Lang Hames 41379f1ec4 [ORC] Share ownership of JITDylibs between ExecutionSession and
MaterializationResponsibility.

MaterializationResponsibility objects provide a connection between a
materialization process (compiler, jit linker, etc.) and the JIT state held in
the ExecutionSession and JITDylib objects. Switching to shared ownership
extends the lifetime of JITDylibs to ensure they remain accessible until all
materializers targeting them have completed. This will allow (in a follow-up
patch) JITDylibs to be removed from the ExecutionSession and placed in a
pending-destruction state while they are kept alive to communicate errors
to/from any still-runnning materialization processes. The intent is to enable
JITDylibs to be safely removed even if they have running compiles targeting
them.
2020-05-10 16:37:17 -07:00

2112 lines
72 KiB
C++

//===--- Core.cpp - Core ORC APIs (MaterializationUnit, JITDylib, etc.) ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/Orc/Core.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/ExecutionEngine/Orc/DebugUtils.h"
#include "llvm/ExecutionEngine/Orc/OrcError.h"
#include <condition_variable>
#if LLVM_ENABLE_THREADS
#include <future>
#endif
#define DEBUG_TYPE "orc"
namespace llvm {
namespace orc {
char FailedToMaterialize::ID = 0;
char SymbolsNotFound::ID = 0;
char SymbolsCouldNotBeRemoved::ID = 0;
char MissingSymbolDefinitions::ID = 0;
char UnexpectedSymbolDefinitions::ID = 0;
RegisterDependenciesFunction NoDependenciesToRegister =
RegisterDependenciesFunction();
void MaterializationUnit::anchor() {}
FailedToMaterialize::FailedToMaterialize(
std::shared_ptr<SymbolDependenceMap> Symbols)
: Symbols(std::move(Symbols)) {
assert(!this->Symbols->empty() && "Can not fail to resolve an empty set");
}
std::error_code FailedToMaterialize::convertToErrorCode() const {
return orcError(OrcErrorCode::UnknownORCError);
}
void FailedToMaterialize::log(raw_ostream &OS) const {
OS << "Failed to materialize symbols: " << *Symbols;
}
SymbolsNotFound::SymbolsNotFound(SymbolNameSet Symbols) {
for (auto &Sym : Symbols)
this->Symbols.push_back(Sym);
assert(!this->Symbols.empty() && "Can not fail to resolve an empty set");
}
SymbolsNotFound::SymbolsNotFound(SymbolNameVector Symbols)
: Symbols(std::move(Symbols)) {
assert(!this->Symbols.empty() && "Can not fail to resolve an empty set");
}
std::error_code SymbolsNotFound::convertToErrorCode() const {
return orcError(OrcErrorCode::UnknownORCError);
}
void SymbolsNotFound::log(raw_ostream &OS) const {
OS << "Symbols not found: " << Symbols;
}
SymbolsCouldNotBeRemoved::SymbolsCouldNotBeRemoved(SymbolNameSet Symbols)
: Symbols(std::move(Symbols)) {
assert(!this->Symbols.empty() && "Can not fail to resolve an empty set");
}
std::error_code SymbolsCouldNotBeRemoved::convertToErrorCode() const {
return orcError(OrcErrorCode::UnknownORCError);
}
void SymbolsCouldNotBeRemoved::log(raw_ostream &OS) const {
OS << "Symbols could not be removed: " << Symbols;
}
std::error_code MissingSymbolDefinitions::convertToErrorCode() const {
return orcError(OrcErrorCode::MissingSymbolDefinitions);
}
void MissingSymbolDefinitions::log(raw_ostream &OS) const {
OS << "Missing definitions in module " << ModuleName
<< ": " << Symbols;
}
std::error_code UnexpectedSymbolDefinitions::convertToErrorCode() const {
return orcError(OrcErrorCode::UnexpectedSymbolDefinitions);
}
void UnexpectedSymbolDefinitions::log(raw_ostream &OS) const {
OS << "Unexpected definitions in module " << ModuleName
<< ": " << Symbols;
}
AsynchronousSymbolQuery::AsynchronousSymbolQuery(
const SymbolLookupSet &Symbols, SymbolState RequiredState,
SymbolsResolvedCallback NotifyComplete)
: NotifyComplete(std::move(NotifyComplete)), RequiredState(RequiredState) {
assert(RequiredState >= SymbolState::Resolved &&
"Cannot query for a symbols that have not reached the resolve state "
"yet");
OutstandingSymbolsCount = Symbols.size();
for (auto &KV : Symbols)
ResolvedSymbols[KV.first] = nullptr;
}
void AsynchronousSymbolQuery::notifySymbolMetRequiredState(
const SymbolStringPtr &Name, JITEvaluatedSymbol Sym) {
auto I = ResolvedSymbols.find(Name);
assert(I != ResolvedSymbols.end() &&
"Resolving symbol outside the requested set");
assert(I->second.getAddress() == 0 && "Redundantly resolving symbol Name");
// If this is a materialization-side-effects-only symbol then drop it,
// otherwise update its map entry with its resolved address.
if (Sym.getFlags().hasMaterializationSideEffectsOnly())
ResolvedSymbols.erase(I);
else
I->second = std::move(Sym);
--OutstandingSymbolsCount;
}
void AsynchronousSymbolQuery::handleComplete() {
assert(OutstandingSymbolsCount == 0 &&
"Symbols remain, handleComplete called prematurely");
auto TmpNotifyComplete = std::move(NotifyComplete);
NotifyComplete = SymbolsResolvedCallback();
TmpNotifyComplete(std::move(ResolvedSymbols));
}
bool AsynchronousSymbolQuery::canStillFail() { return !!NotifyComplete; }
void AsynchronousSymbolQuery::handleFailed(Error Err) {
assert(QueryRegistrations.empty() && ResolvedSymbols.empty() &&
OutstandingSymbolsCount == 0 &&
"Query should already have been abandoned");
NotifyComplete(std::move(Err));
NotifyComplete = SymbolsResolvedCallback();
}
void AsynchronousSymbolQuery::addQueryDependence(JITDylib &JD,
SymbolStringPtr Name) {
bool Added = QueryRegistrations[&JD].insert(std::move(Name)).second;
(void)Added;
assert(Added && "Duplicate dependence notification?");
}
void AsynchronousSymbolQuery::removeQueryDependence(
JITDylib &JD, const SymbolStringPtr &Name) {
auto QRI = QueryRegistrations.find(&JD);
assert(QRI != QueryRegistrations.end() &&
"No dependencies registered for JD");
assert(QRI->second.count(Name) && "No dependency on Name in JD");
QRI->second.erase(Name);
if (QRI->second.empty())
QueryRegistrations.erase(QRI);
}
void AsynchronousSymbolQuery::dropSymbol(const SymbolStringPtr &Name) {
auto I = ResolvedSymbols.find(Name);
assert(I != ResolvedSymbols.end() &&
"Redundant removal of weakly-referenced symbol");
ResolvedSymbols.erase(I);
--OutstandingSymbolsCount;
}
void AsynchronousSymbolQuery::detach() {
ResolvedSymbols.clear();
OutstandingSymbolsCount = 0;
for (auto &KV : QueryRegistrations)
KV.first->detachQueryHelper(*this, KV.second);
QueryRegistrations.clear();
}
MaterializationResponsibility::~MaterializationResponsibility() {
assert(SymbolFlags.empty() &&
"All symbols should have been explicitly materialized or failed");
}
SymbolNameSet MaterializationResponsibility::getRequestedSymbols() const {
return JD->getRequestedSymbols(SymbolFlags);
}
Error MaterializationResponsibility::notifyResolved(const SymbolMap &Symbols) {
LLVM_DEBUG({
dbgs() << "In " << JD->getName() << " resolving " << Symbols << "\n";
});
#ifndef NDEBUG
for (auto &KV : Symbols) {
auto WeakFlags = JITSymbolFlags::Weak | JITSymbolFlags::Common;
auto I = SymbolFlags.find(KV.first);
assert(I != SymbolFlags.end() &&
"Resolving symbol outside this responsibility set");
assert(!I->second.hasMaterializationSideEffectsOnly() &&
"Can't resolve materialization-side-effects-only symbol");
assert((KV.second.getFlags() & ~WeakFlags) == (I->second & ~WeakFlags) &&
"Resolving symbol with incorrect flags");
}
#endif
return JD->resolve(Symbols);
}
Error MaterializationResponsibility::notifyEmitted() {
LLVM_DEBUG({
dbgs() << "In " << JD->getName() << " emitting " << SymbolFlags << "\n";
});
if (auto Err = JD->emit(SymbolFlags))
return Err;
SymbolFlags.clear();
return Error::success();
}
Error MaterializationResponsibility::defineMaterializing(
SymbolFlagsMap NewSymbolFlags) {
LLVM_DEBUG({
dbgs() << "In " << JD->getName() << " defining materializing symbols "
<< NewSymbolFlags << "\n";
});
if (auto AcceptedDefs = JD->defineMaterializing(std::move(NewSymbolFlags))) {
// Add all newly accepted symbols to this responsibility object.
