llvm-project/mlir/lib/Target/LLVMIR/ModuleTranslation.cpp
Chris Lattner 41d4aa7de6 [SymbolRefAttr] Revise SymbolRefAttr to hold a StringAttr.
SymbolRefAttr is fundamentally a base string plus a sequence
of nested references.  Instead of storing the string data as
a copies StringRef, store it as an already-uniqued StringAttr.

This makes a lot of things simpler and more efficient because:
1) references to the symbol are already stored as StringAttr's:
   there is no need to copy the string data into MLIRContext
   multiple times.
2) This allows pointer comparisons instead of string
   comparisons (or redundant uniquing) within SymbolTable.cpp.
3) This allows SymbolTable to hold a DenseMap instead of a
   StringMap (which again copies the string data and slows
   lookup).

This is a moderately invasive patch, so I kept a lot of
compatibility APIs around.  It would be nice to explore changing
getName() to return a StringAttr for example (right now you have
to use getNameAttr()), and eliminate things like the StringRef
version of getSymbol.

Differential Revision: https://reviews.llvm.org/D108899
2021-08-29 21:54:47 -07:00

926 lines
37 KiB
C++

//===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the translation between an MLIR LLVM dialect module and
// the corresponding LLVMIR module. It only handles core LLVM IR operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
#include "DebugTranslation.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/RegionGraphTraits.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Target/LLVMIR/LLVMTranslationInterface.h"
#include "mlir/Target/LLVMIR/TypeToLLVM.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/IntrinsicsNVPTX.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
using namespace mlir;
using namespace mlir::LLVM;
using namespace mlir::LLVM::detail;
#include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
/// Builds a constant of a sequential LLVM type `type`, potentially containing
/// other sequential types recursively, from the individual constant values
/// provided in `constants`. `shape` contains the number of elements in nested
/// sequential types. Reports errors at `loc` and returns nullptr on error.
static llvm::Constant *
buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
ArrayRef<int64_t> shape, llvm::Type *type,
Location loc) {
if (shape.empty()) {
llvm::Constant *result = constants.front();
constants = constants.drop_front();
return result;
}
llvm::Type *elementType;
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
elementType = arrayTy->getElementType();
} else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
elementType = vectorTy->getElementType();
} else {
emitError(loc) << "expected sequential LLVM types wrapping a scalar";
return nullptr;
}
SmallVector<llvm::Constant *, 8> nested;
nested.reserve(shape.front());
for (int64_t i = 0; i < shape.front(); ++i) {
nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
elementType, loc));
if (!nested.back())
return nullptr;
}
if (shape.size() == 1 && type->isVectorTy())
return llvm::ConstantVector::get(nested);
return llvm::ConstantArray::get(
llvm::ArrayType::get(elementType, shape.front()), nested);
}
/// Returns the first non-sequential type nested in sequential types.
static llvm::Type *getInnermostElementType(llvm::Type *type) {
do {
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
type = arrayTy->getElementType();
} else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
type = vectorTy->getElementType();
} else {
return type;
}
} while (true);
}
/// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
/// This currently supports integer, floating point, splat and dense element
/// attributes and combinations thereof. Also, an array attribute with two
/// elements is supported to represent a complex constant. In case of error,
/// report it to `loc` and return nullptr.
llvm::Constant *mlir::LLVM::detail::getLLVMConstant(
llvm::Type *llvmType, Attribute attr, Location loc,
const ModuleTranslation &moduleTranslation, bool isTopLevel) {
if (!attr)
return llvm::UndefValue::get(llvmType);
if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) {
if (!isTopLevel) {
emitError(loc, "nested struct types are not supported in constants");
return nullptr;
}
auto arrayAttr = attr.cast<ArrayAttr>();
llvm::Type *elementType = structType->getElementType(0);
llvm::Constant *real = getLLVMConstant(elementType, arrayAttr[0], loc,
moduleTranslation, false);
if (!real)
return nullptr;
llvm::Constant *imag = getLLVMConstant(elementType, arrayAttr[1], loc,
moduleTranslation, false);
if (!imag)
return nullptr;
return llvm::ConstantStruct::get(structType, {real, imag});
}
// For integer types, we allow a mismatch in sizes as the index type in
// MLIR might have a different size than the index type in the LLVM module.
