);
}
static void bindDerived(ClassTy &c) {
c.def_static("get", &PyAffineModExpr::get);
}
};
class PyAffineFloorDivExpr
: public PyConcreteAffineExpr<PyAffineFloorDivExpr, PyAffineBinaryExpr> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAffineExprIsAFloorDiv;
static constexpr const char *pyClassName = "AffineFloorDivExpr";
using PyConcreteAffineExpr::PyConcreteAffineExpr;
static PyAffineFloorDivExpr get(PyAffineExpr lhs, const PyAffineExpr &rhs) {
MlirAffineExpr expr = mlirAffineFloorDivExprGet(lhs, rhs);
return PyAffineFloorDivExpr(lhs.getContext(), expr);
}
static PyAffineFloorDivExpr getRHSConstant(PyAffineExpr lhs, intptr_t rhs) {
MlirAffineExpr expr = mlirAffineFloorDivExprGet(
lhs, mlirAffineConstantExprGet(mlirAffineExprGetContext(lhs), rhs));
return PyAffineFloorDivExpr(lhs.getContext(), expr);
}
static PyAffineFloorDivExpr getLHSConstant(intptr_t lhs, PyAffineExpr rhs) {
MlirAffineExpr expr = mlirAffineFloorDivExprGet(
mlirAffineConstantExprGet(mlirAffineExprGetContext(rhs), lhs), rhs);
return PyAffineFloorDivExpr(rhs.getContext(), expr);
}
static void bindDerived(ClassTy &c) {
c.def_static("get", &PyAffineFloorDivExpr::get);
}
};
class PyAffineCeilDivExpr
: public PyConcreteAffineExpr<PyAffineCeilDivExpr, PyAffineBinaryExpr> {
public:
static constexpr IsAFunctionTy isaFunction = mlirAffineExprIsACeilDiv;
static constexpr const char *pyClassName = "AffineCeilDivExpr";
using PyConcreteAffineExpr::PyConcreteAffineExpr;
static PyAffineCeilDivExpr get(PyAffineExpr lhs, const PyAffineExpr &rhs) {
MlirAffineExpr expr = mlirAffineCeilDivExprGet(lhs, rhs);
return PyAffineCeilDivExpr(lhs.getContext(), expr);
}
static PyAffineCeilDivExpr getRHSConstant(PyAffineExpr lhs, intptr_t rhs) {
MlirAffineExpr expr = mlirAffineCeilDivExprGet(
lhs, mlirAffineConstantExprGet(mlirAffineExprGetContext(lhs), rhs));
return PyAffineCeilDivExpr(lhs.getContext(), expr);
}
static PyAffineCeilDivExpr getLHSConstant(intptr_t lhs, PyAffineExpr rhs) {
MlirAffineExpr expr = mlirAffineCeilDivExprGet(
mlirAffineConstantExprGet(mlirAffineExprGetContext(rhs), lhs), rhs);
return PyAffineCeilDivExpr(rhs.getContext(), expr);
}
static void bindDerived(ClassTy &c) {
c.def_static("get", &PyAffineCeilDivExpr::get);
}
};
} // namespace
bool PyAffineExpr::operator==(const PyAffineExpr &other) {
return mlirAffineExprEqual(affineExpr, other.affineExpr);
}
py::object PyAffineExpr::getCapsule() {
return py::reinterpret_steal<py::object>(
mlirPythonAffineExprToCapsule(*this));
}
PyAffineExpr PyAffineExpr::createFromCapsule(py::object capsule) {
MlirAffineExpr rawAffineExpr = mlirPythonCapsuleToAffineExpr(capsule.ptr());
if (mlirAffineExprIsNull(rawAffineExpr))
throw py::error_already_set();
return PyAffineExpr(
PyMlirContext::forContext(mlirAffineExprGetContext(rawAffineExpr)),
rawAffineExpr);
}
//------------------------------------------------------------------------------
// PyAffineMap and utilities.