for (auto &KV : *AcceptedDefs)
SymbolFlags.insert(KV);
return Error::success();
} else
return AcceptedDefs.takeError();
}
void MaterializationResponsibility::failMaterialization() {
LLVM_DEBUG({
dbgs() << "In " << JD->getName() << " failing materialization for "
<< SymbolFlags << "\n";
});
JITDylib::FailedSymbolsWorklist Worklist;
for (auto &KV : SymbolFlags)
Worklist.push_back(std::make_pair(JD.get(), KV.first));
SymbolFlags.clear();
JD->notifyFailed(std::move(Worklist));
}
void MaterializationResponsibility::replace(
std::unique_ptr<MaterializationUnit> MU) {
// If the replacement MU is empty then return.
if (MU->getSymbols().empty())
return;
for (auto &KV : MU->getSymbols()) {
assert(SymbolFlags.count(KV.first) &&
"Replacing definition outside this responsibility set");
SymbolFlags.erase(KV.first);
}
if (MU->getInitializerSymbol() == InitSymbol)
InitSymbol = nullptr;
LLVM_DEBUG(JD->getExecutionSession().runSessionLocked([&]() {
dbgs() << "In " << JD->getName() << " replacing symbols with " << *MU
<< "\n";
}););
JD->replace(std::move(MU));
}
MaterializationResponsibility
MaterializationResponsibility::delegate(const SymbolNameSet &Symbols,
VModuleKey NewKey) {
if (NewKey == VModuleKey())
NewKey = K;
SymbolStringPtr DelegatedInitSymbol;
SymbolFlagsMap DelegatedFlags;
for (auto &Name : Symbols) {
auto I = SymbolFlags.find(Name);
assert(I != SymbolFlags.end() &&
"Symbol is not tracked by this MaterializationResponsibility "
"instance");
DelegatedFlags[Name] = std::move(I->second);
if (Name == InitSymbol)
std::swap(InitSymbol, DelegatedInitSymbol);
SymbolFlags.erase(I);
}
return MaterializationResponsibility(JD, std::move(DelegatedFlags),
std::move(DelegatedInitSymbol),
std::move(NewKey));
}
void MaterializationResponsibility::addDependencies(
const SymbolStringPtr &Name, const SymbolDependenceMap &Dependencies) {
LLVM_DEBUG({
dbgs() << "Adding dependencies for " << Name << ": " << Dependencies
<< "\n";
});
assert(SymbolFlags.count(Name) &&
"Symbol not covered by this MaterializationResponsibility instance");
JD->addDependencies(Name, Dependencies);
}
void MaterializationResponsibility::addDependenciesForAll(
const SymbolDependenceMap &Dependencies) {
LLVM_DEBUG({
dbgs() << "Adding dependencies for all symbols in " << SymbolFlags << ": "
<< Dependencies << "\n";
});
for (auto &KV : SymbolFlags)
JD->addDependencies(KV.first, Dependencies);
}
AbsoluteSymbolsMaterializationUnit::AbsoluteSymbolsMaterializationUnit(
SymbolMap Symbols, VModuleKey K)
: MaterializationUnit(extractFlags(Symbols), nullptr, std::move(K)),
Symbols(std::move(Symbols)) {}
StringRef AbsoluteSymbolsMaterializationUnit::getName() const {
return "<Absolute Symbols>";
}
void AbsoluteSymbolsMaterializationUnit::materialize(
MaterializationResponsibility R) {
// No dependencies, so these calls can't fail.
cantFail(R.notifyResolved(Symbols));
cantFail(R.notifyEmitted());
}
void AbsoluteSymbolsMaterializationUnit::discard(const JITDylib &JD,
const SymbolStringPtr &Name) {
assert(Symbols.count(Name) && "Symbol is not part of this MU");
Symbols.erase(Name);
}
SymbolFlagsMap
AbsoluteSymbolsMaterializationUnit::extractFlags(const SymbolMap &Symbols) {
SymbolFlagsMap Flags;
for (const auto &KV : Symbols)
Flags[KV.first] = KV.second.getFlags();
return Flags;
}
ReExportsMaterializationUnit::ReExportsMaterializationUnit(
JITDylib *SourceJD, JITDylibLookupFlags SourceJDLookupFlags,
SymbolAliasMap Aliases, VModuleKey K)
: MaterializationUnit(extractFlags(Aliases), nullptr, std::move(K)),
SourceJD(SourceJD), SourceJDLookupFlags(SourceJDLookupFlags),
Aliases(std::move(Aliases)) {}
StringRef ReExportsMaterializationUnit::getName() const {
return "<Reexports>";
}
void ReExportsMaterializationUnit::materialize(
MaterializationResponsibility R) {
auto &ES = R.getTargetJITDylib().getExecutionSession();
JITDylib &TgtJD = R.getTargetJITDylib();
JITDylib &SrcJD = SourceJD ? *SourceJD : TgtJD;
// Find the set of requested aliases and aliasees. Return any unrequested
// aliases back to the JITDylib so as to not prematurely materialize any
// aliasees.
auto RequestedSymbols = R.getRequestedSymbols();
SymbolAliasMap RequestedAliases;
for (auto &Name : RequestedSymbols) {
auto I = Aliases.find(Name);
assert(I != Aliases.end() && "Symbol not found in aliases map?");
RequestedAliases[Name] = std::move(I->second);
Aliases.erase(I);
}
LLVM_DEBUG({
ES.runSessionLocked([&]() {
dbgs() << "materializing reexports: target = " << TgtJD.getName()
<< ", source = " << SrcJD.getName() << " " << RequestedAliases
<< "\n";
});
});
if (!Aliases.empty()) {
if (SourceJD)
R.replace(reexports(*SourceJD, std::move(Aliases), SourceJDLookupFlags));
else
R.replace(symbolAliases(std::move(Aliases)));
}
// The OnResolveInfo struct will hold the aliases and responsibilty for each
// query in the list.
struct OnResolveInfo {
OnResolveInfo(MaterializationResponsibility R, SymbolAliasMap Aliases)
: R(std::move(R)), Aliases(std::move(Aliases)) {}
MaterializationResponsibility R;
SymbolAliasMap Aliases;
};
// Build a list of queries to issue. In each round we build a query for the
// largest set of aliases that we can resolve without encountering a chain of
// aliases (e.g. Foo -> Bar, Bar -> Baz). Such a chain would deadlock as the
// query would be waiting on a symbol that it itself had to resolve. Creating
// a new query for each link in such a chain eliminates the possibility of
// deadlock. In practice chains are likely to be rare, and this algorithm will
// usually result in a single query to issue.
std::vector<std::pair<SymbolLookupSet, std::shared_ptr<OnResolveInfo>>>
QueryInfos;
while (!RequestedAliases.empty()) {
SymbolNameSet ResponsibilitySymbols;
SymbolLookupSet QuerySymbols;
SymbolAliasMap QueryAliases;
// Collect as many aliases as we can without including a chain.
for (auto &KV : RequestedAliases) {
// Chain detected. Skip this symbol for this round.
if (&SrcJD == &TgtJD && (QueryAliases.count(KV.second.Aliasee) ||
RequestedAliases.count(KV.second.Aliasee)))
continue;
ResponsibilitySymbols.insert(KV.first);
QuerySymbols.add(KV.second.Aliasee,
KV.second.AliasFlags.hasMaterializationSideEffectsOnly()
? SymbolLookupFlags::WeaklyReferencedSymbol
: SymbolLookupFlags::RequiredSymbol);
QueryAliases[KV.first] = std::move(KV.second);
}
// Remove the aliases collected this round from the RequestedAliases map.
for (auto &KV : QueryAliases)
RequestedAliases.erase(KV.first);
assert(!QuerySymbols.empty() && "Alias cycle detected!");
auto QueryInfo = std::make_shared<OnResolveInfo>(
R.delegate(ResponsibilitySymbols), std::move(QueryAliases));
QueryInfos.push_back(
make_pair(std::move(QuerySymbols), std::move(QueryInfo)));
}
// Issue the queries.
while (!QueryInfos.empty()) {
auto QuerySymbols = std::move(QueryInfos.back().first);
auto QueryInfo = std::move(QueryInfos.back().second);
QueryInfos.pop_back();
auto RegisterDependencies = [QueryInfo,
&SrcJD](const SymbolDependenceMap &Deps) {
// If there were no materializing symbols, just bail out.
if (Deps.empty())
return;
// Otherwise the only deps should be on SrcJD.
assert(Deps.size() == 1 && Deps.count(&SrcJD) &&
"Unexpected dependencies for reexports");
auto &SrcJDDeps = Deps.find(&SrcJD)->second;
SymbolDependenceMap PerAliasDepsMap;
auto &PerAliasDeps = PerAliasDepsMap[&SrcJD];
for (auto &KV : QueryInfo->Aliases)
if (SrcJDDeps.count(KV.second.Aliasee)) {
PerAliasDeps = {KV.second.Aliasee};
QueryInfo->R.addDependencies(KV.first, PerAliasDepsMap);
}
};
auto OnComplete = [QueryInfo](Expected<SymbolMap> Result) {
auto &ES = QueryInfo->R.getTargetJITDylib().getExecutionSession();
if (Result) {
SymbolMap ResolutionMap;
for (auto &KV : QueryInfo->Aliases) {
assert((KV.second.AliasFlags.hasMaterializationSideEffectsOnly() ||
Result->count(KV.second.Aliasee)) &&
"Result map missing entry?");
// Don't try to resolve materialization-side-effects-only symbols.