if (auto intAttr = attr.dyn_cast<IntegerAttr>())
return llvm::ConstantInt::get(
llvmType,
intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
if (auto floatAttr = attr.dyn_cast<FloatAttr>()) {
if (llvmType !=
llvm::Type::getFloatingPointTy(llvmType->getContext(),
floatAttr.getValue().getSemantics())) {
emitError(loc, "FloatAttr does not match expected type of the constant");
return nullptr;
}
return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
}
if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>())
return llvm::ConstantExpr::getBitCast(
moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType);
if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) {
llvm::Type *elementType;
uint64_t numElements;
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
elementType = arrayTy->getElementType();
numElements = arrayTy->getNumElements();
} else {
auto *vectorTy = cast<llvm::FixedVectorType>(llvmType);
elementType = vectorTy->getElementType();
numElements = vectorTy->getNumElements();
}
// Splat value is a scalar. Extract it only if the element type is not
// another sequence type. The recursion terminates because each step removes
// one outer sequential type.
bool elementTypeSequential =
isa<llvm::ArrayType, llvm::VectorType>(elementType);
llvm::Constant *child = getLLVMConstant(
elementType,
elementTypeSequential ? splatAttr : splatAttr.getSplatValue(), loc,
moduleTranslation, false);
if (!child)
return nullptr;
if (llvmType->isVectorTy())
return llvm::ConstantVector::getSplat(
llvm::ElementCount::get(numElements, /*Scalable=*/false), child);
if (llvmType->isArrayTy()) {
auto *arrayType = llvm::ArrayType::get(elementType, numElements);
SmallVector<llvm::Constant *, 8> constants(numElements, child);
return llvm::ConstantArray::get(arrayType, constants);
}
}
if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) {
assert(elementsAttr.getType().hasStaticShape());
assert(!elementsAttr.getType().getShape().empty() &&
"unexpected empty elements attribute shape");
SmallVector<llvm::Constant *, 8> constants;
constants.reserve(elementsAttr.getNumElements());
llvm::Type *innermostType = getInnermostElementType(llvmType);
for (auto n : elementsAttr.getValues<Attribute>()) {
constants.push_back(
getLLVMConstant(innermostType, n, loc, moduleTranslation, false));
if (!constants.back())
return nullptr;
}
ArrayRef<llvm::Constant *> constantsRef = constants;
llvm::Constant *result = buildSequentialConstant(
constantsRef, elementsAttr.getType().getShape(), llvmType, loc);
assert(constantsRef.empty() && "did not consume all elemental constants");
return result;
}
if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
return llvm::ConstantDataArray::get(
moduleTranslation.getLLVMContext(),
ArrayRef<char>{stringAttr.getValue().data(),
stringAttr.getValue().size()});
}
emitError(loc, "unsupported constant value");
return nullptr;
}
ModuleTranslation::ModuleTranslation(Operation *module,
std::unique_ptr<llvm::Module> llvmModule)
: mlirModule(module), llvmModule(std::move(llvmModule)),
debugTranslation(
std::make_unique<DebugTranslation>(module, *this->llvmModule)),
typeTranslator(this->llvmModule->getContext()),
iface(module->getContext()) {
assert(satisfiesLLVMModule(mlirModule) &&
"mlirModule should honor LLVM's module semantics.");
}
ModuleTranslation::~ModuleTranslation() {
if (ompBuilder)
ompBuilder->finalize();
}
/// Get the SSA value passed to the current block from the terminator operation
/// of its predecessor.
static Value getPHISourceValue(Block *current, Block *pred,
unsigned numArguments, unsigned index) {
Operation &terminator = *pred->getTerminator();
if (isa<LLVM::BrOp>(terminator))
return terminator.getOperand(index);
SuccessorRange successors = terminator.getSuccessors();
assert(std::adjacent_find(successors.begin(), successors.end()) ==
successors.end() &&
"successors with arguments in LLVM branches must be different blocks");
(void)successors;
// For instructions that branch based on a condition value, we need to take
// the operands for the branch that was taken.