//------------------------------------------------------------------------------
namespace {
/// A list of expressions contained in an affine map. Internally these are
/// stored as a consecutive array leading to inexpensive random access. Both
/// the map and the expression are owned by the context so we need not bother
/// with lifetime extension.
class PyAffineMapExprList
: public Sliceable<PyAffineMapExprList, PyAffineExpr> {
public:
static constexpr const char *pyClassName = "AffineExprList";
PyAffineMapExprList(const PyAffineMap &map, intptr_t startIndex = 0,
intptr_t length = -1, intptr_t step = 1)
: Sliceable(startIndex,
length == -1 ? mlirAffineMapGetNumResults(map) : length,
step),
affineMap(map) {}
private:
/// Give the parent CRTP class access to hook implementations below.
friend class Sliceable<PyAffineMapExprList, PyAffineExpr>;
intptr_t getRawNumElements() { return mlirAffineMapGetNumResults(affineMap); }
PyAffineExpr getRawElement(intptr_t pos) {
return PyAffineExpr(affineMap.getContext(),
mlirAffineMapGetResult(affineMap, pos));
}
PyAffineMapExprList slice(intptr_t startIndex, intptr_t length,
intptr_t step) {
return PyAffineMapExprList(affineMap, startIndex, length, step);
}
PyAffineMap affineMap;
};
} // namespace
bool PyAffineMap::operator==(const PyAffineMap &other) {
return mlirAffineMapEqual(affineMap, other.affineMap);
}
py::object PyAffineMap::getCapsule() {
return py::reinterpret_steal<py::object>(mlirPythonAffineMapToCapsule(*this));
}
PyAffineMap PyAffineMap::createFromCapsule(py::object capsule) {
MlirAffineMap rawAffineMap = mlirPythonCapsuleToAffineMap(capsule.ptr());
if (mlirAffineMapIsNull(rawAffineMap))
throw py::error_already_set();
return PyAffineMap(
PyMlirContext::forContext(mlirAffineMapGetContext(rawAffineMap)),
rawAffineMap);
}
//------------------------------------------------------------------------------
// PyIntegerSet and utilities.
//------------------------------------------------------------------------------
namespace {
class PyIntegerSetConstraint {
public:
PyIntegerSetConstraint(PyIntegerSet set, intptr_t pos)
: set(std::move(set)), pos(pos) {}
PyAffineExpr getExpr() {
return PyAffineExpr(set.getContext(),
mlirIntegerSetGetConstraint(set, pos));
}
bool isEq() { return mlirIntegerSetIsConstraintEq(set, pos); }
static void bind(py::module &m) {
py::class_<PyIntegerSetConstraint>(m, "IntegerSetConstraint",
py::module_local())
.def_property_readonly("expr", &PyIntegerSetConstraint::getExpr)
.def_property_readonly("is_eq", &PyIntegerSetConstraint::isEq);
}
private:
PyIntegerSet set;
intptr_t pos;
};
class PyIntegerSetConstraintList
: public Sliceable<PyIntegerSetConstraintList, PyIntegerSetConstraint> {
public:
static constexpr const char *pyClassName = "IntegerSetConstraintList";
PyIntegerSetConstraintList(const PyIntegerSet &set, intptr_t startIndex = 0,
intptr_t length = -1, intptr_t step = 1)
: Sliceable(startIndex,
length == -1 ? mlirIntegerSetGetNumConstraints(set) : length,
step),
set(set) {}
private:
/// Give the parent CRTP class access to hook implementations below.