if (KV.second.AliasFlags.hasMaterializationSideEffectsOnly())
continue;
ResolutionMap[KV.first] = JITEvaluatedSymbol(
(*Result)[KV.second.Aliasee].getAddress(), KV.second.AliasFlags);
}
if (auto Err = QueryInfo->R.notifyResolved(ResolutionMap)) {
ES.reportError(std::move(Err));
QueryInfo->R.failMaterialization();
return;
}
if (auto Err = QueryInfo->R.notifyEmitted()) {
ES.reportError(std::move(Err));
QueryInfo->R.failMaterialization();
return;
}
} else {
ES.reportError(Result.takeError());
QueryInfo->R.failMaterialization();
}
};
ES.lookup(LookupKind::Static,
JITDylibSearchOrder({{&SrcJD, SourceJDLookupFlags}}),
QuerySymbols, SymbolState::Resolved, std::move(OnComplete),
std::move(RegisterDependencies));
}
}
void ReExportsMaterializationUnit::discard(const JITDylib &JD,
const SymbolStringPtr &Name) {
assert(Aliases.count(Name) &&
"Symbol not covered by this MaterializationUnit");
Aliases.erase(Name);
}
SymbolFlagsMap
ReExportsMaterializationUnit::extractFlags(const SymbolAliasMap &Aliases) {
SymbolFlagsMap SymbolFlags;
for (auto &KV : Aliases)
SymbolFlags[KV.first] = KV.second.AliasFlags;
return SymbolFlags;
}
Expected<SymbolAliasMap>
buildSimpleReexportsAliasMap(JITDylib &SourceJD, const SymbolNameSet &Symbols) {
SymbolLookupSet LookupSet(Symbols);
auto Flags = SourceJD.lookupFlags(
LookupKind::Static, JITDylibLookupFlags::MatchAllSymbols, LookupSet);
if (!Flags)
return Flags.takeError();
if (!LookupSet.empty()) {
LookupSet.sortByName();
return make_error<SymbolsNotFound>(LookupSet.getSymbolNames());
}
SymbolAliasMap Result;
for (auto &Name : Symbols) {
assert(Flags->count(Name) && "Missing entry in flags map");
Result[Name] = SymbolAliasMapEntry(Name, (*Flags)[Name]);
}
return Result;
}
ReexportsGenerator::ReexportsGenerator(JITDylib &SourceJD,
JITDylibLookupFlags SourceJDLookupFlags,
SymbolPredicate Allow)
: SourceJD(SourceJD), SourceJDLookupFlags(SourceJDLookupFlags),
Allow(std::move(Allow)) {}
Error ReexportsGenerator::tryToGenerate(LookupKind K, JITDylib &JD,
JITDylibLookupFlags JDLookupFlags,
const SymbolLookupSet &LookupSet) {
assert(&JD != &SourceJD && "Cannot re-export from the same dylib");
// Use lookupFlags to find the subset of symbols that match our lookup.
auto Flags = SourceJD.lookupFlags(K, JDLookupFlags, LookupSet);
if (!Flags)
return Flags.takeError();
// Create an alias map.
orc::SymbolAliasMap AliasMap;
for (auto &KV : *Flags)
if (!Allow || Allow(KV.first))
AliasMap[KV.first] = SymbolAliasMapEntry(KV.first, KV.second);
if (AliasMap.empty())
return Error::success();
// Define the re-exports.
return JD.define(reexports(SourceJD, AliasMap, SourceJDLookupFlags));
}
JITDylib::DefinitionGenerator::~DefinitionGenerator() {}
void JITDylib::removeGenerator(DefinitionGenerator &G) {
ES.runSessionLocked([&]() {
auto I = std::find_if(DefGenerators.begin(), DefGenerators.end(),
[&](const std::unique_ptr<DefinitionGenerator> &H) {
return H.get() == &G;
});
assert(I != DefGenerators.end() && "Generator not found");
DefGenerators.erase(I);
});
}
Expected<SymbolFlagsMap>
JITDylib::defineMaterializing(SymbolFlagsMap SymbolFlags) {
return ES.runSessionLocked([&]() -> Expected<SymbolFlagsMap> {
std::vector<SymbolTable::iterator> AddedSyms;
std::vector<SymbolFlagsMap::iterator> RejectedWeakDefs;
for (auto SFItr = SymbolFlags.begin(), SFEnd = SymbolFlags.end();
SFItr != SFEnd; ++SFItr) {
auto &Name = SFItr->first;
auto &Flags = SFItr->second;
auto EntryItr = Symbols.find(Name);
// If the entry already exists...
if (EntryItr != Symbols.end()) {
// If this is a strong definition then error out.
if (!Flags.isWeak()) {
// Remove any symbols already added.
for (auto &SI : AddedSyms)
Symbols.erase(SI);
// FIXME: Return all duplicates.
return make_error<DuplicateDefinition>(std::string(*Name));
}
// Otherwise just make a note to discard this symbol after the loop.
RejectedWeakDefs.push_back(SFItr);
continue;
} else
EntryItr =
Symbols.insert(std::make_pair(Name, SymbolTableEntry(Flags))).first;
AddedSyms.push_back(EntryItr);
EntryItr->second.setState(SymbolState::Materializing);
}
// Remove any rejected weak definitions from the SymbolFlags map.
while (!RejectedWeakDefs.empty()) {
SymbolFlags.erase(RejectedWeakDefs.back());
RejectedWeakDefs.pop_back();
}
return SymbolFlags;
});
}
void JITDylib::replace(std::unique_ptr<MaterializationUnit> MU) {
assert(MU != nullptr && "Can not replace with a null MaterializationUnit");
auto MustRunMU =
ES.runSessionLocked([&, this]() -> std::unique_ptr<MaterializationUnit> {
#ifndef NDEBUG
for (auto &KV : MU->getSymbols()) {
auto SymI = Symbols.find(KV.first);
assert(SymI != Symbols.end() && "Replacing unknown symbol");
assert(SymI->second.getState() == SymbolState::Materializing &&
"Can not replace a symbol that ha is not materializing");
assert(!SymI->second.hasMaterializerAttached() &&
"Symbol should not have materializer attached already");
assert(UnmaterializedInfos.count(KV.first) == 0 &&
"Symbol being replaced should have no UnmaterializedInfo");
}
#endif // NDEBUG
// If any symbol has pending queries against it then we need to
// materialize MU immediately.
for (auto &KV : MU->getSymbols()) {
auto MII = MaterializingInfos.find(KV.first);
if (MII != MaterializingInfos.end()) {
if (MII->second.hasQueriesPending())
return std::move(MU);
}
}
// Otherwise, make MU responsible for all the symbols.
auto UMI = std::make_shared<UnmaterializedInfo>(std::move(MU));
for (auto &KV : UMI->MU->getSymbols()) {
auto SymI = Symbols.find(KV.first);
assert(SymI->second.getState() == SymbolState::Materializing &&
"Can not replace a symbol that is not materializing");
assert(!SymI->second.hasMaterializerAttached() &&
"Can not replace a symbol that has a materializer attached");
assert(UnmaterializedInfos.count(KV.first) == 0 &&
"Unexpected materializer entry in map");
SymI->second.setAddress(SymI->second.getAddress());
SymI->second.setMaterializerAttached(true);
auto &UMIEntry = UnmaterializedInfos[KV.first];
assert((!UMIEntry || !UMIEntry->MU) &&
"Replacing symbol with materializer still attached");
UMIEntry = UMI;
}
return nullptr;
});
if (MustRunMU) {
auto MR =
MustRunMU->createMaterializationResponsibility(shared_from_this());
ES.dispatchMaterialization(std::move(MustRunMU), std::move(MR));
}
}
SymbolNameSet
JITDylib::getRequestedSymbols(const SymbolFlagsMap &SymbolFlags) const {
return ES.runSessionLocked([&]() {
SymbolNameSet RequestedSymbols;
for (auto &KV : SymbolFlags) {
assert(Symbols.count(KV.first) && "JITDylib does not cover this symbol?");
assert(Symbols.find(KV.first)->second.getState() !=
SymbolState::NeverSearched &&
Symbols.find(KV.first)->second.getState() != SymbolState::Ready &&
"getRequestedSymbols can only be called for symbols that have "
"started materializing");
auto I = MaterializingInfos.find(KV.first);
if (I == MaterializingInfos.end())
continue;
if (I->second.hasQueriesPending())
RequestedSymbols.insert(KV.first);
}
return RequestedSymbols;
});
}
void JITDylib::addDependencies(const SymbolStringPtr &Name,
const SymbolDependenceMap &Dependencies) {
assert(Symbols.count(Name) && "Name not in symbol table");
assert(Symbols[Name].getState() < SymbolState::Emitted &&
"Can not add dependencies for a symbol that is not materializing");
LLVM_DEBUG({
dbgs() << "In " << getName() << " adding dependencies for "
<< *Name << ": " << Dependencies << "\n";
});
// If Name is already in an error state then just bail out.
if (Symbols[Name].getFlags().hasError())
return;
auto &MI = MaterializingInfos[Name];
assert(Symbols[Name].getState() != SymbolState::Emitted &&
"Can not add dependencies to an emitted symbol");
bool DependsOnSymbolInErrorState = false;
// Register dependencies, record whether any depenendency is in the error
// state.
