
It's not necessary on posix platforms as of #126935 and it's ignored on windows as of #138896. For both platforms, we have a better way of inheriting FDs/HANDLEs.
397 lines
11 KiB
C++
397 lines
11 KiB
C++
//===-- MainLoopPosix.cpp -------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "lldb/Host/posix/MainLoopPosix.h"
|
|
#include "lldb/Host/Config.h"
|
|
#include "lldb/Host/PosixApi.h"
|
|
#include "lldb/Utility/Status.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/Support/Errno.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cerrno>
|
|
#include <chrono>
|
|
#include <csignal>
|
|
#include <ctime>
|
|
#include <fcntl.h>
|
|
#include <vector>
|
|
|
|
// Multiplexing is implemented using kqueue on systems that support it (BSD
|
|
// variants including OSX). On linux we use ppoll.
|
|
|
|
#if HAVE_SYS_EVENT_H
|
|
#include <sys/event.h>
|
|
#else
|
|
#include <poll.h>
|
|
#endif
|
|
|
|
using namespace lldb;
|
|
using namespace lldb_private;
|
|
|
|
namespace {
|
|
struct GlobalSignalInfo {
|
|
sig_atomic_t pipe_fd = -1;
|
|
static_assert(sizeof(sig_atomic_t) >= sizeof(int),
|
|
"Type too small for a file descriptor");
|
|
sig_atomic_t flag = 0;
|
|
};
|
|
} // namespace
|
|
static GlobalSignalInfo g_signal_info[NSIG];
|
|
|
|
static void SignalHandler(int signo, siginfo_t *info, void *) {
|
|
assert(signo < NSIG);
|
|
|
|
// Set the flag before writing to the pipe!
|
|
g_signal_info[signo].flag = 1;
|
|
|
|
int fd = g_signal_info[signo].pipe_fd;
|
|
if (fd < 0) {
|
|
// This can happen with the following (unlikely) sequence of events:
|
|
// 1. Thread 1 gets a signal, starts running the signal handler
|
|
// 2. Thread 2 unregisters the signal handler, setting pipe_fd to -1
|
|
// 3. Signal handler on thread 1 reads -1 out of pipe_fd
|
|
// In this case, we can just ignore the signal because we're no longer
|
|
// interested in it.
|
|
return;
|
|
}
|
|
|
|
// Write a(ny) character to the pipe to wake up from the poll syscall.
|
|
char c = '.';
|
|
ssize_t bytes_written = llvm::sys::RetryAfterSignal(-1, ::write, fd, &c, 1);
|
|
// We can safely ignore EAGAIN (pipe full), as that means poll will definitely
|
|
// return.
|
|
assert(bytes_written == 1 || (bytes_written == -1 && errno == EAGAIN));
|
|
(void)bytes_written;
|
|
}
|
|
|
|
class ToTimeSpec {
|
|
public:
|
|
explicit ToTimeSpec(std::optional<MainLoopPosix::TimePoint> point) {
|
|
using namespace std::chrono;
|
|
|
|
if (!point) {
|
|
m_ts_ptr = nullptr;
|
|
return;
|
|
}
|
|
nanoseconds dur = std::max(*point - steady_clock::now(), nanoseconds(0));
|
|
m_ts_ptr = &m_ts;
|
|
m_ts.tv_sec = duration_cast<seconds>(dur).count();
|
|
m_ts.tv_nsec = (dur % seconds(1)).count();
|
|
}
|
|
ToTimeSpec(const ToTimeSpec &) = delete;
|
|
ToTimeSpec &operator=(const ToTimeSpec &) = delete;
|
|
|
|
operator struct timespec *() { return m_ts_ptr; }
|
|
|
|
private:
|
|
struct timespec m_ts;
|
|
struct timespec *m_ts_ptr;
|
|
};
|
|
|
|
class MainLoopPosix::RunImpl {
|
|
public:
|
|
RunImpl(MainLoopPosix &loop);
|
|
~RunImpl() = default;
|
|
|
|
Status Poll();