friend class Sliceable<PyIntegerSetConstraintList, PyIntegerSetConstraint>;
intptr_t getRawNumElements() { return mlirIntegerSetGetNumConstraints(set); }
PyIntegerSetConstraint getRawElement(intptr_t pos) {
return PyIntegerSetConstraint(set, pos);
}
PyIntegerSetConstraintList slice(intptr_t startIndex, intptr_t length,
intptr_t step) {
return PyIntegerSetConstraintList(set, startIndex, length, step);
}
PyIntegerSet set;
};
} // namespace
bool PyIntegerSet::operator==(const PyIntegerSet &other) {
return mlirIntegerSetEqual(integerSet, other.integerSet);
}
py::object PyIntegerSet::getCapsule() {
return py::reinterpret_steal<py::object>(
mlirPythonIntegerSetToCapsule(*this));
}
PyIntegerSet PyIntegerSet::createFromCapsule(py::object capsule) {
MlirIntegerSet rawIntegerSet = mlirPythonCapsuleToIntegerSet(capsule.ptr());
if (mlirIntegerSetIsNull(rawIntegerSet))
throw py::error_already_set();
return PyIntegerSet(
PyMlirContext::forContext(mlirIntegerSetGetContext(rawIntegerSet)),
rawIntegerSet);
}
void mlir::python::populateIRAffine(py::module &m) {
//----------------------------------------------------------------------------
// Mapping of PyAffineExpr and derived classes.
//----------------------------------------------------------------------------
py::class_<PyAffineExpr>(m, "AffineExpr", py::module_local())
.def_property_readonly(MLIR_PYTHON_CAPI_PTR_ATTR,
&PyAffineExpr::getCapsule)
.def(MLIR_PYTHON_CAPI_FACTORY_ATTR, &PyAffineExpr::createFromCapsule)
.def("__add__", &PyAffineAddExpr::get)
.def("__add__", &PyAffineAddExpr::getRHSConstant)
.def("__radd__", &PyAffineAddExpr::getRHSConstant)
.def("__mul__", &PyAffineMulExpr::get)
.def("__mul__", &PyAffineMulExpr::getRHSConstant)
.def("__rmul__", &PyAffineMulExpr::getRHSConstant)
.def("__mod__", &PyAffineModExpr::get)
.def("__mod__", &PyAffineModExpr::getRHSConstant)
.def("__rmod__",
[](PyAffineExpr &self, intptr_t other) {
return PyAffineModExpr::get(
PyAffineConstantExpr::get(other, *self.getContext().get()),
self);
})
.def("__sub__",
[](PyAffineExpr &self, PyAffineExpr &other) {
auto negOne =
PyAffineConstantExpr::get(-1, *self.getContext().get());
return PyAffineAddExpr::get(self,
PyAffineMulExpr::get(negOne, other));
})
.def("__sub__",
[](PyAffineExpr &self, intptr_t other) {
return PyAffineAddExpr::get(
self,
PyAffineConstantExpr::get(-other, *self.getContext().get()));
})
.def("__rsub__",
[](PyAffineExpr &self, intptr_t other) {
return PyAffineAddExpr::getLHSConstant(
other, PyAffineMulExpr::getLHSConstant(-1, self));
})
.def("__eq__", [](PyAffineExpr &self,
PyAffineExpr &other) { return self == other; })
.def("__eq__",
[](PyAffineExpr &self, py::object &other) { return false; })
.def("__str__",
[](PyAffineExpr &self) {
PyPrintAccumulator printAccum;
mlirAffineExprPrint(self, printAccum.getCallback(),
printAccum.getUserData());
return printAccum.join();
})
.def("__repr__",
[](PyAffineExpr &self) {
PyPrintAccumulator printAccum;
printAccum.parts.append("AffineExpr(");
mlirAffineExprPrint(self, printAccum.getCallback(),
printAccum.getUserData());
printAccum.parts.append(")");
return printAccum.join();
})
.def("__hash__",
[](PyAffineExpr &self) {
return static_cast<size_t>(llvm::hash_value(self.get().ptr));
})
.def_property_readonly(
"context",
[](PyAffineExpr &self) { return self.getContext().getObject(); })
.def("compose",
[](PyAffineExpr &self, PyAffineMap &other) {
return PyAffineExpr(self.getContext(),
mlirAffineExprCompose(self, other));
})
.def_static(
"get_add", &PyAffineAddExpr::get,
"Gets an affine expression containing a sum of two expressions.")
.def_static("get_add", &PyAffineAddExpr::getLHSConstant,
"Gets an affine expression containing a sum of a constant "
"and another expression.")