for (auto &KV : Dependencies) {
assert(KV.first && "Null JITDylib in dependency?");
auto &OtherJITDylib = *KV.first;
auto &DepsOnOtherJITDylib = MI.UnemittedDependencies[&OtherJITDylib];
for (auto &OtherSymbol : KV.second) {
// Check the sym entry for the dependency.
auto OtherSymI = OtherJITDylib.Symbols.find(OtherSymbol);
// Assert that this symbol exists and has not reached the ready state
// already.
assert(OtherSymI != OtherJITDylib.Symbols.end() &&
"Dependency on unknown symbol");
auto &OtherSymEntry = OtherSymI->second;
// If the other symbol is already in the Ready state then there's no
// dependency to add.
if (OtherSymEntry.getState() == SymbolState::Ready)
continue;
// If the dependency is in an error state then note this and continue,
// we will move this symbol to the error state below.
if (OtherSymEntry.getFlags().hasError()) {
DependsOnSymbolInErrorState = true;
continue;
}
// If the dependency was not in the error state then add it to
// our list of dependencies.
auto &OtherMI = OtherJITDylib.MaterializingInfos[OtherSymbol];
if (OtherSymEntry.getState() == SymbolState::Emitted)
transferEmittedNodeDependencies(MI, Name, OtherMI);
else if (&OtherJITDylib != this || OtherSymbol != Name) {
OtherMI.Dependants[this].insert(Name);
DepsOnOtherJITDylib.insert(OtherSymbol);
}
}
if (DepsOnOtherJITDylib.empty())
MI.UnemittedDependencies.erase(&OtherJITDylib);
}
// If this symbol dependended on any symbols in the error state then move
// this symbol to the error state too.
if (DependsOnSymbolInErrorState)
Symbols[Name].setFlags(Symbols[Name].getFlags() | JITSymbolFlags::HasError);
}
Error JITDylib::resolve(const SymbolMap &Resolved) {
SymbolNameSet SymbolsInErrorState;
AsynchronousSymbolQuerySet CompletedQueries;
ES.runSessionLocked([&, this]() {
struct WorklistEntry {
SymbolTable::iterator SymI;
JITEvaluatedSymbol ResolvedSym;
};
std::vector<WorklistEntry> Worklist;
Worklist.reserve(Resolved.size());
// Build worklist and check for any symbols in the error state.
for (const auto &KV : Resolved) {
assert(!KV.second.getFlags().hasError() &&
"Resolution result can not have error flag set");
auto SymI = Symbols.find(KV.first);
assert(SymI != Symbols.end() && "Symbol not found");
assert(!SymI->second.hasMaterializerAttached() &&
"Resolving symbol with materializer attached?");
assert(SymI->second.getState() == SymbolState::Materializing &&
"Symbol should be materializing");
assert(SymI->second.getAddress() == 0 &&
"Symbol has already been resolved");
if (SymI->second.getFlags().hasError())
SymbolsInErrorState.insert(KV.first);
else {
auto Flags = KV.second.getFlags();
Flags &= ~(JITSymbolFlags::Weak | JITSymbolFlags::Common);
assert(Flags == (SymI->second.getFlags() &
~(JITSymbolFlags::Weak | JITSymbolFlags::Common)) &&
"Resolved flags should match the declared flags");
Worklist.push_back(
{SymI, JITEvaluatedSymbol(KV.second.getAddress(), Flags)});
}
}
// If any symbols were in the error state then bail out.
if (!SymbolsInErrorState.empty())
return;
while (!Worklist.empty()) {
auto SymI = Worklist.back().SymI;
auto ResolvedSym = Worklist.back().ResolvedSym;
Worklist.pop_back();
auto &Name = SymI->first;
// Resolved symbols can not be weak: discard the weak flag.
JITSymbolFlags ResolvedFlags = ResolvedSym.getFlags();
SymI->second.setAddress(ResolvedSym.getAddress());
SymI->second.setFlags(ResolvedFlags);
SymI->second.setState(SymbolState::Resolved);
auto MII = MaterializingInfos.find(Name);
if (MII == MaterializingInfos.end())
continue;
auto &MI = MII->second;
for (auto &Q : MI.takeQueriesMeeting(SymbolState::Resolved)) {
Q->notifySymbolMetRequiredState(Name, ResolvedSym);
Q->removeQueryDependence(*this, Name);
if (Q->isComplete())
CompletedQueries.insert(std::move(Q));
}
}
});
assert((SymbolsInErrorState.empty() || CompletedQueries.empty()) &&
"Can't fail symbols and completed queries at the same time");
// If we failed any symbols then return an error.
if (!SymbolsInErrorState.empty()) {
auto FailedSymbolsDepMap = std::make_shared<SymbolDependenceMap>();
(*FailedSymbolsDepMap)[this] = std::move(SymbolsInErrorState);
return make_error<FailedToMaterialize>(std::move(FailedSymbolsDepMap));
}
// Otherwise notify all the completed queries.
for (auto &Q : CompletedQueries) {
assert(Q->isComplete() && "Q not completed");
Q->handleComplete();
}
return Error::success();
}
Error JITDylib::emit(const SymbolFlagsMap &Emitted) {
AsynchronousSymbolQuerySet CompletedQueries;
SymbolNameSet SymbolsInErrorState;
DenseMap<JITDylib *, SymbolNameVector> ReadySymbols;
ES.runSessionLocked([&, this]() {
std::vector<SymbolTable::iterator> Worklist;
// Scan to build worklist, record any symbols in the erorr state.
for (const auto &KV : Emitted) {
auto &Name = KV.first;
auto SymI = Symbols.find(Name);
assert(SymI != Symbols.end() && "No symbol table entry for Name");
if (SymI->second.getFlags().hasError())
SymbolsInErrorState.insert(Name);
else
Worklist.push_back(SymI);
}
// If any symbols were in the error state then bail out.
if (!SymbolsInErrorState.empty())
return;
// Otherwise update dependencies and move to the emitted state.
while (!Worklist.empty()) {
auto SymI = Worklist.back();
Worklist.pop_back();
auto &Name = SymI->first;
auto &SymEntry = SymI->second;
// Move symbol to the emitted state.
assert(((SymEntry.getFlags().hasMaterializationSideEffectsOnly() &&
SymEntry.getState() == SymbolState::Materializing) ||
SymEntry.getState() == SymbolState::Resolved) &&
"Emitting from state other than Resolved");
SymEntry.setState(SymbolState::Emitted);
auto MII = MaterializingInfos.find(Name);
// If this symbol has no MaterializingInfo then it's trivially ready.
// Update its state and continue.
if (MII == MaterializingInfos.end()) {
SymEntry.setState(SymbolState::Ready);
continue;
}
auto &MI = MII->second;
// For each dependant, transfer this node's emitted dependencies to
// it. If the dependant node is ready (i.e. has no unemitted
// dependencies) then notify any pending queries.
for (auto &KV : MI.Dependants) {
auto &DependantJD = *KV.first;
auto &DependantJDReadySymbols = ReadySymbols[&DependantJD];
for (auto &DependantName : KV.second) {
auto DependantMII =
DependantJD.MaterializingInfos.find(DependantName);
assert(DependantMII != DependantJD.MaterializingInfos.end() &&
"Dependant should have MaterializingInfo");
auto &DependantMI = DependantMII->second;
// Remove the dependant's dependency on this node.
assert(DependantMI.UnemittedDependencies.count(this) &&
"Dependant does not have an unemitted dependencies record for "
"this JITDylib");
assert(DependantMI.UnemittedDependencies[this].count(Name) &&
"Dependant does not count this symbol as a dependency?");
DependantMI.UnemittedDependencies[this].erase(Name);
if (DependantMI.UnemittedDependencies[this].empty())
DependantMI.UnemittedDependencies.erase(this);
// Transfer unemitted dependencies from this node to the dependant.
DependantJD.transferEmittedNodeDependencies(DependantMI,
DependantName, MI);
auto DependantSymI = DependantJD.Symbols.find(DependantName);
assert(DependantSymI != DependantJD.Symbols.end() &&
"Dependant has no entry in the Symbols table");
auto &DependantSymEntry = DependantSymI->second;
// If the dependant is emitted and this node was the last of its
// unemitted dependencies then the dependant node is now ready, so
// notify any pending queries on the dependant node.
if (DependantSymEntry.getState() == SymbolState::Emitted &&
DependantMI.UnemittedDependencies.empty()) {
assert(DependantMI.Dependants.empty() &&
"Dependants should be empty by now");
// Since this dependant is now ready, we erase its MaterializingInfo
// and update its materializing state.