if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) {
// For conditional branches, we take the operands from either the "true" or
// the "false" branch.
return condBranchOp.getSuccessor(0) == current
? condBranchOp.trueDestOperands()[index]
: condBranchOp.falseDestOperands()[index];
}
if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) {
// For switches, we take the operands from either the default case, or from
// the case branch that was taken.
if (switchOp.defaultDestination() == current)
return switchOp.defaultOperands()[index];
for (auto i : llvm::enumerate(switchOp.caseDestinations()))
if (i.value() == current)
return switchOp.getCaseOperands(i.index())[index];
}
llvm_unreachable("only branch or switch operations can be terminators of a "
"block that has successors");
}
/// Connect the PHI nodes to the results of preceding blocks.
void mlir::LLVM::detail::connectPHINodes(Region &region,
const ModuleTranslation &state) {
// Skip the first block, it cannot be branched to and its arguments correspond
// to the arguments of the LLVM function.
for (auto it = std::next(region.begin()), eit = region.end(); it != eit;
++it) {
Block *bb = &*it;
llvm::BasicBlock *llvmBB = state.lookupBlock(bb);
auto phis = llvmBB->phis();
auto numArguments = bb->getNumArguments();
assert(numArguments == std::distance(phis.begin(), phis.end()));
for (auto &numberedPhiNode : llvm::enumerate(phis)) {
auto &phiNode = numberedPhiNode.value();
unsigned index = numberedPhiNode.index();
for (auto *pred : bb->getPredecessors()) {
// Find the LLVM IR block that contains the converted terminator
// instruction and use it in the PHI node. Note that this block is not
// necessarily the same as state.lookupBlock(pred), some operations
// (in particular, OpenMP operations using OpenMPIRBuilder) may have
// split the blocks.
llvm::Instruction *terminator =
state.lookupBranch(pred->getTerminator());
assert(terminator && "missing the mapping for a terminator");
phiNode.addIncoming(
state.lookupValue(getPHISourceValue(bb, pred, numArguments, index)),
terminator->getParent());
}
}
}
}
/// Sort function blocks topologically.
SetVector<Block *>
mlir::LLVM::detail::getTopologicallySortedBlocks(Region &region) {
// For each block that has not been visited yet (i.e. that has no
// predecessors), add it to the list as well as its successors.
SetVector<Block *> blocks;
for (Block &b : region) {
if (blocks.count(&b) == 0) {
llvm::ReversePostOrderTraversal<Block *> traversal(&b);
blocks.insert(traversal.begin(), traversal.end());
}
}
assert(blocks.size() == region.getBlocks().size() &&
"some blocks are not sorted");
return blocks;
}
llvm::Value *mlir::LLVM::detail::createIntrinsicCall(
llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic,
ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) {
llvm::Module *module = builder.GetInsertBlock()->getModule();
llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys);
return builder.CreateCall(fn, args);
}
llvm::Value *
mlir::LLVM::detail::createNvvmIntrinsicCall(llvm::IRBuilderBase &builder,
llvm::Intrinsic::ID intrinsic,
ArrayRef<llvm::Value *> args) {
llvm::Module *module = builder.GetInsertBlock()->getModule();
llvm::Function *fn;
if (llvm::Intrinsic::isOverloaded(intrinsic)) {
if (intrinsic != llvm::Intrinsic::nvvm_wmma_m16n16k16_mma_row_row_f16_f16 &&
intrinsic != llvm::Intrinsic::nvvm_wmma_m16n16k16_mma_row_row_f32_f32) {
// NVVM load and store instrinsic names are overloaded on the
// source/destination pointer type. Pointer is the first argument in the
// corresponding NVVM Op.
fn = llvm::Intrinsic::getDeclaration(module, intrinsic,
{args[0]->getType()});
} else {
fn = llvm::Intrinsic::getDeclaration(module, intrinsic, {});
}
} else {
fn = llvm::Intrinsic::getDeclaration(module, intrinsic);
}
return builder.CreateCall(fn, args);
}
/// Given a single MLIR operation, create the corresponding LLVM IR operation
/// using the `builder`.