|
|
|
|
void ProcessReadEvents();
|
|
|
|
private:
|
|
MainLoopPosix &loop;
|
|
|
|
#if HAVE_SYS_EVENT_H
|
|
std::vector<struct kevent> in_events;
|
|
struct kevent out_events[4];
|
|
int num_events = -1;
|
|
|
|
#else
|
|
std::vector<struct pollfd> read_fds;
|
|
#endif
|
|
};
|
|
|
|
#if HAVE_SYS_EVENT_H
|
|
MainLoopPosix::RunImpl::RunImpl(MainLoopPosix &loop) : loop(loop) {
|
|
in_events.reserve(loop.m_read_fds.size());
|
|
}
|
|
|
|
Status MainLoopPosix::RunImpl::Poll() {
|
|
in_events.resize(loop.m_read_fds.size());
|
|
unsigned i = 0;
|
|
for (auto &fd : loop.m_read_fds)
|
|
EV_SET(&in_events[i++], fd.first, EVFILT_READ, EV_ADD, 0, 0, 0);
|
|
|
|
num_events =
|
|
kevent(loop.m_kqueue, in_events.data(), in_events.size(), out_events,
|
|
std::size(out_events), ToTimeSpec(loop.GetNextWakeupTime()));
|
|
|
|
if (num_events < 0) {
|
|
if (errno == EINTR) {
|
|
// in case of EINTR, let the main loop run one iteration
|
|
// we need to zero num_events to avoid assertions failing
|
|
num_events = 0;
|
|
} else
|
|
return Status(errno, eErrorTypePOSIX);
|
|
}
|
|
return Status();
|
|
}
|
|
|
|
void MainLoopPosix::RunImpl::ProcessReadEvents() {
|
|
assert(num_events >= 0);
|
|
for (int i = 0; i < num_events; ++i) {
|
|
if (loop.m_terminate_request)
|
|
return;
|
|
switch (out_events[i].filter) {
|
|
case EVFILT_READ:
|
|
loop.ProcessReadObject(out_events[i].ident);
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unknown event");
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
MainLoopPosix::RunImpl::RunImpl(MainLoopPosix &loop) : loop(loop) {
|
|
read_fds.reserve(loop.m_read_fds.size());
|
|
}
|
|
|
|
static int StartPoll(llvm::MutableArrayRef<struct pollfd> fds,
|
|
std::optional<MainLoopPosix::TimePoint> point) {
|
|
#if HAVE_PPOLL
|
|
return ppoll(fds.data(), fds.size(), ToTimeSpec(point),
|
|
/*sigmask=*/nullptr);
|
|
#else
|
|
using namespace std::chrono;
|
|
int timeout = -1;
|
|
if (point) {
|
|
nanoseconds dur = std::max(*point - steady_clock::now(), nanoseconds(0));
|
|
timeout = ceil<milliseconds>(dur).count();
|
|
}
|
|
return poll(fds.data(), fds.size(), timeout);
|
|
#endif
|
|
}
|
|
|
|
Status MainLoopPosix::RunImpl::Poll() {
|
|
read_fds.clear();
|
|
|
|
for (const auto &fd : loop.m_read_fds) {
|
|
struct pollfd pfd;
|
|
pfd.fd = fd.first;
|
|
pfd.events = POLLIN;
|
|
pfd.revents = 0;
|
|
read_fds.push_back(pfd);
|
|
}
|
|
int ready = StartPoll(read_fds, loop.GetNextWakeupTime());
|
|
|
|
if (ready == -1 && errno != EINTR)
|
|
return Status(errno, eErrorTypePOSIX);
|
|
|
|
return Status();
|
|
}
|
|
|
|
void MainLoopPosix::RunImpl::ProcessReadEvents() {
|
|
for (const auto &fd : read_fds) {
|
|
if ((fd.revents & (POLLIN | POLLHUP)) == 0)
|
|
continue;
|
|
IOObject::WaitableHandle handle = fd.fd;
|
|
if (loop.m_terminate_request)
|
|
return;
|
|
|
|
loop.ProcessReadObject(handle);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
MainLoopPosix::MainLoopPosix() {
|
|
Status error = m_interrupt_pipe.CreateNew();
|
|
assert(error.Success());
|
|
|
|
// Make the write end of the pipe non-blocking.