.def_static("get_add", &PyAffineAddExpr::getRHSConstant,
"Gets an affine expression containing a sum of an expression "
"and a constant.")
.def_static(
"get_mul", &PyAffineMulExpr::get,
"Gets an affine expression containing a product of two expressions.")
.def_static("get_mul", &PyAffineMulExpr::getLHSConstant,
"Gets an affine expression containing a product of a "
"constant and another expression.")
.def_static("get_mul", &PyAffineMulExpr::getRHSConstant,
"Gets an affine expression containing a product of an "
"expression and a constant.")
.def_static("get_mod", &PyAffineModExpr::get,
"Gets an affine expression containing the modulo of dividing "
"one expression by another.")
.def_static("get_mod", &PyAffineModExpr::getLHSConstant,
"Gets a semi-affine expression containing the modulo of "
"dividing a constant by an expression.")
.def_static("get_mod", &PyAffineModExpr::getRHSConstant,
"Gets an affine expression containing the module of dividing"
"an expression by a constant.")
.def_static("get_floor_div", &PyAffineFloorDivExpr::get,
"Gets an affine expression containing the rounded-down "
"result of dividing one expression by another.")
.def_static("get_floor_div", &PyAffineFloorDivExpr::getLHSConstant,
"Gets a semi-affine expression containing the rounded-down "
"result of dividing a constant by an expression.")
.def_static("get_floor_div", &PyAffineFloorDivExpr::getRHSConstant,
"Gets an affine expression containing the rounded-down "
"result of dividing an expression by a constant.")
.def_static("get_ceil_div", &PyAffineCeilDivExpr::get,
"Gets an affine expression containing the rounded-up result "
"of dividing one expression by another.")
.def_static("get_ceil_div", &PyAffineCeilDivExpr::getLHSConstant,
"Gets a semi-affine expression containing the rounded-up "
"result of dividing a constant by an expression.")
.def_static("get_ceil_div", &PyAffineCeilDivExpr::getRHSConstant,
"Gets an affine expression containing the rounded-up result "
"of dividing an expression by a constant.")
.def_static("get_constant", &PyAffineConstantExpr::get, py::arg("value"),
py::arg("context") = py::none(),
"Gets a constant affine expression with the given value.")
.def_static(
"get_dim", &PyAffineDimExpr::get, py::arg("position"),
py::arg("context") = py::none(),
"Gets an affine expression of a dimension at the given position.")
.def_static(
"get_symbol", &PyAffineSymbolExpr::get, py::arg("position"),
py::arg("context") = py::none(),
"Gets an affine expression of a symbol at the given position.")
.def(
"dump", [](PyAffineExpr &self) { mlirAffineExprDump(self); },
kDumpDocstring);
PyAffineConstantExpr::bind(m);
PyAffineDimExpr::bind(m);
PyAffineSymbolExpr::bind(m);
PyAffineBinaryExpr::bind(m);
PyAffineAddExpr::bind(m);
PyAffineMulExpr::bind(m);
PyAffineModExpr::bind(m);
PyAffineFloorDivExpr::bind(m);
PyAffineCeilDivExpr::bind(m);
//----------------------------------------------------------------------------
// Mapping of PyAffineMap.