LogicalResult
ModuleTranslation::convertOperation(Operation &op,
llvm::IRBuilderBase &builder) {
const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op);
if (!opIface)
return op.emitError("cannot be converted to LLVM IR: missing "
"`LLVMTranslationDialectInterface` registration for "
"dialect for op: ")
<< op.getName();
if (failed(opIface->convertOperation(&op, builder, *this)))
return op.emitError("LLVM Translation failed for operation: ")
<< op.getName();
return convertDialectAttributes(&op);
}
/// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes
/// to define values corresponding to the MLIR block arguments. These nodes
/// are not connected to the source basic blocks, which may not exist yet. Uses
/// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have
/// been created for `bb` and included in the block mapping. Inserts new
/// instructions at the end of the block and leaves `builder` in a state
/// suitable for further insertion into the end of the block.
LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments,
llvm::IRBuilderBase &builder) {
builder.SetInsertPoint(lookupBlock(&bb));
auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
// Before traversing operations, make block arguments available through
// value remapping and PHI nodes, but do not add incoming edges for the PHI
// nodes just yet: those values may be defined by this or following blocks.
// This step is omitted if "ignoreArguments" is set. The arguments of the
// first block have been already made available through the remapping of
// LLVM function arguments.
if (!ignoreArguments) {
auto predecessors = bb.getPredecessors();
unsigned numPredecessors =
std::distance(predecessors.begin(), predecessors.end());
for (auto arg : bb.getArguments()) {
auto wrappedType = arg.getType();
if (!isCompatibleType(wrappedType))
return emitError(bb.front().getLoc(),
"block argument does not have an LLVM type");
llvm::Type *type = convertType(wrappedType);
llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
mapValue(arg, phi);
}
}
// Traverse operations.
for (auto &op : bb) {
// Set the current debug location within the builder.
builder.SetCurrentDebugLocation(
debugTranslation->translateLoc(op.getLoc(), subprogram));
if (failed(convertOperation(op, builder)))
return failure();
}
return success();
}
/// A helper method to get the single Block in an operation honoring LLVM's
/// module requirements.
static Block &getModuleBody(Operation *module) {
return module->getRegion(0).front();
}
/// A helper method to decide if a constant must not be set as a global variable
/// initializer. For an external linkage variable, the variable with an
/// initializer is considered externally visible and defined in this module, the
/// variable without an initializer is externally available and is defined
/// elsewhere.
static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage,
llvm::Constant *cst) {
return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) ||
linkage == llvm::GlobalVariable::ExternalWeakLinkage;
}
/// Sets the runtime preemption specifier of `gv` to dso_local if
/// `dsoLocalRequested` is true, otherwise it is left unchanged.
static void addRuntimePreemptionSpecifier(bool dsoLocalRequested,
llvm::GlobalValue *gv) {
if (dsoLocalRequested)
gv->setDSOLocal(true);
}
/// Create named global variables that correspond to llvm.mlir.global
/// definitions.
LogicalResult ModuleTranslation::convertGlobals() {
for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
llvm::Type *type = convertType(op.getType());
llvm::Constant *cst = nullptr;
if (op.getValueOrNull()) {
// String attributes are treated separately because they cannot appear as
// in-function constants and are thus not supported by getLLVMConstant.
if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) {
cst = llvm::ConstantDataArray::getString(
llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
type = cst->getType();
} else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(),
*this))) {
return failure();
}
}
auto linkage = convertLinkageToLLVM(op.linkage());
auto addrSpace = op.addr_space();
// LLVM IR requires constant with linkage other than external or weak
// external to have initializers. If MLIR does not provide an initializer,
// default to undef.