|
|
int result = fcntl(m_interrupt_pipe.GetWriteFileDescriptor(), F_SETFL,
|
|
fcntl(m_interrupt_pipe.GetWriteFileDescriptor(), F_GETFL) |
|
|
O_NONBLOCK);
|
|
assert(result == 0);
|
|
UNUSED_IF_ASSERT_DISABLED(result);
|
|
|
|
const int interrupt_pipe_fd = m_interrupt_pipe.GetReadFileDescriptor();
|
|
m_read_fds.insert(
|
|
{interrupt_pipe_fd, [interrupt_pipe_fd](MainLoopBase &loop) {
|
|
char c;
|
|
ssize_t bytes_read =
|
|
llvm::sys::RetryAfterSignal(-1, ::read, interrupt_pipe_fd, &c, 1);
|
|
assert(bytes_read == 1);
|
|
UNUSED_IF_ASSERT_DISABLED(bytes_read);
|
|
// NB: This implicitly causes another loop iteration
|
|
// and therefore the execution of pending callbacks.
|
|
}});
|
|
#if HAVE_SYS_EVENT_H
|
|
m_kqueue = kqueue();
|
|
assert(m_kqueue >= 0);
|
|
#endif
|
|
}
|
|
|
|
MainLoopPosix::~MainLoopPosix() {
|
|
#if HAVE_SYS_EVENT_H
|
|
close(m_kqueue);
|
|
#endif
|
|
m_read_fds.erase(m_interrupt_pipe.GetReadFileDescriptor());
|
|
m_interrupt_pipe.Close();
|
|
assert(m_read_fds.size() == 0);
|
|
assert(m_signals.size() == 0);
|
|
}
|
|
|
|
MainLoopPosix::ReadHandleUP
|
|
MainLoopPosix::RegisterReadObject(const IOObjectSP &object_sp,
|
|
const Callback &callback, Status &error) {
|
|
if (!object_sp || !object_sp->IsValid()) {
|
|
error = Status::FromErrorString("IO object is not valid.");
|
|
return nullptr;
|
|
}
|
|
|
|
const bool inserted =
|
|
m_read_fds.insert({object_sp->GetWaitableHandle(), callback}).second;
|
|
if (!inserted) {
|
|
error = Status::FromErrorStringWithFormat(
|
|
"File descriptor %d already monitored.",
|
|
object_sp->GetWaitableHandle());
|
|
return nullptr;
|
|
}
|
|
|
|
return CreateReadHandle(object_sp);
|
|
}
|
|
|
|
// We shall block the signal, then install the signal handler. The signal will
|
|
// be unblocked in the Run() function to check for signal delivery.
|
|
MainLoopPosix::SignalHandleUP
|
|
MainLoopPosix::RegisterSignal(int signo, const Callback &callback,
|
|
Status &error) {
|
|
auto signal_it = m_signals.find(signo);
|
|
if (signal_it != m_signals.end()) {
|
|
auto callback_it = signal_it->second.callbacks.insert(
|
|
signal_it->second.callbacks.end(), callback);
|
|
return SignalHandleUP(new SignalHandle(*this, signo, callback_it));
|
|
}
|
|
|
|
SignalInfo info;
|
|
info.callbacks.push_back(callback);
|
|
struct sigaction new_action;
|
|
new_action.sa_sigaction = &SignalHandler;
|
|
new_action.sa_flags = SA_SIGINFO;
|
|
sigemptyset(&new_action.sa_mask);
|
|
sigaddset(&new_action.sa_mask, signo);
|
|
sigset_t old_set;
|
|
|
|
// Set signal info before installing the signal handler!