//----------------------------------------------------------------------------
py::class_<PyAffineMap>(m, "AffineMap", py::module_local())
.def_property_readonly(MLIR_PYTHON_CAPI_PTR_ATTR,
&PyAffineMap::getCapsule)
.def(MLIR_PYTHON_CAPI_FACTORY_ATTR, &PyAffineMap::createFromCapsule)
.def("__eq__",
[](PyAffineMap &self, PyAffineMap &other) { return self == other; })
.def("__eq__", [](PyAffineMap &self, py::object &other) { return false; })
.def("__str__",
[](PyAffineMap &self) {
PyPrintAccumulator printAccum;
mlirAffineMapPrint(self, printAccum.getCallback(),
printAccum.getUserData());
return printAccum.join();
})
.def("__repr__",
[](PyAffineMap &self) {
PyPrintAccumulator printAccum;
printAccum.parts.append("AffineMap(");
mlirAffineMapPrint(self, printAccum.getCallback(),
printAccum.getUserData());
printAccum.parts.append(")");
return printAccum.join();
})
.def("__hash__",
[](PyAffineMap &self) {
return static_cast<size_t>(llvm::hash_value(self.get().ptr));
})
.def_static("compress_unused_symbols",
[](py::list affineMaps, DefaultingPyMlirContext context) {
SmallVector<MlirAffineMap> maps;
pyListToVector<PyAffineMap, MlirAffineMap>(
affineMaps, maps, "attempting to create an AffineMap");
std::vector<MlirAffineMap> compressed(affineMaps.size());
auto populate = [](void *result, intptr_t idx,
MlirAffineMap m) {
static_cast<MlirAffineMap *>(result)[idx] = (m);
};
mlirAffineMapCompressUnusedSymbols(
maps.data(), maps.size(), compressed.data(), populate);
std::vector<PyAffineMap> res;
res.reserve(compressed.size());
for (auto m : compressed)
res.emplace_back(context->getRef(), m);
return res;
})
.def_property_readonly(
"context",
[](PyAffineMap &self) { return self.getContext().getObject(); },
"Context that owns the Affine Map")
.def(
"dump", [](PyAffineMap &self) { mlirAffineMapDump(self); },
kDumpDocstring)
.def_static(
"get",
[](intptr_t dimCount, intptr_t symbolCount, py::list exprs,
DefaultingPyMlirContext context) {
SmallVector<MlirAffineExpr> affineExprs;
pyListToVector<PyAffineExpr, MlirAffineExpr>(
exprs, affineExprs, "attempting to create an AffineMap");
MlirAffineMap map =
mlirAffineMapGet(context->get(), dimCount, symbolCount,
affineExprs.size(), affineExprs.data());
return PyAffineMap(context->getRef(), map);
},
py::arg("dim_count"), py::arg("symbol_count"), py::arg("exprs"),
py::arg("context") = py::none(),
"Gets a map with the given expressions as results.")
.def_static(
"get_constant",
[](intptr_t value, DefaultingPyMlirContext context) {
MlirAffineMap affineMap =
mlirAffineMapConstantGet(context->get(), value);
return PyAffineMap(context->getRef(), affineMap);
},
py::arg("value"), py::arg("context") = py::none(),
"Gets an affine map with a single constant result")
.def_static(
"get_empty",
[](DefaultingPyMlirContext context) {
MlirAffineMap affineMap = mlirAffineMapEmptyGet(context->get());
return PyAffineMap(context->getRef(), affineMap);
},
py::arg("context") = py::none(), "Gets an empty affine map.")
.def_static(
"get_identity",
[](intptr_t nDims, DefaultingPyMlirContext context) {
MlirAffineMap affineMap =
mlirAffineMapMultiDimIdentityGet(context->get(), nDims);
return PyAffineMap(context->getRef(), affineMap);
},
py::arg("n_dims"), py::arg("context") = py::none(),
"Gets an identity map with the given number of dimensions.")
.def_static(
"get_minor_identity",
[](intptr_t nDims, intptr_t nResults,
DefaultingPyMlirContext context) {
MlirAffineMap affineMap =
mlirAffineMapMinorIdentityGet(context->get(), nDims, nResults);
return PyAffineMap(context->getRef(), affineMap);
},
py::arg("n_dims"), py::arg("n_results"),
py::arg("context") = py::none(),
"Gets a minor identity map with the given number of dimensions and "
"results.")
.def_static(
"get_permutation",
[](std::vector<unsigned> permutation,
DefaultingPyMlirContext context) {
if (!isPermutation(permutation))
throw py::cast_error("Invalid permutation when attempting to "
"create an AffineMap");
MlirAffineMap affineMap = mlirAffineMapPermutationGet(
context->get(), permutation.size(), permutation.data());
return PyAffineMap(context->getRef(), affineMap);
},
py::arg("permutation"), py::arg("context") = py::none(),
"Gets an affine map that permutes its inputs.")