bool dropInitializer = shouldDropGlobalInitializer(linkage, cst);
if (!dropInitializer && !cst)
cst = llvm::UndefValue::get(type);
else if (dropInitializer && cst)
cst = nullptr;
auto *var = new llvm::GlobalVariable(
*llvmModule, type, op.constant(), linkage, cst, op.sym_name(),
/*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace);
if (op.unnamed_addr().hasValue())
var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.unnamed_addr()));
if (op.section().hasValue())
var->setSection(*op.section());
addRuntimePreemptionSpecifier(op.dso_local(), var);
Optional<uint64_t> alignment = op.alignment();
if (alignment.hasValue())
var->setAlignment(llvm::MaybeAlign(alignment.getValue()));
globalsMapping.try_emplace(op, var);
}
// Convert global variable bodies. This is done after all global variables
// have been created in LLVM IR because a global body may refer to another
// global or itself. So all global variables need to be mapped first.
for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
if (Block *initializer = op.getInitializerBlock()) {
llvm::IRBuilder<> builder(llvmModule->getContext());
for (auto &op : initializer->without_terminator()) {
if (failed(convertOperation(op, builder)) ||
!isa<llvm::Constant>(lookupValue(op.getResult(0))))
return emitError(op.getLoc(), "unemittable constant value");
}
ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
llvm::Constant *cst =
cast<llvm::Constant>(lookupValue(ret.getOperand(0)));
auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op));
if (!shouldDropGlobalInitializer(global->getLinkage(), cst))
global->setInitializer(cst);
}
}
return success();
}
/// Attempts to add an attribute identified by `key`, optionally with the given
/// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
/// attribute has a kind known to LLVM IR, create the attribute of this kind,
/// otherwise keep it as a string attribute. Performs additional checks for
/// attributes known to have or not have a value in order to avoid assertions
/// inside LLVM upon construction.
static LogicalResult checkedAddLLVMFnAttribute(Location loc,
llvm::Function *llvmFunc,
StringRef key,
StringRef value = StringRef()) {
auto kind = llvm::Attribute::getAttrKindFromName(key);
if (kind == llvm::Attribute::None) {
llvmFunc->addFnAttr(key, value);
return success();
}
if (llvm::Attribute::isIntAttrKind(kind)) {
if (value.empty())
return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
int result;
if (!value.getAsInteger(/*Radix=*/0, result))
llvmFunc->addFnAttr(
llvm::Attribute::get(llvmFunc->getContext(), kind, result));
else
llvmFunc->addFnAttr(key, value);
return success();
}
if (!value.empty())
return emitError(loc) << "LLVM attribute '" << key
<< "' does not expect a value, found '" << value
<< "'";
llvmFunc->addFnAttr(kind);
return success();
}
/// Attaches the attributes listed in the given array attribute to `llvmFunc`.
/// Reports error to `loc` if any and returns immediately. Expects `attributes`
/// to be an array attribute containing either string attributes, treated as
/// value-less LLVM attributes, or array attributes containing two string
/// attributes, with the first string being the name of the corresponding LLVM
/// attribute and the second string beings its value. Note that even integer
/// attributes are expected to have their values expressed as strings.
static LogicalResult
forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes,
llvm::Function *llvmFunc) {
if (!attributes)
return success();
for (Attribute attr : *attributes) {
if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
if (failed(
checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
return failure();
continue;
}
auto arrayAttr = attr.dyn_cast<ArrayAttr>();
if (!arrayAttr || arrayAttr.size() != 2)
return emitError(loc)
<< "expected 'passthrough' to contain string or array attributes";
auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>();
auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>();
if (!keyAttr || !valueAttr)
return emitError(loc)
<< "expected arrays within 'passthrough' to contain two strings";
if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
valueAttr.getValue())))
return failure();
}
return success();
}
LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
// Clear the block, branch value mappings, they are only relevant within one
// function.
blockMapping.clear();
valueMapping.clear();
branchMapping.clear();
llvm::Function *llvmFunc = lookupFunction(func.getName());
// Translate the debug information for this function.
debugTranslation->translate(func, *llvmFunc);
// Add function arguments to the value remapping table.