DependantSymEntry.setState(SymbolState::Ready);
DependantJDReadySymbols.push_back(DependantName);
for (auto &Q : DependantMI.takeQueriesMeeting(SymbolState::Ready)) {
Q->notifySymbolMetRequiredState(
DependantName, DependantSymI->second.getSymbol());
if (Q->isComplete())
CompletedQueries.insert(Q);
Q->removeQueryDependence(DependantJD, DependantName);
}
}
}
}
auto &ThisJDReadySymbols = ReadySymbols[this];
MI.Dependants.clear();
if (MI.UnemittedDependencies.empty()) {
SymI->second.setState(SymbolState::Ready);
ThisJDReadySymbols.push_back(Name);
for (auto &Q : MI.takeQueriesMeeting(SymbolState::Ready)) {
Q->notifySymbolMetRequiredState(Name, SymI->second.getSymbol());
if (Q->isComplete())
CompletedQueries.insert(Q);
Q->removeQueryDependence(*this, Name);
}
}
}
});
assert((SymbolsInErrorState.empty() || CompletedQueries.empty()) &&
"Can't fail symbols and completed queries at the same time");
// If we failed any symbols then return an error.
if (!SymbolsInErrorState.empty()) {
auto FailedSymbolsDepMap = std::make_shared<SymbolDependenceMap>();
(*FailedSymbolsDepMap)[this] = std::move(SymbolsInErrorState);
return make_error<FailedToMaterialize>(std::move(FailedSymbolsDepMap));
}
// Otherwise notify all the completed queries.
for (auto &Q : CompletedQueries) {
assert(Q->isComplete() && "Q is not complete");
Q->handleComplete();
}
return Error::success();
}
void JITDylib::notifyFailed(FailedSymbolsWorklist Worklist) {
AsynchronousSymbolQuerySet FailedQueries;
auto FailedSymbolsMap = std::make_shared<SymbolDependenceMap>();
// Failing no symbols is a no-op.
if (Worklist.empty())
return;
auto &ES = Worklist.front().first->getExecutionSession();
ES.runSessionLocked([&]() {
while (!Worklist.empty()) {
assert(Worklist.back().first && "Failed JITDylib can not be null");
auto &JD = *Worklist.back().first;
auto Name = std::move(Worklist.back().second);
Worklist.pop_back();
(*FailedSymbolsMap)[&JD].insert(Name);
assert(JD.Symbols.count(Name) && "No symbol table entry for Name");
auto &Sym = JD.Symbols[Name];
// Move the symbol into the error state.
// Note that this may be redundant: The symbol might already have been
// moved to this state in response to the failure of a dependence.
Sym.setFlags(Sym.getFlags() | JITSymbolFlags::HasError);
// FIXME: Come up with a sane mapping of state to
// presence-of-MaterializingInfo so that we can assert presence / absence
// here, rather than testing it.
auto MII = JD.MaterializingInfos.find(Name);
if (MII == JD.MaterializingInfos.end())
continue;
auto &MI = MII->second;
// Move all dependants to the error state and disconnect from them.
for (auto &KV : MI.Dependants) {
auto &DependantJD = *KV.first;
for (auto &DependantName : KV.second) {
assert(DependantJD.Symbols.count(DependantName) &&
"No symbol table entry for DependantName");
auto &DependantSym = DependantJD.Symbols[DependantName];
DependantSym.setFlags(DependantSym.getFlags() |
JITSymbolFlags::HasError);
assert(DependantJD.MaterializingInfos.count(DependantName) &&
"No MaterializingInfo for dependant");
auto &DependantMI = DependantJD.MaterializingInfos[DependantName];
auto UnemittedDepI = DependantMI.UnemittedDependencies.find(&JD);
assert(UnemittedDepI != DependantMI.UnemittedDependencies.end() &&
"No UnemittedDependencies entry for this JITDylib");
assert(UnemittedDepI->second.count(Name) &&
"No UnemittedDependencies entry for this symbol");
UnemittedDepI->second.erase(Name);
if (UnemittedDepI->second.empty())
DependantMI.UnemittedDependencies.erase(UnemittedDepI);
// If this symbol is already in the emitted state then we need to
// take responsibility for failing its queries, so add it to the
// worklist.
if (DependantSym.getState() == SymbolState::Emitted) {
assert(DependantMI.Dependants.empty() &&
"Emitted symbol should not have dependants");
Worklist.push_back(std::make_pair(&DependantJD, DependantName));
}
}
}
MI.Dependants.clear();
// Disconnect from all unemitted depenencies.
for (auto &KV : MI.UnemittedDependencies) {
auto &UnemittedDepJD = *KV.first;
for (auto &UnemittedDepName : KV.second) {
auto UnemittedDepMII =
UnemittedDepJD.MaterializingInfos.find(UnemittedDepName);
assert(UnemittedDepMII != UnemittedDepJD.MaterializingInfos.end() &&
"Missing MII for unemitted dependency");
assert(UnemittedDepMII->second.Dependants.count(&JD) &&
"JD not listed as a dependant of unemitted dependency");
assert(UnemittedDepMII->second.Dependants[&JD].count(Name) &&
"Name is not listed as a dependant of unemitted dependency");
UnemittedDepMII->second.Dependants[&JD].erase(Name);
if (UnemittedDepMII->second.Dependants[&JD].empty())
UnemittedDepMII->second.Dependants.erase(&JD);
}
}
MI.UnemittedDependencies.clear();
// Collect queries to be failed for this MII.
AsynchronousSymbolQueryList ToDetach;
for (auto &Q : MII->second.pendingQueries()) {
// Add the query to the list to be failed and detach it.
FailedQueries.insert(Q);
ToDetach.push_back(Q);
}
for (auto &Q : ToDetach)
Q->detach();
assert(MI.Dependants.empty() &&
"Can not delete MaterializingInfo with dependants still attached");
assert(MI.UnemittedDependencies.empty() &&
"Can not delete MaterializingInfo with unemitted dependencies "
"still attached");
assert(!MI.hasQueriesPending() &&
"Can not delete MaterializingInfo with queries pending");
JD.MaterializingInfos.erase(MII);
}
});
for (auto &Q : FailedQueries)
Q->handleFailed(make_error<FailedToMaterialize>(FailedSymbolsMap));
}
void JITDylib::setLinkOrder(JITDylibSearchOrder NewLinkOrder,
bool LinkAgainstThisJITDylibFirst) {
ES.runSessionLocked([&]() {
if (LinkAgainstThisJITDylibFirst) {
LinkOrder.clear();
if (NewLinkOrder.empty() || NewLinkOrder.front().first != this)
LinkOrder.push_back(
std::make_pair(this, JITDylibLookupFlags::MatchAllSymbols));
LinkOrder.insert(LinkOrder.end(), NewLinkOrder.begin(),
NewLinkOrder.end());
} else
LinkOrder = std::move(NewLinkOrder);
});
}
void JITDylib::addToLinkOrder(JITDylib &JD, JITDylibLookupFlags JDLookupFlags) {
ES.runSessionLocked([&]() { LinkOrder.push_back({&JD, JDLookupFlags}); });
}
void JITDylib::replaceInLinkOrder(JITDylib &OldJD, JITDylib &NewJD,
JITDylibLookupFlags JDLookupFlags) {
ES.runSessionLocked([&]() {
for (auto &KV : LinkOrder)
if (KV.first == &OldJD) {
KV = {&NewJD, JDLookupFlags};
break;
}
});
}
void JITDylib::removeFromLinkOrder(JITDylib &JD) {
ES.runSessionLocked([&]() {
auto I = std::find_if(LinkOrder.begin(), LinkOrder.end(),
[&](const JITDylibSearchOrder::value_type &KV) {
return KV.first == &JD;
});
if (I != LinkOrder.end())
LinkOrder.erase(I);
});
}
Error JITDylib::remove(const SymbolNameSet &Names) {
return ES.runSessionLocked([&]() -> Error {
using SymbolMaterializerItrPair =
std::pair<SymbolTable::iterator, UnmaterializedInfosMap::iterator>;
std::vector<SymbolMaterializerItrPair> SymbolsToRemove;
SymbolNameSet Missing;
SymbolNameSet Materializing;
for (auto &Name : Names) {
auto I = Symbols.find(Name);
// Note symbol missing.
if (I == Symbols.end()) {
Missing.insert(Name);
continue;
}
// Note symbol materializing.
if (I->second.getState() != SymbolState::NeverSearched &&
I->second.getState() != SymbolState::Ready) {
Materializing.insert(Name);
continue;
}
auto UMII = I->second.hasMaterializerAttached()
? UnmaterializedInfos.find(Name)
: UnmaterializedInfos.end();
SymbolsToRemove.push_back(std::make_pair(I, UMII));
}
// If any of the symbols are not defined, return an error.
if (!Missing.empty())
return make_error<SymbolsNotFound>(std::move(Missing));
// If any of the symbols are currently materializing, return an error.
if (!Materializing.empty())
return make_error<SymbolsCouldNotBeRemoved>(std::move(Materializing));
// Remove the symbols.
for (auto &SymbolMaterializerItrPair : SymbolsToRemove) {
auto UMII = SymbolMaterializerItrPair.second;
// If there is a materializer attached, call discard.
if (UMII != UnmaterializedInfos.end()) {
UMII->second->MU->doDiscard(*this, UMII->first);
UnmaterializedInfos.erase(UMII);
}
auto SymI = SymbolMaterializerItrPair.first;
Symbols.erase(SymI);
}
return Error::success();
});
}
Expected<SymbolFlagsMap>
JITDylib::lookupFlags(LookupKind K, JITDylibLookupFlags JDLookupFlags,
SymbolLookupSet LookupSet) {
return ES.runSessionLocked([&, this]() -> Expected<SymbolFlagsMap> {
SymbolFlagsMap Result;
lookupFlagsImpl(Result, K, JDLookupFlags, LookupSet);
// Run any definition generators.
for (auto &DG : DefGenerators) {
// Bail out early if we found everything.
if (LookupSet.empty())
break;
// Run this generator.
if (auto Err = DG->tryToGenerate(K, *this, JDLookupFlags, LookupSet))
return std::move(Err);
// Re-try the search.