|
|
g_signal_info[signo].pipe_fd = m_interrupt_pipe.GetWriteFileDescriptor();
|
|
g_signal_info[signo].flag = 0;
|
|
|
|
int ret = sigaction(signo, &new_action, &info.old_action);
|
|
UNUSED_IF_ASSERT_DISABLED(ret);
|
|
assert(ret == 0 && "sigaction failed");
|
|
|
|
ret = pthread_sigmask(SIG_UNBLOCK, &new_action.sa_mask, &old_set);
|
|
assert(ret == 0 && "pthread_sigmask failed");
|
|
info.was_blocked = sigismember(&old_set, signo);
|
|
auto insert_ret = m_signals.insert({signo, info});
|
|
|
|
return SignalHandleUP(new SignalHandle(
|
|
*this, signo, insert_ret.first->second.callbacks.begin()));
|
|
}
|
|
|
|
void MainLoopPosix::UnregisterReadObject(IOObject::WaitableHandle handle) {
|
|
bool erased = m_read_fds.erase(handle);
|
|
UNUSED_IF_ASSERT_DISABLED(erased);
|
|
assert(erased);
|
|
}
|
|
|
|
void MainLoopPosix::UnregisterSignal(
|
|
int signo, std::list<Callback>::iterator callback_it) {
|
|
auto it = m_signals.find(signo);
|
|
assert(it != m_signals.end());
|
|
|
|
it->second.callbacks.erase(callback_it);
|
|
// Do not remove the signal handler unless all callbacks have been erased.
|
|
if (!it->second.callbacks.empty())
|
|
return;
|
|
|
|
sigaction(signo, &it->second.old_action, nullptr);
|
|
|
|
sigset_t set;
|
|
sigemptyset(&set);
|
|
sigaddset(&set, signo);
|
|
int ret = pthread_sigmask(it->second.was_blocked ? SIG_BLOCK : SIG_UNBLOCK,
|
|
&set, nullptr);
|
|
assert(ret == 0);
|
|
UNUSED_IF_ASSERT_DISABLED(ret);
|
|
|
|
m_signals.erase(it);
|
|
g_signal_info[signo] = {};
|
|
}
|
|
|
|
Status MainLoopPosix::Run() {
|
|
m_terminate_request = false;
|
|
|
|
Status error;
|
|
RunImpl impl(*this);
|
|
|
|
while (!m_terminate_request) {
|
|
error = impl.Poll();
|
|
if (error.Fail())
|
|
return error;
|
|
|
|
impl.ProcessReadEvents();
|
|
|
|
ProcessSignals();
|
|
|
|
m_interrupting = false;
|
|
ProcessCallbacks();
|
|
}
|
|
return Status();
|
|
}
|
|
|
|
void MainLoopPosix::ProcessReadObject(IOObject::WaitableHandle handle) {
|
|
auto it = m_read_fds.find(handle);
|
|
if (it != m_read_fds.end())
|
|
it->second(*this); // Do the work
|
|
}
|
|
|
|
void MainLoopPosix::ProcessSignals() {
|
|
std::vector<int> signals;
|
|
for (const auto &entry : m_signals)
|
|
if (g_signal_info[entry.first].flag != 0)
|
|
signals.push_back(entry.first);
|
|
|
|
for (const auto &signal : signals) {
|
|
if (m_terminate_request)
|
|
return;
|
|
|
|
g_signal_info[signal].flag = 0;
|
|
ProcessSignal(signal);
|
|
}
|
|
}
|
|
|
|
void MainLoopPosix::ProcessSignal(int signo) {
|
|
auto it = m_signals.find(signo);
|
|
if (it != m_signals.end()) {
|
|
// The callback may actually register/unregister signal handlers,
|
|
// so we need to create a copy first.
|
|
llvm::SmallVector<Callback, 4> callbacks_to_run{
|
|
it->second.callbacks.begin(), it->second.callbacks.end()};
|
|
for (auto &x : callbacks_to_run)
|
|
x(*this); // Do the work
|
|
}
|
|
}
|
|
|
|
void MainLoopPosix::Interrupt() {
|
|
if (m_interrupting.exchange(true))
|
|
return;
|
|
|
|
char c = '.';
|
|
cantFail(m_interrupt_pipe.Write(&c, 1));
|
|
}
|