// If there was noalias info then we decorate each argument accordingly.
unsigned int argIdx = 0;
for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) {
llvm::Argument &llvmArg = std::get<1>(kvp);
BlockArgument mlirArg = std::get<0>(kvp);
if (auto attr = func.getArgAttrOfType<UnitAttr>(
argIdx, LLVMDialect::getNoAliasAttrName())) {
// NB: Attribute already verified to be boolean, so check if we can indeed
// attach the attribute to this argument, based on its type.
auto argTy = mlirArg.getType();
if (!argTy.isa<LLVM::LLVMPointerType>())
return func.emitError(
"llvm.noalias attribute attached to LLVM non-pointer argument");
llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias);
}
if (auto attr = func.getArgAttrOfType<IntegerAttr>(
argIdx, LLVMDialect::getAlignAttrName())) {
// NB: Attribute already verified to be int, so check if we can indeed
// attach the attribute to this argument, based on its type.
auto argTy = mlirArg.getType();
if (!argTy.isa<LLVM::LLVMPointerType>())
return func.emitError(
"llvm.align attribute attached to LLVM non-pointer argument");
llvmArg.addAttrs(
llvm::AttrBuilder().addAlignmentAttr(llvm::Align(attr.getInt())));
}
if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.sret")) {
auto argTy = mlirArg.getType();
if (!argTy.isa<LLVM::LLVMPointerType>())
return func.emitError(
"llvm.sret attribute attached to LLVM non-pointer argument");
llvmArg.addAttrs(llvm::AttrBuilder().addStructRetAttr(
llvmArg.getType()->getPointerElementType()));
}
if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.byval")) {
auto argTy = mlirArg.getType();
if (!argTy.isa<LLVM::LLVMPointerType>())
return func.emitError(
"llvm.byval attribute attached to LLVM non-pointer argument");
llvmArg.addAttrs(llvm::AttrBuilder().addByValAttr(
llvmArg.getType()->getPointerElementType()));
}
mapValue(mlirArg, &llvmArg);
argIdx++;
}
// Check the personality and set it.
if (func.personality().hasValue()) {
llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext());
if (llvm::Constant *pfunc =
getLLVMConstant(ty, func.personalityAttr(), func.getLoc(), *this))
llvmFunc->setPersonalityFn(pfunc);
}
// First, create all blocks so we can jump to them.
llvm::LLVMContext &llvmContext = llvmFunc->getContext();
for (auto &bb : func) {
auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
llvmBB->insertInto(llvmFunc);
mapBlock(&bb, llvmBB);
}
// Then, convert blocks one by one in topological order to ensure defs are
// converted before uses.
auto blocks = detail::getTopologicallySortedBlocks(func.getBody());
for (Block *bb : blocks) {
llvm::IRBuilder<> builder(llvmContext);
if (failed(convertBlock(*bb, bb->isEntryBlock(), builder)))
return failure();
}
// After all blocks have been traversed and values mapped, connect the PHI
// nodes to the results of preceding blocks.
detail::connectPHINodes(func.getBody(), *this);
// Finally, convert dialect attributes attached to the function.
return convertDialectAttributes(func);
}
LogicalResult ModuleTranslation::convertDialectAttributes(Operation *op) {
for (NamedAttribute attribute : op->getDialectAttrs())
if (failed(iface.amendOperation(op, attribute, *this)))
return failure();
return success();
}
/// Check whether the module contains only supported ops directly in its body.
static LogicalResult checkSupportedModuleOps(Operation *m) {
for (Operation &o : getModuleBody(m).getOperations())
if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::MetadataOp>(&o) &&
!o.hasTrait<OpTrait::IsTerminator>())
return o.emitOpError("unsupported module-level operation");
return success();
}
LogicalResult ModuleTranslation::convertFunctionSignatures() {
// Declare all functions first because there may be function calls that form a
// call graph with cycles, or global initializers that reference functions.
for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
function.getName(),
cast<llvm::FunctionType>(convertType(function.getType())));
llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
llvmFunc->setLinkage(convertLinkageToLLVM(function.linkage()));
mapFunction(function.getName(), llvmFunc);
addRuntimePreemptionSpecifier(function.dso_local(), llvmFunc);
// Forward the pass-through attributes to LLVM.
if (failed(forwardPassthroughAttributes(function.getLoc(),
function.passthrough(), llvmFunc)))
return failure();
}
return success();
}
LogicalResult ModuleTranslation::convertFunctions() {
// Convert functions.