.def(
"get_submap",
[](PyAffineMap &self, std::vector<intptr_t> &resultPos) {
intptr_t numResults = mlirAffineMapGetNumResults(self);
for (intptr_t pos : resultPos) {
if (pos < 0 || pos >= numResults)
throw py::value_error("result position out of bounds");
}
MlirAffineMap affineMap = mlirAffineMapGetSubMap(
self, resultPos.size(), resultPos.data());
return PyAffineMap(self.getContext(), affineMap);
},
py::arg("result_positions"))
.def(
"get_major_submap",
[](PyAffineMap &self, intptr_t nResults) {
if (nResults >= mlirAffineMapGetNumResults(self))
throw py::value_error("number of results out of bounds");
MlirAffineMap affineMap =
mlirAffineMapGetMajorSubMap(self, nResults);
return PyAffineMap(self.getContext(), affineMap);
},
py::arg("n_results"))
.def(
"get_minor_submap",
[](PyAffineMap &self, intptr_t nResults) {
if (nResults >= mlirAffineMapGetNumResults(self))
throw py::value_error("number of results out of bounds");
MlirAffineMap affineMap =
mlirAffineMapGetMinorSubMap(self, nResults);
return PyAffineMap(self.getContext(), affineMap);
},
py::arg("n_results"))
.def(
"replace",
[](PyAffineMap &self, PyAffineExpr &expression,
PyAffineExpr &replacement, intptr_t numResultDims,
intptr_t numResultSyms) {
MlirAffineMap affineMap = mlirAffineMapReplace(
self, expression, replacement, numResultDims, numResultSyms);
return PyAffineMap(self.getContext(), affineMap);
},
py::arg("expr"), py::arg("replacement"), py::arg("n_result_dims"),
py::arg("n_result_syms"))
.def_property_readonly(
"is_permutation",
[](PyAffineMap &self) { return mlirAffineMapIsPermutation(self); })
.def_property_readonly("is_projected_permutation",
[](PyAffineMap &self) {
return mlirAffineMapIsProjectedPermutation(self);
})
.def_property_readonly(
"n_dims",
[](PyAffineMap &self) { return mlirAffineMapGetNumDims(self); })
.def_property_readonly(
"n_inputs",
[](PyAffineMap &self) { return mlirAffineMapGetNumInputs(self); })
.def_property_readonly(
"n_symbols",
[](PyAffineMap &self) { return mlirAffineMapGetNumSymbols(self); })
.def_property_readonly("results", [](PyAffineMap &self) {
return PyAffineMapExprList(self);
});
PyAffineMapExprList::bind(m);
//----------------------------------------------------------------------------
// Mapping of PyIntegerSet.
//----------------------------------------------------------------------------
py::class_<PyIntegerSet>(m, "IntegerSet", py::module_local())
.def_property_readonly(MLIR_PYTHON_CAPI_PTR_ATTR,
&PyIntegerSet::getCapsule)
.def(MLIR_PYTHON_CAPI_FACTORY_ATTR, &PyIntegerSet::createFromCapsule)
.def("__eq__", [](PyIntegerSet &self,
PyIntegerSet &other) { return self == other; })
.def("__eq__", [](PyIntegerSet &self, py::object other) { return false; })
.def("__str__",
[](PyIntegerSet &self) {
PyPrintAccumulator printAccum;
mlirIntegerSetPrint(self, printAccum.getCallback(),
printAccum.getUserData());
return printAccum.join();
})
.def("__repr__",
[](PyIntegerSet &self) {
PyPrintAccumulator printAccum;
printAccum.parts.append("IntegerSet(");
mlirIntegerSetPrint(self, printAccum.getCallback(),
printAccum.getUserData());
printAccum.parts.append(")");
return printAccum.join();
})
.def("__hash__",
[](PyIntegerSet &self) {
return static_cast<size_t>(llvm::hash_value(self.get().ptr));
})
.def_property_readonly(
"context",
[](PyIntegerSet &self) { return self.getContext().getObject(); })
.def(
"dump", [](PyIntegerSet &self) { mlirIntegerSetDump(self); },
kDumpDocstring)
.def_static(
"get",
[](intptr_t numDims, intptr_t numSymbols, py::list exprs,
std::vector<bool> eqFlags, DefaultingPyMlirContext context) {
if (exprs.size() != eqFlags.size())
throw py::value_error(
"Expected the number of constraints to match "
"that of equality flags");
if (exprs.empty())
throw py::value_error("Expected non-empty list of constraints");
// Copy over to a SmallVector because std::vector has a
// specialization for booleans that packs data and does not
// expose a `bool *`.