lookupFlagsImpl(Result, K, JDLookupFlags, LookupSet);
}
return Result;
});
}
void JITDylib::lookupFlagsImpl(SymbolFlagsMap &Result, LookupKind K,
JITDylibLookupFlags JDLookupFlags,
SymbolLookupSet &LookupSet) {
LookupSet.forEachWithRemoval(
[&](const SymbolStringPtr &Name, SymbolLookupFlags Flags) -> bool {
auto I = Symbols.find(Name);
if (I == Symbols.end())
return false;
assert(!Result.count(Name) && "Symbol already present in Flags map");
Result[Name] = I->second.getFlags();
return true;
});
}
Error JITDylib::lodgeQuery(MaterializationUnitList &MUs,
std::shared_ptr<AsynchronousSymbolQuery> &Q,
LookupKind K, JITDylibLookupFlags JDLookupFlags,
SymbolLookupSet &Unresolved) {
assert(Q && "Query can not be null");
if (auto Err = lodgeQueryImpl(MUs, Q, K, JDLookupFlags, Unresolved))
return Err;
// Run any definition generators.
for (auto &DG : DefGenerators) {
// Bail out early if we have resolved everything.
if (Unresolved.empty())
break;
// Run the generator.
if (auto Err = DG->tryToGenerate(K, *this, JDLookupFlags, Unresolved))
return Err;
// Lodge query. This can not fail as any new definitions were added
// by the generator under the session locked. Since they can't have
// started materializing yet they can not have failed.
cantFail(lodgeQueryImpl(MUs, Q, K, JDLookupFlags, Unresolved));
}
return Error::success();
}
Error JITDylib::lodgeQueryImpl(MaterializationUnitList &MUs,
std::shared_ptr<AsynchronousSymbolQuery> &Q,
LookupKind K, JITDylibLookupFlags JDLookupFlags,
SymbolLookupSet &Unresolved) {
return Unresolved.forEachWithRemoval(
[&](const SymbolStringPtr &Name,
SymbolLookupFlags SymLookupFlags) -> Expected<bool> {
// Search for name in symbols. If not found then continue without
// removal.
auto SymI = Symbols.find(Name);
if (SymI == Symbols.end())
return false;
// If we match against a materialization-side-effects only symbol then
// make sure it is weakly-referenced. Otherwise bail out with an error.
if (SymI->second.getFlags().hasMaterializationSideEffectsOnly() &&
SymLookupFlags != SymbolLookupFlags::WeaklyReferencedSymbol)
return make_error<SymbolsNotFound>(SymbolNameVector({Name}));
// If this is a non exported symbol and we're matching exported symbols
// only then skip this symbol without removal.
if (!SymI->second.getFlags().isExported() &&
JDLookupFlags == JITDylibLookupFlags::MatchExportedSymbolsOnly)
return false;
// If we matched against this symbol but it is in the error state then
// bail out and treat it as a failure to materialize.
if (SymI->second.getFlags().hasError()) {
auto FailedSymbolsMap = std::make_shared<SymbolDependenceMap>();
(*FailedSymbolsMap)[this] = {Name};
return make_error<FailedToMaterialize>(std::move(FailedSymbolsMap));
}
// If this symbol already meets the required state for then notify the
// query, then remove the symbol and continue.
if (SymI->second.getState() >= Q->getRequiredState()) {
Q->notifySymbolMetRequiredState(Name, SymI->second.getSymbol());
return true;
}
// Otherwise this symbol does not yet meet the required state. Check
// whether it has a materializer attached, and if so prepare to run it.
if (SymI->second.hasMaterializerAttached()) {
assert(SymI->second.getAddress() == 0 &&
"Symbol not resolved but already has address?");
auto UMII = UnmaterializedInfos.find(Name);
assert(UMII != UnmaterializedInfos.end() &&
"Lazy symbol should have UnmaterializedInfo");
auto MU = std::move(UMII->second->MU);
assert(MU != nullptr && "Materializer should not be null");
// Move all symbols associated with this MaterializationUnit into
// materializing state.
for (auto &KV : MU->getSymbols()) {
auto SymK = Symbols.find(KV.first);
SymK->second.setMaterializerAttached(false);
SymK->second.setState(SymbolState::Materializing);
UnmaterializedInfos.erase(KV.first);
}
// Add MU to the list of MaterializationUnits to be materialized.
MUs.push_back(std::move(MU));
}
// Add the query to the PendingQueries list and continue, deleting the
// element.
assert(SymI->second.getState() != SymbolState::NeverSearched &&
SymI->second.getState() != SymbolState::Ready &&
"By this line the symbol should be materializing");
auto &MI = MaterializingInfos[Name];
MI.addQuery(Q);
Q->addQueryDependence(*this, Name);
return true;
});
}
Expected<SymbolNameSet>
JITDylib::legacyLookup(std::shared_ptr<AsynchronousSymbolQuery> Q,
SymbolNameSet Names) {
assert(Q && "Query can not be null");
ES.runOutstandingMUs();
bool QueryComplete = false;
std::vector<std::unique_ptr<MaterializationUnit>> MUs;
SymbolLookupSet Unresolved(Names);
auto Err = ES.runSessionLocked([&, this]() -> Error {
QueryComplete = lookupImpl(Q, MUs, Unresolved);
// Run any definition generators.
for (auto &DG : DefGenerators) {
// Bail out early if we have resolved everything.
if (Unresolved.empty())
break;
assert(!QueryComplete && "query complete but unresolved symbols remain?");
if (auto Err = DG->tryToGenerate(LookupKind::Static, *this,
JITDylibLookupFlags::MatchAllSymbols,
Unresolved))
return Err;
if (!Unresolved.empty())
QueryComplete = lookupImpl(Q, MUs, Unresolved);
}
return Error::success();
});
if (Err)
return std::move(Err);
assert((MUs.empty() || !QueryComplete) &&
"If action flags are set, there should be no work to do (so no MUs)");
if (QueryComplete)
Q->handleComplete();
// FIXME: Swap back to the old code below once RuntimeDyld works with
// callbacks from asynchronous queries.
// Add MUs to the OutstandingMUs list.
{
std::lock_guard<std::recursive_mutex> Lock(ES.OutstandingMUsMutex);
auto ThisJD = shared_from_this();
for (auto &MU : MUs) {
auto MR = MU->createMaterializationResponsibility(ThisJD);
ES.OutstandingMUs.push_back(make_pair(std::move(MU), std::move(MR)));
}
}
ES.runOutstandingMUs();
// Dispatch any required MaterializationUnits for materialization.
// for (auto &MU : MUs)
// ES.dispatchMaterialization(*this, std::move(MU));
SymbolNameSet RemainingSymbols;
for (auto &KV : Unresolved)
RemainingSymbols.insert(KV.first);
return RemainingSymbols;
}
bool JITDylib::lookupImpl(
std::shared_ptr<AsynchronousSymbolQuery> &Q,
std::vector<std::unique_ptr<MaterializationUnit>> &MUs,
SymbolLookupSet &Unresolved) {
bool QueryComplete = false;
std::vector<SymbolStringPtr> ToRemove;
Unresolved.forEachWithRemoval(
[&](const SymbolStringPtr &Name, SymbolLookupFlags Flags) -> bool {
// Search for the name in Symbols. Skip without removing if not found.
auto SymI = Symbols.find(Name);
if (SymI == Symbols.end())
return false;
// If the symbol is already in the required state then notify the query
// and remove.
if (SymI->second.getState() >= Q->getRequiredState()) {
Q->notifySymbolMetRequiredState(Name, SymI->second.getSymbol());
if (Q->isComplete())
QueryComplete = true;
return true;
}
// If the symbol is lazy, get the MaterialiaztionUnit for it.
if (SymI->second.hasMaterializerAttached()) {
assert(SymI->second.getAddress() == 0 &&
"Lazy symbol should not have a resolved address");
auto UMII = UnmaterializedInfos.find(Name);
assert(UMII != UnmaterializedInfos.end() &&
"Lazy symbol should have UnmaterializedInfo");
auto MU = std::move(UMII->second->MU);
assert(MU != nullptr && "Materializer should not be null");
// Kick all symbols associated with this MaterializationUnit into
// materializing state.
for (auto &KV : MU->getSymbols()) {
auto SymK = Symbols.find(KV.first);
assert(SymK != Symbols.end() && "Missing symbol table entry");
SymK->second.setState(SymbolState::Materializing);
SymK->second.setMaterializerAttached(false);
UnmaterializedInfos.erase(KV.first);
}
// Add MU to the list of MaterializationUnits to be materialized.