for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
// Ignore external functions.
if (function.isExternal())
continue;
if (failed(convertOneFunction(function)))
return failure();
}
return success();
}
llvm::MDNode *
ModuleTranslation::getAccessGroup(Operation &opInst,
SymbolRefAttr accessGroupRef) const {
auto metadataName = accessGroupRef.getRootReference();
auto accessGroupName = accessGroupRef.getLeafReference();
auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
opInst.getParentOp(), metadataName);
auto *accessGroupOp =
SymbolTable::lookupNearestSymbolFrom(metadataOp, accessGroupName);
return accessGroupMetadataMapping.lookup(accessGroupOp);
}
LogicalResult ModuleTranslation::createAccessGroupMetadata() {
mlirModule->walk([&](LLVM::MetadataOp metadatas) {
metadatas.walk([&](LLVM::AccessGroupMetadataOp op) {
llvm::LLVMContext &ctx = llvmModule->getContext();
llvm::MDNode *accessGroup = llvm::MDNode::getDistinct(ctx, {});
accessGroupMetadataMapping.insert({op, accessGroup});
});
});
return success();
}
void ModuleTranslation::setAccessGroupsMetadata(Operation *op,
llvm::Instruction *inst) {
auto accessGroups =
op->getAttrOfType<ArrayAttr>(LLVMDialect::getAccessGroupsAttrName());
if (accessGroups && !accessGroups.empty()) {
llvm::Module *module = inst->getModule();
SmallVector<llvm::Metadata *> metadatas;
for (SymbolRefAttr accessGroupRef :
accessGroups.getAsRange<SymbolRefAttr>())
metadatas.push_back(getAccessGroup(*op, accessGroupRef));
llvm::MDNode *unionMD = nullptr;
if (metadatas.size() == 1)
unionMD = llvm::cast<llvm::MDNode>(metadatas.front());
else if (metadatas.size() >= 2)
unionMD = llvm::MDNode::get(module->getContext(), metadatas);
inst->setMetadata(module->getMDKindID("llvm.access.group"), unionMD);
}
}
LogicalResult ModuleTranslation::createAliasScopeMetadata() {
mlirModule->walk([&](LLVM::MetadataOp metadatas) {
// Create the domains first, so they can be reference below in the scopes.
DenseMap<Operation *, llvm::MDNode *> aliasScopeDomainMetadataMapping;
metadatas.walk([&](LLVM::AliasScopeDomainMetadataOp op) {
llvm::LLVMContext &ctx = llvmModule->getContext();
llvm::SmallVector<llvm::Metadata *, 2> operands;
operands.push_back({}); // Placeholder for self-reference
if (Optional<StringRef> description = op.description())
operands.push_back(llvm::MDString::get(ctx, description.getValue()));
llvm::MDNode *domain = llvm::MDNode::get(ctx, operands);
domain->replaceOperandWith(0, domain); // Self-reference for uniqueness
aliasScopeDomainMetadataMapping.insert({op, domain});
});
// Now create the scopes, referencing the domains created above.