SmallVector<bool, 8> flags(eqFlags.begin(), eqFlags.end());
SmallVector<MlirAffineExpr> affineExprs;
pyListToVector<PyAffineExpr>(exprs, affineExprs,
"attempting to create an IntegerSet");
MlirIntegerSet set = mlirIntegerSetGet(
context->get(), numDims, numSymbols, exprs.size(),
affineExprs.data(), flags.data());
return PyIntegerSet(context->getRef(), set);
},
py::arg("num_dims"), py::arg("num_symbols"), py::arg("exprs"),
py::arg("eq_flags"), py::arg("context") = py::none())
.def_static(
"get_empty",
[](intptr_t numDims, intptr_t numSymbols,
DefaultingPyMlirContext context) {
MlirIntegerSet set =
mlirIntegerSetEmptyGet(context->get(), numDims, numSymbols);
return PyIntegerSet(context->getRef(), set);
},
py::arg("num_dims"), py::arg("num_symbols"),
py::arg("context") = py::none())
.def(
"get_replaced",
[](PyIntegerSet &self, py::list dimExprs, py::list symbolExprs,
intptr_t numResultDims, intptr_t numResultSymbols) {
if (static_cast<intptr_t>(dimExprs.size()) !=
mlirIntegerSetGetNumDims(self))
throw py::value_error(
"Expected the number of dimension replacement expressions "
"to match that of dimensions");
if (static_cast<intptr_t>(symbolExprs.size()) !=
mlirIntegerSetGetNumSymbols(self))
throw py::value_error(
"Expected the number of symbol replacement expressions "
"to match that of symbols");
SmallVector<MlirAffineExpr> dimAffineExprs, symbolAffineExprs;
pyListToVector<PyAffineExpr>(
dimExprs, dimAffineExprs,
"attempting to create an IntegerSet by replacing dimensions");
pyListToVector<PyAffineExpr>(
symbolExprs, symbolAffineExprs,
"attempting to create an IntegerSet by replacing symbols");
MlirIntegerSet set = mlirIntegerSetReplaceGet(
self, dimAffineExprs.data(), symbolAffineExprs.data(),
numResultDims, numResultSymbols);
return PyIntegerSet(self.getContext(), set);
},
py::arg("dim_exprs"), py::arg("symbol_exprs"),
py::arg("num_result_dims"), py::arg("num_result_symbols"))
.def_property_readonly("is_canonical_empty",
[](PyIntegerSet &self) {
return mlirIntegerSetIsCanonicalEmpty(self);
})
.def_property_readonly(
"n_dims",
[](PyIntegerSet &self) { return mlirIntegerSetGetNumDims(self); })
.def_property_readonly(
"n_symbols",
[](PyIntegerSet &self) { return mlirIntegerSetGetNumSymbols(self); })
.def_property_readonly(
"n_inputs",
[](PyIntegerSet &self) { return mlirIntegerSetGetNumInputs(self); })
.def_property_readonly("n_equalities",
[](PyIntegerSet &self) {
return mlirIntegerSetGetNumEqualities(self);
})
.def_property_readonly("n_inequalities",
[](PyIntegerSet &self) {
return mlirIntegerSetGetNumInequalities(self);
})
.def_property_readonly("constraints", [](PyIntegerSet &self) {
return PyIntegerSetConstraintList(self);
});
PyIntegerSetConstraint::bind(m);
PyIntegerSetConstraintList::bind(m);
}