MUs.push_back(std::move(MU));
}
// Add the query to the PendingQueries list.
assert(SymI->second.getState() != SymbolState::NeverSearched &&
SymI->second.getState() != SymbolState::Ready &&
"By this line the symbol should be materializing");
auto &MI = MaterializingInfos[Name];
MI.addQuery(Q);
Q->addQueryDependence(*this, Name);
return true;
});
return QueryComplete;
}
void JITDylib::dump(raw_ostream &OS) {
ES.runSessionLocked([&, this]() {
OS << "JITDylib \"" << JITDylibName << "\" (ES: "
<< format("0x%016" PRIx64, reinterpret_cast<uintptr_t>(&ES)) << "):\n"
<< "Link order: " << LinkOrder << "\n"
<< "Symbol table:\n";
for (auto &KV : Symbols) {
OS << " \"" << *KV.first << "\": ";
if (auto Addr = KV.second.getAddress())
OS << format("0x%016" PRIx64, Addr) << ", " << KV.second.getFlags()
<< " ";
else
OS << "<not resolved> ";
OS << KV.second.getFlags() << " " << KV.second.getState();
if (KV.second.hasMaterializerAttached()) {
OS << " (Materializer ";
auto I = UnmaterializedInfos.find(KV.first);
assert(I != UnmaterializedInfos.end() &&
"Lazy symbol should have UnmaterializedInfo");
OS << I->second->MU.get() << ", " << I->second->MU->getName() << ")\n";
} else
OS << "\n";
}
if (!MaterializingInfos.empty())
OS << " MaterializingInfos entries:\n";
for (auto &KV : MaterializingInfos) {
OS << " \"" << *KV.first << "\":\n"
<< " " << KV.second.pendingQueries().size()
<< " pending queries: { ";
for (const auto &Q : KV.second.pendingQueries())
OS << Q.get() << " (" << Q->getRequiredState() << ") ";
OS << "}\n Dependants:\n";
for (auto &KV2 : KV.second.Dependants)
OS << " " << KV2.first->getName() << ": " << KV2.second << "\n";
OS << " Unemitted Dependencies:\n";
for (auto &KV2 : KV.second.UnemittedDependencies)
OS << " " << KV2.first->getName() << ": " << KV2.second << "\n";
}
});
}
void JITDylib::MaterializingInfo::addQuery(
std::shared_ptr<AsynchronousSymbolQuery> Q) {
auto I = std::lower_bound(
PendingQueries.rbegin(), PendingQueries.rend(), Q->getRequiredState(),
[](const std::shared_ptr<AsynchronousSymbolQuery> &V, SymbolState S) {
return V->getRequiredState() <= S;
});
PendingQueries.insert(I.base(), std::move(Q));
}
void JITDylib::MaterializingInfo::removeQuery(
const AsynchronousSymbolQuery &Q) {
// FIXME: Implement 'find_as' for shared_ptr<T>/T*.
auto I =
std::find_if(PendingQueries.begin(), PendingQueries.end(),
[&Q](const std::shared_ptr<AsynchronousSymbolQuery> &V) {
return V.get() == &Q;
});
assert(I != PendingQueries.end() &&
"Query is not attached to this MaterializingInfo");
PendingQueries.erase(I);
}
JITDylib::AsynchronousSymbolQueryList
JITDylib::MaterializingInfo::takeQueriesMeeting(SymbolState RequiredState) {
AsynchronousSymbolQueryList Result;
while (!PendingQueries.empty()) {
if (PendingQueries.back()->getRequiredState() > RequiredState)
break;
Result.push_back(std::move(PendingQueries.back()));
PendingQueries.pop_back();
}
return Result;
}
JITDylib::JITDylib(ExecutionSession &ES, std::string Name)
: ES(ES), JITDylibName(std::move(Name)) {
LinkOrder.push_back({this, JITDylibLookupFlags::MatchAllSymbols});
}
Error JITDylib::defineImpl(MaterializationUnit &MU) {
LLVM_DEBUG({ dbgs() << " " << MU.getSymbols() << "\n"; });
SymbolNameSet Duplicates;
std::vector<SymbolStringPtr> ExistingDefsOverridden;
std::vector<SymbolStringPtr> MUDefsOverridden;
for (const auto &KV : MU.getSymbols()) {
auto I = Symbols.find(KV.first);
if (I != Symbols.end()) {
if (KV.second.isStrong()) {
if (I->second.getFlags().isStrong() ||
I->second.getState() > SymbolState::NeverSearched)
Duplicates.insert(KV.first);
else {
assert(I->second.getState() == SymbolState::NeverSearched &&
"Overridden existing def should be in the never-searched "
"state");
ExistingDefsOverridden.push_back(KV.first);
}
} else
MUDefsOverridden.push_back(KV.first);
}
}
// If there were any duplicate definitions then bail out.
if (!Duplicates.empty()) {
LLVM_DEBUG(
{ dbgs() << " Error: Duplicate symbols " << Duplicates << "\n"; });
return make_error<DuplicateDefinition>(std::string(**Duplicates.begin()));
}
// Discard any overridden defs in this MU.
LLVM_DEBUG({
if (!MUDefsOverridden.empty())
dbgs() << " Defs in this MU overridden: " << MUDefsOverridden << "\n";
});
for (auto &S : MUDefsOverridden)
MU.doDiscard(*this, S);
// Discard existing overridden defs.
LLVM_DEBUG({
if (!ExistingDefsOverridden.empty())
dbgs() << " Existing defs overridden by this MU: " << MUDefsOverridden
<< "\n";
});
for (auto &S : ExistingDefsOverridden) {
auto UMII = UnmaterializedInfos.find(S);
assert(UMII != UnmaterializedInfos.end() &&
"Overridden existing def should have an UnmaterializedInfo");
UMII->second->MU->doDiscard(*this, S);
}
// Finally, add the defs from this MU.
for (auto &KV : MU.getSymbols()) {
auto &SymEntry = Symbols[KV.first];
SymEntry.setFlags(KV.second);
SymEntry.setState(SymbolState::NeverSearched);
SymEntry.setMaterializerAttached(true);
}
return Error::success();
}
void JITDylib::detachQueryHelper(AsynchronousSymbolQuery &Q,
const SymbolNameSet &QuerySymbols) {
for (auto &QuerySymbol : QuerySymbols) {
assert(MaterializingInfos.count(QuerySymbol) &&
"QuerySymbol does not have MaterializingInfo");
auto &MI = MaterializingInfos[QuerySymbol];
MI.removeQuery(Q);
}
}
void JITDylib::transferEmittedNodeDependencies(
MaterializingInfo &DependantMI, const SymbolStringPtr &DependantName,
MaterializingInfo &EmittedMI) {
for (auto &KV : EmittedMI.UnemittedDependencies) {
auto &DependencyJD = *KV.first;
SymbolNameSet *UnemittedDependenciesOnDependencyJD = nullptr;
for (auto &DependencyName : KV.second) {
auto &DependencyMI = DependencyJD.MaterializingInfos[DependencyName];
// Do not add self dependencies.
if (&DependencyMI == &DependantMI)
continue;
// If we haven't looked up the dependencies for DependencyJD yet, do it
// now and cache the result.
if (!UnemittedDependenciesOnDependencyJD)
UnemittedDependenciesOnDependencyJD =
&DependantMI.UnemittedDependencies[&DependencyJD];
DependencyMI.Dependants[this].insert(DependantName);
UnemittedDependenciesOnDependencyJD->insert(DependencyName);
}
}
}
Platform::~Platform() {}
Expected<DenseMap<JITDylib *, SymbolMap>> Platform::lookupInitSymbols(
ExecutionSession &ES,
const DenseMap<JITDylib *, SymbolLookupSet> &InitSyms) {
DenseMap<JITDylib *, SymbolMap> CompoundResult;
Error CompoundErr = Error::success();
std::mutex LookupMutex;
std::condition_variable CV;
uint64_t Count = InitSyms.size();
LLVM_DEBUG({
dbgs() << "Issuing init-symbol lookup:\n";
for (auto &KV : InitSyms)
dbgs() << " " << KV.first->getName() << ": " << KV.second << "\n";
});
for (auto &KV : InitSyms) {
auto *JD = KV.first;
auto Names = std::move(KV.second);
ES.lookup(
LookupKind::Static,
JITDylibSearchOrder({{JD, JITDylibLookupFlags::MatchAllSymbols}}),
std::move(Names), SymbolState::Ready,
[&, JD](Expected<SymbolMap> Result) {
{
std::lock_guard<std::mutex> Lock(LookupMutex);
--Count;
if (Result) {
assert(!CompoundResult.count(JD) &&
"Duplicate JITDylib in lookup?");
CompoundResult[JD] = std::move(*Result);
} else
CompoundErr =
joinErrors(std::move(CompoundErr), Result.takeError());
}
CV.notify_one();
},
NoDependenciesToRegister);
}
std::unique_lock<std::mutex> Lock(LookupMutex);
CV.wait(Lock, [&] { return Count == 0 || CompoundErr; });
if (CompoundErr)
return std::move(CompoundErr);
return std::move(CompoundResult);
}
ExecutionSession::ExecutionSession(std::shared_ptr<SymbolStringPool> SSP)
: SSP(SSP ? std::move(SSP) : std::make_shared<SymbolStringPool>()) {
}
JITDylib *ExecutionSession::getJITDylibByName(StringRef Name) {
return runSessionLocked([&, this]() -> JITDylib * {
for (auto &JD : JDs)
if (JD->getName() == Name)
return JD.get();
return nullptr;
});
}
JITDylib &ExecutionSession::createBareJITDylib(std::string Name) {
assert(!getJITDylibByName(Name) && "JITDylib with that name already exists");
return runSessionLocked([&, this]() -> JITDylib & {
JDs.push_back(
std::shared_ptr<JITDylib>(new JITDylib(*this, std::move(Name))));
return *JDs.back();
});
}
Expected<JITDylib &> ExecutionSession::createJITDylib(std::string Name) {
auto &JD = createBareJITDylib(Name);
if (P)
if (auto Err = P->setupJITDylib(JD))
return std::move(Err);
return JD;
}
void ExecutionSession::legacyFailQuery(AsynchronousSymbolQuery &Q, Error Err) {
assert(!!Err && "Error should be in failure state");
bool SendErrorToQuery;
runSessionLocked([&]() {
Q.detach();
SendErrorToQuery = Q.canStillFail();
});
if (SendErrorToQuery)
Q.handleFailed(std::move(Err));
else
reportError(std::move(Err));
}
Expected<SymbolMap> ExecutionSession::legacyLookup(
LegacyAsyncLookupFunction AsyncLookup, SymbolNameSet Names,
SymbolState RequiredState,
RegisterDependenciesFunction RegisterDependencies) {
#if LLVM_ENABLE_THREADS
// In the threaded case we use promises to return the results.