metadatas.walk([&](LLVM::AliasScopeMetadataOp op) {
llvm::LLVMContext &ctx = llvmModule->getContext();
assert(isa<LLVM::MetadataOp>(op->getParentOp()));
auto metadataOp = dyn_cast<LLVM::MetadataOp>(op->getParentOp());
Operation *domainOp =
SymbolTable::lookupNearestSymbolFrom(metadataOp, op.domainAttr());
llvm::MDNode *domain = aliasScopeDomainMetadataMapping.lookup(domainOp);
assert(domain && "Scope's domain should already be valid");
llvm::SmallVector<llvm::Metadata *, 3> operands;
operands.push_back({}); // Placeholder for self-reference
operands.push_back(domain);
if (Optional<StringRef> description = op.description())
operands.push_back(llvm::MDString::get(ctx, description.getValue()));
llvm::MDNode *scope = llvm::MDNode::get(ctx, operands);
scope->replaceOperandWith(0, scope); // Self-reference for uniqueness
aliasScopeMetadataMapping.insert({op, scope});
});
});
return success();
}
llvm::MDNode *
ModuleTranslation::getAliasScope(Operation &opInst,
SymbolRefAttr aliasScopeRef) const {
StringAttr metadataName = aliasScopeRef.getRootReference();
StringAttr scopeName = aliasScopeRef.getLeafReference();
auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
opInst.getParentOp(), metadataName);
Operation *aliasScopeOp =
SymbolTable::lookupNearestSymbolFrom(metadataOp, scopeName);
return aliasScopeMetadataMapping.lookup(aliasScopeOp);
}
void ModuleTranslation::setAliasScopeMetadata(Operation *op,
llvm::Instruction *inst) {
auto populateScopeMetadata = [this, op, inst](StringRef attrName,
StringRef llvmMetadataName) {
auto scopes = op->getAttrOfType<ArrayAttr>(attrName);
if (!scopes || scopes.empty())
return;
llvm::Module *module = inst->getModule();
SmallVector<llvm::Metadata *> scopeMDs;
for (SymbolRefAttr scopeRef : scopes.getAsRange<SymbolRefAttr>())
scopeMDs.push_back(getAliasScope(*op, scopeRef));
llvm::MDNode *unionMD = nullptr;
if (scopeMDs.size() == 1)
unionMD = llvm::cast<llvm::MDNode>(scopeMDs.front());
else if (scopeMDs.size() >= 2)
unionMD = llvm::MDNode::get(module->getContext(), scopeMDs);
inst->setMetadata(module->getMDKindID(llvmMetadataName), unionMD);
};
populateScopeMetadata(LLVMDialect::getAliasScopesAttrName(), "alias.scope");
populateScopeMetadata(LLVMDialect::getNoAliasScopesAttrName(), "noalias");
}
llvm::Type *ModuleTranslation::convertType(Type type) {
return typeTranslator.translateType(type);
}
/// A helper to look up remapped operands in the value remapping table.`
SmallVector<llvm::Value *, 8>
ModuleTranslation::lookupValues(ValueRange values) {
SmallVector<llvm::Value *, 8> remapped;
remapped.reserve(values.size());
for (Value v : values)
remapped.push_back(lookupValue(v));
return remapped;
}
const llvm::DILocation *
ModuleTranslation::translateLoc(Location loc, llvm::DILocalScope *scope) {
return debugTranslation->translateLoc(loc, scope);
}
llvm::NamedMDNode *
ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) {
return llvmModule->getOrInsertNamedMetadata(name);
}
void ModuleTranslation::StackFrame::anchor() {}
static std::unique_ptr<llvm::Module>
prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext,
StringRef name) {
m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
if (auto dataLayoutAttr =
m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName()))
llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue());
if (auto targetTripleAttr =
m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue());
// Inject declarations for `malloc` and `free` functions that can be used in
// memref allocation/deallocation coming from standard ops lowering.
llvm::IRBuilder<> builder(llvmContext);
llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(),
builder.getInt64Ty());
llvmModule->getOrInsertFunction("free", builder.getVoidTy(),
builder.getInt8PtrTy());
return llvmModule;
}
std::unique_ptr<llvm::Module>
mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext,
StringRef name) {
if (!satisfiesLLVMModule(module))
return nullptr;
if (failed(checkSupportedModuleOps(module)))
return nullptr;
std::unique_ptr<llvm::Module> llvmModule =
prepareLLVMModule(module, llvmContext, name);
LLVM::ensureDistinctSuccessors(module);
ModuleTranslation translator(module, std::move(llvmModule));
if (failed(translator.convertFunctionSignatures()))
return nullptr;
if (failed(translator.convertGlobals()))
return nullptr;
if (failed(translator.createAccessGroupMetadata()))
return nullptr;
if (failed(translator.createAliasScopeMetadata()))
return nullptr;
if (failed(translator.convertFunctions()))
return nullptr;
if (llvm::verifyModule(*translator.llvmModule, &llvm::errs()))
return nullptr;
return std::move(translator.llvmModule);
}