std::promise<SymbolMap> PromisedResult;
Error ResolutionError = Error::success();
auto NotifyComplete = [&](Expected<SymbolMap> R) {
if (R)
PromisedResult.set_value(std::move(*R));
else {
ErrorAsOutParameter _(&ResolutionError);
ResolutionError = R.takeError();
PromisedResult.set_value(SymbolMap());
}
};
#else
SymbolMap Result;
Error ResolutionError = Error::success();
auto NotifyComplete = [&](Expected<SymbolMap> R) {
ErrorAsOutParameter _(&ResolutionError);
if (R)
Result = std::move(*R);
else
ResolutionError = R.takeError();
};
#endif
auto Query = std::make_shared<AsynchronousSymbolQuery>(
SymbolLookupSet(Names), RequiredState, std::move(NotifyComplete));
// FIXME: This should be run session locked along with the registration code
// and error reporting below.
SymbolNameSet UnresolvedSymbols = AsyncLookup(Query, std::move(Names));
// If the query was lodged successfully then register the dependencies,
// otherwise fail it with an error.
if (UnresolvedSymbols.empty())
RegisterDependencies(Query->QueryRegistrations);
else {
bool DeliverError = runSessionLocked([&]() {
Query->detach();
return Query->canStillFail();
});
auto Err = make_error<SymbolsNotFound>(std::move(UnresolvedSymbols));
if (DeliverError)
Query->handleFailed(std::move(Err));
else
reportError(std::move(Err));
}
#if LLVM_ENABLE_THREADS
auto ResultFuture = PromisedResult.get_future();
auto Result = ResultFuture.get();
if (ResolutionError)
return std::move(ResolutionError);
return std::move(Result);
#else
if (ResolutionError)
return std::move(ResolutionError);
return Result;
#endif
}
void ExecutionSession::lookup(
LookupKind K, const JITDylibSearchOrder &SearchOrder,
SymbolLookupSet Symbols, SymbolState RequiredState,
SymbolsResolvedCallback NotifyComplete,
RegisterDependenciesFunction RegisterDependencies) {
LLVM_DEBUG({
runSessionLocked([&]() {
dbgs() << "Looking up " << Symbols << " in " << SearchOrder
<< " (required state: " << RequiredState << ")\n";
});
});
// lookup can be re-entered recursively if running on a single thread. Run any
// outstanding MUs in case this query depends on them, otherwise this lookup
// will starve waiting for a result from an MU that is stuck in the queue.
runOutstandingMUs();
auto Unresolved = std::move(Symbols);
std::map<JITDylib *, MaterializationUnitList> CollectedMUsMap;
auto Q = std::make_shared<AsynchronousSymbolQuery>(Unresolved, RequiredState,
std::move(NotifyComplete));
bool QueryComplete = false;
auto LodgingErr = runSessionLocked([&]() -> Error {
auto LodgeQuery = [&]() -> Error {
for (auto &KV : SearchOrder) {
assert(KV.first && "JITDylibList entries must not be null");
assert(!CollectedMUsMap.count(KV.first) &&
"JITDylibList should not contain duplicate entries");
auto &JD = *KV.first;
auto JDLookupFlags = KV.second;
if (auto Err = JD.lodgeQuery(CollectedMUsMap[&JD], Q, K, JDLookupFlags,
Unresolved))
return Err;
}
// Strip any weakly referenced symbols that were not found.
Unresolved.forEachWithRemoval(
[&](const SymbolStringPtr &Name, SymbolLookupFlags Flags) {
if (Flags == SymbolLookupFlags::WeaklyReferencedSymbol) {
Q->dropSymbol(Name);
return true;
}
return false;
});
if (!Unresolved.empty())
return make_error<SymbolsNotFound>(Unresolved.getSymbolNames());
return Error::success();
};
if (auto Err = LodgeQuery()) {
// Query failed.
// Disconnect the query from its dependencies.
Q->detach();
// Replace the MUs.
for (auto &KV : CollectedMUsMap)
for (auto &MU : KV.second)
KV.first->replace(std::move(MU));
return Err;
}
// Query lodged successfully.
// Record whether this query is fully ready / resolved. We will use
// this to call handleFullyResolved/handleFullyReady outside the session
// lock.
QueryComplete = Q->isComplete();
// Call the register dependencies function.
if (RegisterDependencies && !Q->QueryRegistrations.empty())
RegisterDependencies(Q->QueryRegistrations);
return Error::success();
});
if (LodgingErr) {
Q->handleFailed(std::move(LodgingErr));
return;
}
if (QueryComplete)
Q->handleComplete();
// Move the MUs to the OutstandingMUs list, then materialize.
{
std::lock_guard<std::recursive_mutex> Lock(OutstandingMUsMutex);
for (auto &KV : CollectedMUsMap) {
auto JD = KV.first->shared_from_this();
for (auto &MU : KV.second) {
auto MR = MU->createMaterializationResponsibility(JD);
OutstandingMUs.push_back(std::make_pair(std::move(MU), std::move(MR)));
}
}
}
runOutstandingMUs();
}
Expected<SymbolMap>
ExecutionSession::lookup(const JITDylibSearchOrder &SearchOrder,
const SymbolLookupSet &Symbols, LookupKind K,
SymbolState RequiredState,
RegisterDependenciesFunction RegisterDependencies) {
#if LLVM_ENABLE_THREADS
// In the threaded case we use promises to return the results.
std::promise<SymbolMap> PromisedResult;
Error ResolutionError = Error::success();
auto NotifyComplete = [&](Expected<SymbolMap> R) {
if (R)
PromisedResult.set_value(std::move(*R));
else {
ErrorAsOutParameter _(&ResolutionError);
ResolutionError = R.takeError();
PromisedResult.set_value(SymbolMap());
}
};
#else
SymbolMap Result;
Error ResolutionError = Error::success();
auto NotifyComplete = [&](Expected<SymbolMap> R) {
ErrorAsOutParameter _(&ResolutionError);
if (R)
Result = std::move(*R);
else
ResolutionError = R.takeError();
};
#endif
// Perform the asynchronous lookup.
lookup(K, SearchOrder, Symbols, RequiredState, NotifyComplete,
RegisterDependencies);
#if LLVM_ENABLE_THREADS
auto ResultFuture = PromisedResult.get_future();
auto Result = ResultFuture.get();
if (ResolutionError)
return std::move(ResolutionError);
return std::move(Result);
#else
if (ResolutionError)
return std::move(ResolutionError);
return Result;
#endif
}
Expected<JITEvaluatedSymbol>
ExecutionSession::lookup(const JITDylibSearchOrder &SearchOrder,
SymbolStringPtr Name, SymbolState RequiredState) {
SymbolLookupSet Names({Name});
if (auto ResultMap = lookup(SearchOrder, std::move(Names), LookupKind::Static,
RequiredState, NoDependenciesToRegister)) {
assert(ResultMap->size() == 1 && "Unexpected number of results");
assert(ResultMap->count(Name) && "Missing result for symbol");
return std::move(ResultMap->begin()->second);
} else
return ResultMap.takeError();
}
Expected<JITEvaluatedSymbol>
ExecutionSession::lookup(ArrayRef<JITDylib *> SearchOrder, SymbolStringPtr Name,
SymbolState RequiredState) {
return lookup(makeJITDylibSearchOrder(SearchOrder), Name, RequiredState);
}
Expected<JITEvaluatedSymbol>
ExecutionSession::lookup(ArrayRef<JITDylib *> SearchOrder, StringRef Name,
SymbolState RequiredState) {
return lookup(SearchOrder, intern(Name), RequiredState);
}
void ExecutionSession::dump(raw_ostream &OS) {
runSessionLocked([this, &OS]() {
for (auto &JD : JDs)
JD->dump(OS);
});
}
void ExecutionSession::runOutstandingMUs() {
while (1) {
Optional<std::pair<std::unique_ptr<MaterializationUnit>,
MaterializationResponsibility>>
JMU;
{
std::lock_guard<std::recursive_mutex> Lock(OutstandingMUsMutex);
if (!OutstandingMUs.empty()) {
JMU.emplace(std::move(OutstandingMUs.back()));
OutstandingMUs.pop_back();
}
}
if (!JMU)
break;
assert(JMU->first && "No MU?");
dispatchMaterialization(std::move(JMU->first), std::move(JMU->second));
}
}
#ifndef NDEBUG
void ExecutionSession::dumpDispatchInfo(JITDylib &JD, MaterializationUnit &MU) {
runSessionLocked([&]() {
dbgs() << "Dispatching " << MU << " for " << JD.getName() << "\n";
});
}
#endif // NDEBUG
} // End namespace orc.
} // End namespace llvm.